1
|
Vazquez-Armenta FJ, Aros-Corrales MO, Alvarez-Ainza ML, Bernal-Mercado AT, Ayala-Zavala JF, Ochoa-Leyva A, Lopez-Zavala AA. Antibacterial and anti-virulence potential of plant phenolic compounds against Vibrio parahaemolyticus. F1000Res 2024; 12:1256. [PMID: 39345269 PMCID: PMC11437291 DOI: 10.12688/f1000research.141268.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 10/01/2024] Open
Abstract
Background: Vibrio parahaemolyticus is a pathogenic bacterium that affects shrimp aquaculture; its infection can lead to severe production losses of up to 90%. On the other hand, plant phenolic compounds have emerged as a promising alternative to combat bacterial infections. The antibacterial and anti-virulence activity of the plant phenolic compounds quercetin, morin, vanillic acid, and protocatechuic acid against two strains of V. parahaemolyticus (Vp124 and Vp320) was evaluated. Methods: The broth microdilution test was carried out to determine phenolic compounds' antibacterial activity. Moreover, the biofilm-forming ability of V. parahaemolyticus strains in the presence of phenolic compounds was determined by total biomass staining assay using the cationic dye crystal violet. The semisolid agar displacement technique was used to observe the effect of phenolic compounds on the swimming-like motility of V. parahaemolyticus. Results: Results showed that phenolic compounds inhibited both strains effectively, with minimum inhibitory concentrations (MICs) ranging from 0.8 to 35.03 mM. Furthermore, at 0.125 - 0.5 × MIC of phenolic compounds, V. parahaemolyticus biofilms biomass was reduced by 63.22 - 92.68%. Also, quercetin and morin inhibited the motility of both strains by 15.86 - 23.64% (Vp124) and 24.28 - 40.71% (Vp320). Conclusions: The results suggest that quercetin, morin, vanillic, and protocatechuic acids may be potential agents for controlling V. parahaemolyticus.
Collapse
Affiliation(s)
- F Javier Vazquez-Armenta
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, 83000, Mexico
| | - M Olivia Aros-Corrales
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, 83000, Mexico
| | - M Lizeth Alvarez-Ainza
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, 83000, Mexico
| | - A Thalia Bernal-Mercado
- Departamento de Investigacion y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, 83000, Mexico
| | - J Fernando Ayala-Zavala
- Coordinacion de Tecnologia de Alimentos de Origen Vegetal, Centro de Investigacion en Alimentacion y Desarrollo AC, Hermosillo, Sonora, 83304, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico City, 62210, Mexico
| | - A Alexis Lopez-Zavala
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, 83000, Mexico
| |
Collapse
|
2
|
Jayaraman S, Rajendhran N, Kannan MA, Ramasamy T. Quercetin disrupts biofilm formation and attenuates virulence of Aeromonas hydrophila. Arch Microbiol 2024; 206:326. [PMID: 38922407 DOI: 10.1007/s00203-024-04034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Aeromonas hydrophila poses significant health and economic challenges in aquaculture owing to its pathogenicity and prevalence. Overuse of antibiotics has led to multidrug resistance and environmental pollution, necessitating alternative strategies. This study investigated the antibacterial and antibiofilm potentials of quercetin against A. hydrophila. Efficacy was assessed using various assays, including antibacterial activity, biofilm inhibition, specific growth time, hemolysis inhibition, autoaggregation, and microscopic evaluation. Additionally, docking analysis was performed to explore potential interactions between quercetin and virulence proteins of A. hydrophila, including proaerolysin, chaperone needle-subunit complex of the type III secretion system, and alpha-pore forming toxin (PDB ID: 1PRE, 2Q1K, 6GRK). Quercetin exhibited potent antibacterial activity with 21.1 ± 1.1 mm zone of inhibition at 1.5 mg mL-1. It also demonstrated significant antibiofilm activity, reducing biofilm formation by 46.3 ± 1.3% at the MIC and attenuating autoaggregation by 55.9 ± 1.5%. Hemolysis was inhibited by 41 ± 1.8%. Microscopic analysis revealed the disintegration of the A. hydrophila biofilm matrix. Docking studies indicated active hydrogen bond interactions between quercetin and the targeted virulence proteins with the binding energy -3.2, -5.6, and -5.1 kcal mol⁻1, respectively. These results suggest that quercetin is an excellent alternative to antibiotics for combating A. hydrophila infection in aquaculture. The multifaceted efficacy of quercetin in inhibiting bacterial growth, biofilm formation, virulence factors, and autoaggregation highlights the potential for aquaculture health and sustainability. Future research should delve into the precise mechanisms of action and explore synergistic combinations with other compounds for enhanced efficacy and targeted interventions.
Collapse
Affiliation(s)
- Sudharshini Jayaraman
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Nandhini Rajendhran
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Monika Adhilaxmi Kannan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610 005, India.
| |
Collapse
|
3
|
Ramachandran R, Ford E, Gomaa B, Abdelhamed H. Trans-Cinnamaldehyde Primes More Robust Channel Catfish Immune Responses to Edwardsiella ictaluri Infection. Pathogens 2024; 13:310. [PMID: 38668265 PMCID: PMC11054112 DOI: 10.3390/pathogens13040310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
Infection with Edwardsiella ictaluri, a causative agent of enteric septicemia of catfish, threatens profitable catfish production through inventory losses. We previously demonstrated that trans-cinnamaldehyde (TC) enhances the survival of catfish following E. ictaluri infection. The present study was conducted to investigate catfish immune responses to TC feeding and E. ictaluri infection. The expression of 13 proinflammatory, innate, and adaptive immune-related genes was evaluated over time in two sets of experiments using real-time polymerase chain reaction (PCR). In the first experiment, catfish were fed a basal diet with or without TC supplementation, while in the second they were fed a TC-supplemented or normal diet followed by infection with E. ictaluri. The catfish group infected with E. ictaluri and fed a TC-diet showed significant changes in the expression of innate and adaptive immune-related genes compared to control group. At 21 and 28 days post-infection, recovered fish showed significant increases in the expression of IgM in the anterior kidney and spleen. These results suggest that the supplemental dietary intake of TC can improve the immune status of catfish via engaging innate and adaptive immune responses and the production of memory cells in immunocompetent tissues. Together, this study provides an important foundation for the potential application of TC as an antimicrobial alternative in aquaculture.
Collapse
Affiliation(s)
| | | | | | - Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (R.R.); (E.F.); (B.G.)
| |
Collapse
|
4
|
Ghosh S, Singha PS, Das LK, Ghosh D. Systematic Review on Major Antiviral Phytocompounds from Common Medicinal Plants against SARS-CoV-2. Med Chem 2024; 20:613-629. [PMID: 38317467 DOI: 10.2174/0115734064262843231120051452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 09/14/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Viral infections are rising around the globe and with evolving virus types and increasing varieties of viral invasions; the human body is developing antimicrobial resistance continuously. This is making the fight of mankind against viruses weak and unsecured. On the other hand, changing lifestyle, globalization and human activities adversely affecting the environment are opening up risks for new viral predominance on human race. In this context the world has witnessed the pandemic of the human Coronavirus disease (COVID-19) recently. The disease is caused by the Coronavirus namely Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV- 2). METHODS AND MATERIALS Developing potential and effective vaccine is also time consuming and challenging. The huge resource of plants around us has rich source of potent antiviral compounds. Some of these molecules may serve as tremendously potent lead molecules whose slight structural modifications may give us highly bioactive antiviral derivatives of phytocompounds. Every geographical region is rich in unique plant biodiversity and hence every corner of the world with rich plant biodiversity can serve as abode for potential magical phytocompounds most of which have not been extensively explored for development of antiviral drug formulations against various viruses like the HIV, HPV etc., and the Coronavirus, also known as SARS-CoV-2 which causes the disease COVID-19. RESULTS Several phytocompounds from various medicinal plants have already been screened using in silico tools and some of them have yielded promising results establishing themselves as potent lead molecules for development of drugs against the highly mutating SARS-CoV-2 virus and thus these phytocompounds may be beneficial in treating COVID-19 and help human to win the life threatening battle against the deadly virus. CONCLUSION The best advantage is that these phytocompounds being derived from nature in most of the cases, come with minimum or no side effects compared to that of chemically synthesized conventional bioactive compounds and are indigenously available hence are the source of cost effective drug formulations with strong therapeutic potentials.
Collapse
Affiliation(s)
- Suvendu Ghosh
- Department of Physiology, Hooghly Mohsin College, Chinsura, Hooghly 712 101, West Bengal, India
| | - Partha Sarathi Singha
- Department of Chemistry, Government General Degree College, Kharagpur II, P.O Madpur, Dist, Paschim Medinipur, Pin: 721149, West Bengal, India
| | - Lakshmi Kanta Das
- Department of Chemistry, Government General Degree College, Kharagpur II, P.O Madpur, Dist, Paschim Medinipur, Pin: 721149, West Bengal, India
| | - Debosree Ghosh
- Department of Physiology, Government General Degree College, Kharagpur II, P.O Madpur, Dist, Paschim Medinipur, Pin: 721149, West Bengal, India
| |
Collapse
|
5
|
Sánchez-Serrano S, González-Méndez DJ, Olivas-Valdez JA, Millán-Aguiñaga N, Evangelista V, Contreras OE, Cardoza-Contreras MN. pH-Responsive Chitosan-Doped ZnO Hybrid Hydrogels for the Encapsulation of Bioactive Compounds in Aquaculture. Polymers (Basel) 2023; 15:4105. [PMID: 37896349 PMCID: PMC10610712 DOI: 10.3390/polym15204105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, we synthesized and characterized pH-responsive Chitosan-AgCl-doped ZnO hybrid hydrogels and evaluated their potential for loading aquaculture bioactive compounds, and assessed their antimicrobial properties against a threatening pathogen associated with disease across a broad spectrum of warm water fish and invertebrates. Hydrogel characterization consisted of assessing morphology via SEM, composition via EDS, hydrogels' network components interactions via FT-IR and pH response through swelling behavior determinations. The swelling characterization of the synthesized hydrogels demonstrated a pH-responsive behavior, showing that low pH values caused the hydrogel polymeric network to expand and capture more of the aqueous solution. These characteristics make the synthesized hydrogels suitable for the encapsulation and controlled release of drugs and bioactive compounds in aquaculture. Chitosan_ZnO hybrid hydrogels showed great antimicrobial activity against Vibrio harveyi, even better than that of loaded PB hydrogels. Here, we provide evidence for the potential capacity of Chitosan_ZnO hybrid hydrogels for the preventive and curative treatment of diseases that impact aquaculture animal health and prevent drug resistance by bacteria.
Collapse
Affiliation(s)
- Samuel Sánchez-Serrano
- Marine Sciences Faculty, Autonomous University of Baja California, Ensenada 22860, Mexico; (S.S.-S.); (D.J.G.-M.); (J.A.O.-V.); (N.M.-A.); (V.E.)
| | - Daniela J. González-Méndez
- Marine Sciences Faculty, Autonomous University of Baja California, Ensenada 22860, Mexico; (S.S.-S.); (D.J.G.-M.); (J.A.O.-V.); (N.M.-A.); (V.E.)
| | - José A. Olivas-Valdez
- Marine Sciences Faculty, Autonomous University of Baja California, Ensenada 22860, Mexico; (S.S.-S.); (D.J.G.-M.); (J.A.O.-V.); (N.M.-A.); (V.E.)
| | - Natalie Millán-Aguiñaga
- Marine Sciences Faculty, Autonomous University of Baja California, Ensenada 22860, Mexico; (S.S.-S.); (D.J.G.-M.); (J.A.O.-V.); (N.M.-A.); (V.E.)
| | - Viridiana Evangelista
- Marine Sciences Faculty, Autonomous University of Baja California, Ensenada 22860, Mexico; (S.S.-S.); (D.J.G.-M.); (J.A.O.-V.); (N.M.-A.); (V.E.)
| | - Oscar E. Contreras
- Nanosciences and Nanotechnology Center, National Autonomus University of Mexico, Ensenada 22800, Mexico;
| | - Marlene N. Cardoza-Contreras
- Marine Sciences Faculty, Autonomous University of Baja California, Ensenada 22860, Mexico; (S.S.-S.); (D.J.G.-M.); (J.A.O.-V.); (N.M.-A.); (V.E.)
| |
Collapse
|
6
|
Cortés H, Castillo-Ruiz M, Cañon-Jones H, Schlotterbeck T, San Martín R, Padilla L. In Vivo Efficacy of Purified Quillaja Saponin Extracts in Protecting against Piscirickettsia salmonis Infections in Atlantic Salmon ( Salmo salar). Animals (Basel) 2023; 13:2845. [PMID: 37760245 PMCID: PMC10525856 DOI: 10.3390/ani13182845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Piscirickettsiosis, the main infectious disease affecting salmon farming in Chile, still has no efficient control measures. Piscirickettsia salmonis is a facultative intracellular bacterium that can survive and replicate within the host macrophages, evading the immune response. Triterpenic saponins obtained from the Quillaja saponaria tree have been widely studied, and have been shown to be immunomodulatory agents, suitable for feed and vaccine applications for veterinary and human uses. The impact of the oral administration of two extracts of Quillaja saponins on the infection of P. salmonis in Salmo salar and the corresponding gene expressions of immunomarkers were studied under three in vivo models. In the intraperitoneal challenge model, the group fed with Quillaja extracts showed lower mortality (29.1% treated vs. 37.5% control). Similar results were obtained in the cohabitation model trial (36.3% vs. 60.0%). In the commercial pilot trial, the results showed a significant reduction of 71.3% in mortality caused by P. salmonis (0.51% vs. 1.78%) and antibiotic use (reduction of 66.6% compared to untreated control). Also, Quillaja extracts significantly modulated the expression of IFN-II and CD8. These results represent evidence supporting the future use of purified Quillaja extracts as a natural non-pharmacological strategy for the prevention and control of P. salmonis infections in salmon.
Collapse
Affiliation(s)
- Hernán Cortés
- Desert King Chile, Viña del Mar 2420505, Chile; (T.S.); (L.P.)
| | - Mario Castillo-Ruiz
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago 8370134, Chile;
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago 8370854, Chile
| | - Hernán Cañon-Jones
- Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago 7500975, Chile
| | | | - Ricardo San Martín
- Sutardja Center for Entrepreneurship and Technology, College of Engineering, University of California, Berkeley, CA 94720, USA;
| | - Leandro Padilla
- Desert King Chile, Viña del Mar 2420505, Chile; (T.S.); (L.P.)
| |
Collapse
|
7
|
Assar DH, Ragab AE, Abdelsatar E, Salah AS, Salem SMR, Hendam BM, Al Jaouni S, Al Wakeel RA, AbdEl-Kader MF, Elbialy ZI. Dietary Olive Leaf Extract Differentially Modulates Antioxidant Defense of Normal and Aeromonas hydrophila-Infected Common Carp ( Cyprinus carpio) via Keap1/Nrf2 Pathway Signaling: A Phytochemical and Biological Link. Animals (Basel) 2023; 13:2229. [PMID: 37444027 DOI: 10.3390/ani13132229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Olive leaves are an immense source of antioxidant and antimicrobial bioactive constituents. This study investigated the effects of dietary incorporation of olive leaf extract (OLE) on the growth performance, hematobiochemical parameters, immune response, antioxidant defense, histopathological changes, and some growth- and immune-related genes in the common carp (Cyprinus carpio). A total of 180 fish were allocated into four groups with triplicate each. The control group received the basal diet without OLE, while the other three groups were fed a basal diet with the OLE at 0.1, 0.2, and 0.3%, respectively. The feeding study lasted for 8 weeks, then fish were challenged with Aeromonas hydrophila. The results revealed that the group supplied with the 0.1% OLE significantly exhibited a higher final body weight (FBW), weight gain (WG%), and specific growth rate (SGR) with a decreased feed conversion ratio (FCR) compared to the other groups (p < 0.05). An increase in immune response was also observed in the fish from this group, with higher lysosome activity, immunoglobulin (IgM), and respiratory burst than nonsupplemented fish, both before and after the A. hydrophila challenge (p < 0.05). Similarly, the supplementation of the 0.1% OLE also promoted the C. carpio's digestive capacity pre- and post-challenge, presenting the highest activity of protease and alkaline phosphatase (p < 0.05). In addition, this dose of the OLE enhanced fish antioxidant capacity through an increase in the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) and decreased hepatic lipid peroxidation end products (malondialdehyde-MDA), when compared to the control group, both pre- and post-infection (p < 0.05). Concomitantly with the superior immune response and antioxidant capacity, the fish fed the 0.1% OLE revealed the highest survival rate after the challenge with A. hydrophila (p < 0.05). A significant remarkable upregulation of the hepatic sod, nrf2, and protein kinase C transcription levels was detected as a vital approach for the prevention of both oxidative stress and inflammation compared to the infected unsupplied control group (p < 0.05). Interestingly, HPLC and UPLC-ESI-MS/MS analyses recognized that oleuropein is the main constituent (20.4%) with other 45 compounds in addition to tentative identification of two new compounds, namely oleuroside-10-carboxylic acid (I) and demethyl oleuroside-10-carboxylic acid (II). These constituents may be responsible for the OLE exerted potential effects. To conclude, the OLE at a dose range of 0.66-0.83 g/kg w/w can be included in the C. carpio diet to improve the growth, antioxidant capacity, and immune response under normal health conditions along with regulating the infection-associated pro-inflammatory gene expressions, thus enhancing resistance against A. hydrophila.
Collapse
Affiliation(s)
- Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Amany E Ragab
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta 32527, Egypt
| | - Essam Abdelsatar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Abdallah S Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Shimaa M R Salem
- Department of Animal Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Basma M Hendam
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Soad Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rasha A Al Wakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Marwa F AbdEl-Kader
- Department of Fish Health and Management, Sakha Aquaculture Research Unit, Central Laboratory for Aquaculture Research, A.R.C., Kafrelsheikh 33516, Egypt
| | - Zizy I Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
8
|
Abdel-Latif HMR, Yilmaz S, Kucharczyk D. Editorial: Functionality and applications of phytochemicals in aquaculture nutrition. Front Vet Sci 2023; 10:1218542. [PMID: 37303733 PMCID: PMC10250716 DOI: 10.3389/fvets.2023.1218542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Affiliation(s)
- Hany M. R. Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Sevdan Yilmaz
- Department of Aquaculture, Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Dariusz Kucharczyk
- Department of Ichthyology and Aquaculture, University of Warmia and Mazury, Olsztyn, Poland
- Department of Research and Development, Chemprof, Olsztyn, Poland
| |
Collapse
|
9
|
Umam K, Feng CS, Yang G, Tu PC, Lin CY, Yang MT, Kuo TF, Yang WC, Tran Nguyen Minh H. Phytochemistry, Pharmacology and Mode of Action of the Anti-Bacterial Artemisia Plants. Bioengineering (Basel) 2023; 10:633. [PMID: 37370564 DOI: 10.3390/bioengineering10060633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Over 70,000 people die of bacterial infections worldwide annually. Antibiotics have been liberally used to treat these diseases and, consequently, antibiotic resistance and drug ineffectiveness has been generated. In this environment, new anti-bacterial compounds are being urgently sought. Around 500 Artemisia species have been identified worldwide. Most species of this genus are aromatic and have multiple functions. Research into the Artemisia plants has expanded rapidly in recent years. Herein, we aim to update and summarize recent information about the phytochemistry, pharmacology and toxicology of the Artemisia plants. A literature search of articles published between 2003 to 2022 in PubMed, Google Scholar, Web of Science databases, and KNApSAcK metabolomics databases revealed that 20 Artemisia species and 75 compounds have been documented to possess anti-bacterial functions and multiple modes of action. We focus and discuss the progress in understanding the chemistry (structure and plant species source), anti-bacterial activities, and possible mechanisms of these phytochemicals. Mechanistic studies show that terpenoids, flavonoids, coumarins and others (miscellaneous group) were able to destroy cell walls and membranes in bacteria and interfere with DNA, proteins, enzymes and so on in bacteria. An overview of new anti-bacterial strategies using plant compounds and extracts is also provided.
Collapse
Affiliation(s)
- Khotibul Umam
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, and National Chung-Hsing University, Taichung 40227, Taiwan
- Faculty of Life Science and Technology, Biotechnology Department, Sumbawa University of Technology, Sumbawa Besar 84371, NTB, Indonesia
| | - Ching-Shan Feng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Greta Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ping-Chen Tu
- Sun Ten Pharmaceutical Co., Ltd., New Taipei City 23143, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Meng-Ting Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Tien-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, and National Chung-Hsing University, Taichung 40227, Taiwan
- Department of Life Sciences, National Chung-Hsing University, Taichung 40227, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan
| | | |
Collapse
|
10
|
Sukhovskaya IV, Lysenko LA, Fokina NN, Kantserova NP, Borvinskaya EV. Survival, Growth Performance, and Hepatic Antioxidant and Lipid Profiles in Infected Rainbow Trout ( Oncorhynchus mykiss) Fed a Diet Supplemented with Dihydroquercetin and Arabinogalactan. Animals (Basel) 2023; 13:ani13081345. [PMID: 37106908 PMCID: PMC10135201 DOI: 10.3390/ani13081345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Natural feed supplements have been shown to improve fish viability, health, and growth, and the ability to withstand multiple stressors related to intensive cultivation. We assumed that a dietary mix of plant-origin substances, such as dihydroquercetin, a flavonoid with antioxidative, anti-inflammatory, and antimicrobial properties, and arabinogalactan, a polysaccharide with immunomodulating activity, would promote fish stress resistance and expected it to have a protective effect against infectious diseases. Farmed rainbow trout fish, Oncorhynchus mykiss, received either a standard diet or a diet supplemented with 25 mg/kg of dihydroquercetin and 50 mg/kg of arabinogalactan during a feeding season, from June to November. The fish in the control and experimental groups were sampled twice a month (eight samplings in total) for growth variable estimations and tissue sampling. The hepatic antioxidant status was assessed via the quantification of molecular antioxidants, such as reduced glutathione and alpha-tocopherol rates, as well as the enzyme activity rates of peroxidase, catalase, and glutathione-S-transferase. The lipid and fatty acid compositions of the feed and fish liver were analyzed using thin-layer and high-performance liquid chromatography. The viability, size, and biochemical indices of the fish responded to the growth physiology, environmental variables such as the dissolved oxygen content and water temperature, and sporadic factors. Due to an outbreak of a natural bacterial infection in the fish stock followed by antibiotic treatment, a higher mortality rate was observed in the fish that received a standard diet compared to those fed supplemented feed. In the postinfection period, reduced dietary 18:2n-6 and 18:3n-3 fatty acid assimilation contents were detected in the fish that received the standard diet in contrast to the supplemented diet. By the end of the feeding season, an impaired antioxidant response, including reduced glutathione S-transferase activity and glutathione content, and a shift in the composition of membrane lipids, such as sterols, 18:1n-7 fatty acid, and phospholipids, were also revealed in fish fed the standard diet. Dietary supplementation with plant-origin substances, such as dihydroquercetin and arabinogalactan, decreases lethality in fish stocks, presumably though the stimulation of natural resistance in farmed fish, thereby increasing the economic efficacy during fish production. From the sustainable aquaculture perspective, natural additives also diminish the anthropogenic transformation of aquaculture-bearing water bodies and their ecosystems.
Collapse
Affiliation(s)
- Irina V Sukhovskaya
- Laboratory of Environmental Biochemistry, Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | - Liudmila A Lysenko
- Laboratory of Environmental Biochemistry, Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | - Natalia N Fokina
- Laboratory of Environmental Biochemistry, Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | - Nadezhda P Kantserova
- Laboratory of Environmental Biochemistry, Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | | |
Collapse
|
11
|
Williams M, Shamsi S, Williams T, Hernandez-Jover M. Bacteria of Zoonotic Interest Identified on Edible Freshwater Fish Imported to Australia. Foods 2023; 12:foods12061288. [PMID: 36981215 PMCID: PMC10048124 DOI: 10.3390/foods12061288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/22/2023] Open
Abstract
Previous research has shown that freshwater edible fish imported into Australia are not compliant with Australian importation guidelines and as a result may be high risk for bacterial contamination. In the present study, the outer surface of imported freshwater fish were swabbed, cultured, confirmatory tests performed and antimicrobial patterns investigated. Channidae fish (Sp. A/n = 66) were contaminated with zoonotic Salmonella sp./Staphylococcus aureus (n = 1/66) and other bacteria implicated in cases of opportunistic human infection, these being Pseudomonas sp. (including P. mendocina and P. pseudoalcaligenes (n = 34/66)); Micrococcus sp. (n = 32/66); Comamonas testosteroni (n = 27/66) and Rhizobium radiobacter (n = 3/66). Pangasiidae fish (Species B/n = 47) were contaminated with zoonotic Vibrio fluvialis (n = 10/47); Salmonella sp. (n = 6/47) and environmental bacteria Micrococcus sp. (n = 3/47). One sample was resistant to all antimicrobials tested and is considered to be Methicillin Resistant S. aureus. Mud, natural diet, or vegetation identified in Sp. A fish/or packaging were significantly associated with the presence of Pseudomonas spp. The study also showed that visibly clean fish (Sp. B) may harbour zoonotic bacteria and that certain types of bacteria are common to fish groups, preparations, and contaminants. Further investigations are required to support the development of appropriate food safety recommendations in Australia.
Collapse
Affiliation(s)
- Michelle Williams
- School of Agricultural, Environmental and Veterinary Sciences & Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Correspondence: or
| | - Shokoofeh Shamsi
- School of Agricultural, Environmental and Veterinary Sciences & Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Thomas Williams
- Institute for Future Farming Systems, CQUniversity, Rockhampton, QLD 4701, Australia
| | - Marta Hernandez-Jover
- School of Agricultural, Environmental and Veterinary Sciences & Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| |
Collapse
|
12
|
Review of Medicinal Plants and Active Pharmaceutical Ingredients against Aquatic Pathogenic Viruses. Viruses 2022; 14:v14061281. [PMID: 35746752 PMCID: PMC9230652 DOI: 10.3390/v14061281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Aquaculture offers a promising source of economic and healthy protein for human consumption, which can improve wellbeing. Viral diseases are the most serious type of diseases affecting aquatic animals and a major obstacle to the development of the aquaculture industry. In the background of antibiotic-free farming, the development and application of antibiotic alternatives has become one of the most important issues in aquaculture. In recent years, many medicinal plants and their active pharmaceutical ingredients have been found to be effective in the treatment and prevention of viral diseases in aquatic animals. Compared with chemical drugs and antibiotics, medicinal plants have fewer side-effects, produce little drug resistance, and exhibit low toxicity to the water environment. Most medicinal plants can effectively improve the growth performance of aquatic animals; thus, they are becoming increasingly valued and widely used in aquaculture. The present review summarizes the promising antiviral activities of medicinal plants and their active pharmaceutical ingredients against aquatic viruses. Furthermore, it also explains their possible mechanisms of action and possible implications in the prevention or treatment of viral diseases in aquaculture. This article could lay the foundation for the future development of harmless drugs for the prevention and control of viral disease outbreaks in aquaculture.
Collapse
|