1
|
Olorundare OO, Zrelovs N, Kabantiyok D, Svanberga K, Jansons J, Kazaks A, Agada GO, Agu CG, Morenikeji OR, Oluwapelumi OA, Dung T, Pewan SB. Isolation and Characterization of a Novel Jumbo Phage HPP-Temi Infecting Pseudomonas aeruginosa Pa9 and Increasing Host Sensitivity to Ciprofloxacin. Antibiotics (Basel) 2024; 13:1006. [PMID: 39596701 PMCID: PMC11591403 DOI: 10.3390/antibiotics13111006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Pseudomonas aeruginosa is a bacteria responsible for many hospital-acquired infections. Phages are promising alternatives for treating P. aeruginosa infections, which are often intrinsically resistant. The combination of phage and antibiotics in clearing bacterial infection holds promise due to increasing reports of enhanced effectiveness when both are used together. The aim of the study is to isolate and characterize a novel P. aeruginosa phage and determine its effectiveness in in vitro combination with antibiotics in controlling P. aeruginosa. In this study, a novel jumbo myophage HPP-Temi infecting P. aeruginosa Pa9 (PP334386) was isolated from household sewage. Electron micrographs of the phage were obtained to determine the morphological features of HPP-Temi virions. Complete genome analysis and a combination of Pseudomonas phage HPP-Temi with antibiotics were examined. The phage HPP-Temi was able to productively infect P. aeruginosa ATCC 9027 but was unable to infect a closely related genus. The phage was stable at 4-37 °C, 0.5% NaCl, and pH 8 for at least one hour. The HPP-Temi genome is a 302,719-bp-long dsDNA molecule with a GC content of 46.46%. The genome was predicted to have 436 ORFs and 7 tRNA genes. No virulence factor-related genes, antimicrobial resistance, or temperate lifestyle-associated genes were found in the phage HPP-Temi genome. Phage HPP-Temi is most closely related to the known or tentative representatives of the Pawinskivirus genus and can be proposed as a representative for the creation of a novel phage species in that genus. The phage and antibiotics (Ciprofloxacin) combination at varying phage titers (103, 106, 109) were used against P. aeruginosa Pa9 (PP334386) at 3.0 × 108 CFU/mL, which was carried out in triplicate. The result showed that combining antibiotics with phage significantly reduced the bacteria count at 103 and 106 titers, while no growth was observed at 109 PFU/mL. This suggests that the effect of phage HPP-Temi in combination with antibiotics is a potential and promising agent for the control of P. aeruginosa infections.
Collapse
Affiliation(s)
- Olufunke Olufunmilola Olorundare
- Department of Medical Microbiology, Clinical Sciences, University of Jos, Jos 930105, Nigeria
- Forest Research Institute of Nigeria, Federal College of Forestry, Jos 930105, Nigeria
| | - Nikita Zrelovs
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (N.Z.); (K.S.); (J.J.); (A.K.)
| | - Dennis Kabantiyok
- Fleming Sentinel Lab for AMR, National Veterinary Research Institute NVRI, Vom 930001, Nigeria; (D.K.); (G.O.A.); (O.A.O.); (T.D.)
| | - Karina Svanberga
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (N.Z.); (K.S.); (J.J.); (A.K.)
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (N.Z.); (K.S.); (J.J.); (A.K.)
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (N.Z.); (K.S.); (J.J.); (A.K.)
| | - Godwin Ojonugwa Agada
- Fleming Sentinel Lab for AMR, National Veterinary Research Institute NVRI, Vom 930001, Nigeria; (D.K.); (G.O.A.); (O.A.O.); (T.D.)
| | - Chibuzor Gerald Agu
- Bacteria Research National Veterinary Research Institute NVRI, Vom 930001, Nigeria;
| | - Oluwatoyin Ruth Morenikeji
- West African Centre for Emerging Infectious Diseases, Jos University Teaching Hospital, Jos 930241, Nigeria;
| | - Ogundeji Alice Oluwapelumi
- Fleming Sentinel Lab for AMR, National Veterinary Research Institute NVRI, Vom 930001, Nigeria; (D.K.); (G.O.A.); (O.A.O.); (T.D.)
| | - Thomas Dung
- Fleming Sentinel Lab for AMR, National Veterinary Research Institute NVRI, Vom 930001, Nigeria; (D.K.); (G.O.A.); (O.A.O.); (T.D.)
| | | |
Collapse
|
2
|
Lyytinen OL, Dapuliga C, Wallinger D, Patpatia S, Audu BJ, Kiljunen SJ. Three novel Enterobacter cloacae bacteriophages for therapeutic use from Ghanaian natural waters. Arch Virol 2024; 169:156. [PMID: 38967872 PMCID: PMC11226500 DOI: 10.1007/s00705-024-06081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/15/2024] [Indexed: 07/06/2024]
Abstract
Infections caused by multidrug-resistant (MDR) bacteria are a growing global concern. Enterobacter cloacae complex (ECC) species are particularly adept at developing antibiotic resistance. Phage therapy is proposed as an alternative treatment for pathogens that no longer respond to antibiotics. Unfortunately, ECC phages are understudied when compared to phages of many other bacterial species. In this Ghanaian-Finnish study, we isolated two ECC strains from ready-to-eat food samples and three novel phages from natural waters against these strains. We sequenced the genomic DNA of the novel Enterobacter phages, fGh-Ecl01, fGh-Ecl02, and fGh-Ecl04, and assessed their therapeutic potential. All of the phages were found to be lytic, easy to propagate, and lacking any toxic, integrase, or antibiotic resistance genes and were thus considered suitable for therapy purposes. They all were found to be related to T4-type viruses: fGh-Ecl01 and fGh-Ecl04 to karamviruses and fGh-Ecl02 to agtreviruses. Testing of Finnish clinical ECC strains showed promising susceptibility to these novel phages. As many as 61.1% of the strains were susceptible to fGh-Ecl01 and fGh-Ecl04, and 7.4% were susceptible to fGh-Ecl02. Finally, we investigated the susceptibility of the newly isolated ECC strains to three antibiotics - meropenem, ciprofloxacin, and cefepime - in combination with the novel phages. The use of phages and antibiotics together had synergistic effects. When using an antibiotic-phage combination, even low concentrations of antibiotics fully inhibited the growth of bacteria.
Collapse
Affiliation(s)
- O L Lyytinen
- Human Microbiome Research Program (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - C Dapuliga
- Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - D Wallinger
- Human Microbiome Research Program (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - S Patpatia
- Human Microbiome Research Program (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - B J Audu
- National Veterinary Research Institute, Vom, Nigeria
| | - S J Kiljunen
- Human Microbiome Research Program (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Division of Clinical Microbiology, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
3
|
Subramanian A. Emerging roles of bacteriophage-based therapeutics in combating antibiotic resistance. Front Microbiol 2024; 15:1384164. [PMID: 39035437 PMCID: PMC11257900 DOI: 10.3389/fmicb.2024.1384164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/06/2024] [Indexed: 07/23/2024] Open
Abstract
Amid the growing challenge of antibiotic resistance on a global scale, there has been a notable resurgence in bacteriophage-based treatments, signaling a shift in our approach to managing infections. Bacteriophages (BPs), bacterial predators of nature, present a promising alternative for tackling infections caused by antibiotic-resistant pathogens. This review delves into the intricate relationship between bacteriophages and resistant bacteria, exploring various treatment strategies. Drawing upon both preclinical and clinical studies, the review highlights the effectiveness of bacteriophage therapy, particularly when integrated synergistically with conventional antibiotics. It discusses various treatment approaches for systemic and localized infections, demonstrating the adaptability of bacteriophage therapy across different clinical scenarios. Furthermore, the formulation and delivery of bacteriophages shed light on the various methods used to encapsulate and administer them effectively. It also acknowledges the challenge of bacterial resistance to bacteriophages and the ongoing efforts to overcome this hurdle. In addition, this review highlights the importance of the bacteriophage sensitivity profile (phagogram), which helps tailor treatment regimens to individual patients and specific pathogens. By surpassing the limitations of traditional antibiotics, bacteriophage-based therapies offer a personalized and potent solution against antibiotic resistance, promising to reshape the future of infectious disease management.
Collapse
|
4
|
Premachandra A, Moine P. Antibiotics in anesthesia and critical care. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:6. [PMID: 38304898 PMCID: PMC10777233 DOI: 10.21037/atm-22-5585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/06/2023] [Indexed: 02/03/2024]
Abstract
Sepsis is life-threatening organ dysfunction due to a dysregulated host response to an underlying acute infection. Sepsis is a major worldwide healthcare problem. An annual estimated 48.9 million incident cases of sepsis is reported, with 11 million (20%) sepsis-related deaths. Administration of appropriate antimicrobials is one of the most effective therapeutic interventions to reduce mortality. The severity of illness informs the urgency of antimicrobial administration. Nevertheless, even used properly, they cause adverse effects and contribute to the development of antibiotic resistance. Both inadequate and unnecessarily broad empiric antibiotics are associated with higher mortality and also select for antibiotic-resistant germs. In this narrative review, we will first discuss important factors and potential confounders which may influence the occurrence of surgical site infection (SSI) and which should be considered in the provision of perioperative antibiotic prophylaxis (PAP). Then, we will summarize recent advances and perspectives to optimize antibiotic therapy in the intensive care unit (ICU). Finally, the major role of the microbiota and the impact of antimicrobials on it will be discussed. While expert recommendations help guide daily practice in the operating theatre and ICU, a thorough knowledge of pharmacokinetic/pharmacodynamic (PK/PD) rules is critical to optimize the management of complex patients and minimize the emergence of multidrug-resistant organisms.
Collapse
Affiliation(s)
- Antoine Premachandra
- Department of Intensive Care, Hôpital Raymond Poincaré, Groupe Hospitalo-Universitaire GHU AP-HP, University Versailles Saint Quentin-University Paris-Saclay, Garches, France
| | - Pierre Moine
- Department of Intensive Care, Hôpital Raymond Poincaré, Groupe Hospitalo-Universitaire GHU AP-HP, University Versailles Saint Quentin-University Paris-Saclay, Garches, France
- Laboratory of Infection & Inflammation - U1173, University of Versailles Saint-Quentin-en-Yvelines (UVSQ) - University Paris-Saclay - Institut National de la Santé et de la Recherche Médicale (INSERM), Garches, France
- Fédération Hospitalo-Universitaire FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis), Garches, France
| |
Collapse
|
5
|
Zalewska-Piątek B. Phage Therapy-Challenges, Opportunities and Future Prospects. Pharmaceuticals (Basel) 2023; 16:1638. [PMID: 38139765 PMCID: PMC10747886 DOI: 10.3390/ph16121638] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The increasing drug resistance of bacteria to commonly used antibiotics creates the need to search for and develop alternative forms of treatment. Phage therapy fits this trend perfectly. Phages that selectively infect and kill bacteria are often the only life-saving therapeutic option. Full legalization of this treatment method could help solve the problem of multidrug-resistant infectious diseases on a global scale. The aim of this review is to present the prospects for the development of phage therapy, the ethical and legal aspects of this form of treatment given the current situation of such therapy, and the benefits of using phage products in persons for whom available therapeutic options have been exhausted or do not exist at all. In addition, the challenges faced by this form of therapy in the fight against bacterial infections are also described. More clinical studies are needed to expand knowledge about phages, their dosage, and a standardized delivery system. These activities are necessary to ensure that phage-based therapy does not take the form of an experiment but is a standard medical treatment. Bacterial viruses will probably not become a miracle cure-a panacea for infections-but they have a chance to find an important place in medicine.
Collapse
Affiliation(s)
- Beata Zalewska-Piątek
- Department of Molecular Biotechnology and Microbiology, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
6
|
Mancuso G, De Gaetano S, Midiri A, Zummo S, Biondo C. The Challenge of Overcoming Antibiotic Resistance in Carbapenem-Resistant Gram-Negative Bacteria: "Attack on Titan". Microorganisms 2023; 11:1912. [PMID: 37630472 PMCID: PMC10456941 DOI: 10.3390/microorganisms11081912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The global burden of bacterial resistance remains one of the most serious public health concerns. Infections caused by multidrug-resistant (MDR) bacteria in critically ill patients require immediate empirical treatment, which may not only be ineffective due to the resistance of MDR bacteria to multiple classes of antibiotics, but may also contribute to the selection and spread of antimicrobial resistance. Both the WHO and the ECDC consider carbapenem-resistant Enterobacteriaceae (CRE), carbapenem-resistant Pseudomonas aeruginosa (CRPA), and carbapenem-resistant Acinetobacter baumannii (CRAB) to be the highest priority. The ability to form biofilm and the acquisition of multiple drug resistance genes, in particular to carbapenems, have made these pathogens particularly difficult to treat. They are a growing cause of healthcare-associated infections and a significant threat to public health, associated with a high mortality rate. Moreover, co-colonization with these pathogens in critically ill patients was found to be a significant predictor for in-hospital mortality. Importantly, they have the potential to spread resistance using mobile genetic elements. Given the current situation, it is clear that finding new ways to combat antimicrobial resistance can no longer be delayed. The aim of this review was to evaluate the literature on how these pathogens contribute to the global burden of AMR. The review also highlights the importance of the rational use of antibiotics and the need to implement antimicrobial stewardship principles to prevent the transmission of drug-resistant organisms in healthcare settings. Finally, the review discusses the advantages and limitations of alternative therapies for the treatment of infections caused by these "titans" of antibiotic resistance.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (S.D.G.); (A.M.); (S.Z.); (C.B.)
| | | | | | | | | |
Collapse
|
7
|
Hakeem MJ, Feng J, Ma L, Ma L, Lu X. Whole transcriptome sequencing analysis of synergistic combinations of plant-based antimicrobials and zinc oxide nanoparticles against Campylobacter jejuni. Microbiol Res 2023; 266:127246. [DOI: 10.1016/j.micres.2022.127246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
8
|
Glonti T, Pirnay JP. In Vitro Techniques and Measurements of Phage Characteristics That Are Important for Phage Therapy Success. Viruses 2022; 14:1490. [PMID: 35891470 PMCID: PMC9323186 DOI: 10.3390/v14071490] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/18/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Validated methods for phage selection, host range expansion, and lytic activity determination are indispensable for maximizing phage therapy outcomes. In this review, we describe some relevant methods, highlighting their advantages and disadvantages, and categorize them as preliminary or confirmatory methods where appropriate. Experimental conditions, such as the composition and consistency of culture media, have an impact on bacterial growth and, consequently, phage propagation and the selection of phage-resistant mutants. The phages require different experimental conditions to be tested to fully reveal their characteristics and phage therapy potential in view of their future use in therapy. Phage lytic activity or virulence should be considered as a result of the phage, its host, and intracellular/environmental factors, including the ability of a phage to recognize receptors on the bacterial cell surface. In vitro quantitative and qualitative measurements of phage characteristics, further validated by in vivo experiments, could be incorporated into one system or mathematical model/formula, which could predict a potential successful outcome of clinical applications.
Collapse
Affiliation(s)
- Tea Glonti
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, B-1120 Brussels, Belgium;
| | | |
Collapse
|