1
|
Patra S, Saha S, Singh R, Tomar N, Gulati P. Biofilm battleground: Unveiling the hidden challenges, current approaches and future perspectives in combating biofilm associated bacterial infections. Microb Pathog 2025; 198:107155. [PMID: 39586337 DOI: 10.1016/j.micpath.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
A biofilm is a complex aggregation of microorganisms, either of the same or different species, that adhere to a surface and are encased in an extracellular polymeric substances (EPS) matrix. Quorum sensing (QS) and biofilm formation are closely linked, as QS genes regulate the development, maturation, and breakdown of biofilms. Inhibiting QS can be utilized as an effective approach to combat the impacts of biofilm infection. The impact of biofilms includes chronic infections, industrial biofouling, infrastructure corrosion, and environmental contamination as well. Therefore, a deep understanding of biofilms is crucial for enhancing public health, advancing industrial processes, safeguarding the environment, and deepening our knowledge of microbial life as well. This review aims to offer a comprehensive examination of challenges posed by bacterial biofilms, contemporary approaches and strategies for effectively eliminating biofilms, including the inhibition of quorum sensing pathways, while also focusing on emerging technologies and techniques for biofilm treatment. In addition, future research is projected to target the challenges associated with the bacterial biofilms, striving to develop new approaches and improve existing strategies for their effective control and eradication.
Collapse
Affiliation(s)
- Sandeep Patra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sumana Saha
- Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Randhir Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nandini Tomar
- Department of Biotechnology, South Asian University, New Delhi, India
| | - Pallavi Gulati
- Ram Lal Anand College, University of Delhi, New Delhi, India.
| |
Collapse
|
2
|
Zhang L, Xu W, Jiang J, Li R, Gu J, Liang W. Metagenomic insights on promoting the removal of resistome in aerobic composting pig manure by lightly burned modified magnesite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177101. [PMID: 39490844 DOI: 10.1016/j.scitotenv.2024.177101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
The antibiotic resistance genes (ARGs) have become a serious issue facing public health. In this study, light-burned magnesite with a high specific surface area at 650 °C (MS650) was used for aerobic composting, evaluating its effect on the resistome during pig manure composting. Different concentrations of MS650 reduced the abundance of the resistome, including seven high-risk ARGs, class two metal and biocide resistance genes (MBRGs), and human pathogenic bacteria (HPBs). The addition of 2.5 % MS650 (L1) in the composting had the best reduction effect on ARGs, MBRGs and HPBs. ARG and microbial community assembly are deterministic processes. Proteobacteria and Actinobacteria was the main factor associated with the decrease in ARGs, followed by virulence factor genes (VFGs, 44.2 %). The reduction in MBRGs by MS650 mainly suppressed HGT by reducing the Isfinder abundance. To summarize, MS650 is an effective method to improve emission reduction of ARGs and MBRGs. This study provided a theoretical basis for improving the engineering application potential of MS650.
Collapse
Affiliation(s)
- Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wanying Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiangxiang Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen Liang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Wang S, Li W, Xi B, Cao L, Huang C. Mechanisms and influencing factors of horizontal gene transfer in composting system: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177017. [PMID: 39427888 DOI: 10.1016/j.scitotenv.2024.177017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Organic solid wastes such as livestock manure and sewage sludge are important sources and repositories of antibiotic resistance genes (ARGs). Composting, a solid waste treatment technology, has demonstrated efficacy in degrading various antibiotics and reducing ARGs. However, some recalcitrant ARGs (e.g., sul1, sul2) will enrich during the composting maturation period. These ARGs persist in compost products and spread through horizontal gene transfer (HGT). We analyzed the reasons behind the increase of ARGs during the maturation phase. It was found that the proliferation of ARG-host bacteria and HGT process play an important role. This article revealed that microbial physiological responses, environmental factors, pollutants, and quorum sensing (QS) can all influence the HGT process in composting systems. We examined the influence of these factors on HGT in the compost system and summarized potential mechanisms by analyzing the alterations in microbial communities. We comprehensively summarized the HGT hazards that these factors may present in composting systems. Finally, we summarized methods to inhibit HGT in compost, such as using additives, quorum sensing inhibitors (QSIs), microbial inoculation, and predicting HGT events. Overall, the HGT mechanism and driving force in complex composting systems are still insufficiently studied. In view of the current situation, using predictions to assess the risk of HGT in composting may be advisable.
Collapse
Affiliation(s)
- Simiao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lijia Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
4
|
Kondratieva DA, Savelieva JR, Golikova MV. Effect of Meropenem on Conjugative Plasmid Transfer in Klebsiella pneumoniae. Int J Mol Sci 2024; 25:13193. [PMID: 39684903 DOI: 10.3390/ijms252313193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Plasmid-mediated resistance is a major mechanism that contributes to the gradual decline in the effectiveness of antibiotics from different classes, including carbapenems. Antibiotics can significantly contribute to the efficiency of plasmid transfer between bacterial strains. To investigate the potential effect of an antibiotic on the efficacy of conjugative plasmid transfer, we conducted mating experiments with Klebsiella pneumoniae strains. Donor strains of K. pneumoniae that carry plasmids with blaKPC or blaOXA-48 carbapenemase genes and recipient plasmid-free K. pneumoniae strains were used in matings. Matings were conducted on the agar with or without meropenem at 1/8×, 1/4×, or 1/2×MIC against the respective recipients. In the second part of our study, we investigated the pharmacodynamic properties of meropenem against transconjugant strains of K. pneumoniae, which were obtained in the first part of this study. As a result, at a concentration equivalent to 1/8×MIC, meropenem primarily inhibited conjugation among K. pneumoniae strains, while at a concentration equal to 1/2×MIC, it facilitated conjugation. Transconjugants derived from K. pneumoniae with intermediate MICs failed to respond to simulated treatment with meropenem using prolonged infusion and a high-dose regimen. This finding suggests that such transconjugants may potentially pose a risk if involved in an infectious process.
Collapse
Affiliation(s)
- Daria A Kondratieva
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia
| | - Julia R Savelieva
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia
| | - Maria V Golikova
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia
| |
Collapse
|
5
|
Rong L, Wu L, Zong L, Wang W, Xiao Y, Yang C, Pan H, Zou X. Evolution of the Black solider fly larvae gut antibiotic resistome during kitchen waste disposal. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135878. [PMID: 39321479 DOI: 10.1016/j.jhazmat.2024.135878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Kitchen waste (KW) is an important reservoir of antibiotic resistance genes (ARGs). Black solider fly larvae (BSFL) are extensively employed in KW disposal, closely linking to their robust gut microbes. However, antibiotic resistome in BSFL gut during the KW disposal processes and the mechanism remain unclear. In the present study, the antibiotic resistome in BSFL gut within the 12 days KW disposal processes were investigated. Results showed that, ARGs abundance initially increased and subsequently decreased, the five most prevalent core ARG classes were tetracycline, aminoglycoside, cephalosporin, lincosamide and multidrug. A total of 7 MGE types were observed and the horizontal gene transfer (HGT) of ARGs was predominantly mediated by plasmids. Host microbes were mainly categorized into Proteobacteria (98.12 %) and their assemblies were mainly classified into the deterministic processes. To elucidate the driving mechanisms, the mantel test and the structural equation model (SEM) were developed. Results indicated that microbial functions (0.912, p < 0.0001) and microbial community (1.014, p = 0.036), consistently showed very significant relationships with the patterns of ARGs, which presented higher direct effects than indirect effects. Overall, this study makes an initial contribution to a more deepgoing comprehension of the gut antibiotic resistome of BSFL during KW disposal.
Collapse
Affiliation(s)
- Lingling Rong
- School of Life Science, Jinggangshan University, Ji'an 343009, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Ligui Wu
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Lihui Zong
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Wei Wang
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Yi Xiao
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Chunyan Yang
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Hongcheng Pan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Xiaoming Zou
- School of Life Science, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
6
|
Peillard-Fiorente F, Pham NP, Gingras H, Godin C, Feng J, Leprohon P, Ouellette M. Point mutations in functionally diverse genes are associated with increased natural DNA transformation in multidrug resistant Streptococcus pneumoniae. Nucleic Acids Res 2024:gkae1140. [PMID: 39673518 DOI: 10.1093/nar/gkae1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 12/16/2024] Open
Abstract
DNA transformation is key for phenotypic diversity and adaptation of Streptococcus pneumoniae including in the emergence of multidrug resistance (MDR). Under laboratory conditions, DNA transformation is facilitated by the artificial triggering of competence by the competence stimulating peptide (CSP). In ongoing DNA transformation work, we observed that exogenous CSP was dispensable depending on the combination of strains and culture media. Here, we carried out a chemogenomic screen to select for S. pneumoniae mutants capable of natural transformation in medium that normally would not sustain natural transformation. Our chemogenomic screen relied on chemical mutagenesis followed by selection of mutants with increased DNA transformation capacities. Sequencing the genome of these mutants revealed an abundance and diversity of mutated genes proven experimentally to increase natural transformation. A genome wide association study between MDR and sensitive clinical isolates revealed gene mutations associated with MDR, many of which intersected with those pinpointed by our chemogenomic screens and that were proven to increase natural transformation. S. pneumoniae has adopted DNA transformation as its lifestyle and can select for mutations facilitating DNA transformation.
Collapse
Affiliation(s)
- Flora Peillard-Fiorente
- Centre de Recherche en Infectiologie, Axe des Maladies Infectieuses et Immunitaires du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, 2707 Bd Laurier, Québec, QC G1V 4G2, Canada
| | - Nguyen Phuong Pham
- Centre de Recherche en Infectiologie, Axe des Maladies Infectieuses et Immunitaires du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, 2707 Bd Laurier, Québec, QC G1V 4G2, Canada
| | - Hélène Gingras
- Centre de Recherche en Infectiologie, Axe des Maladies Infectieuses et Immunitaires du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, 2707 Bd Laurier, Québec, QC G1V 4G2, Canada
| | - Chantal Godin
- Centre de Recherche en Infectiologie, Axe des Maladies Infectieuses et Immunitaires du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, 2707 Bd Laurier, Québec, QC G1V 4G2, Canada
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 52, Sanlihe Rd, Xicheng District, Beijing 100045, China
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie, Axe des Maladies Infectieuses et Immunitaires du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, 2707 Bd Laurier, Québec, QC G1V 4G2, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie, Axe des Maladies Infectieuses et Immunitaires du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, 2707 Bd Laurier, Québec, QC G1V 4G2, Canada
| |
Collapse
|
7
|
Wang B, Farhan MHR, Yuan L, Sui Y, Chu J, Yang X, Li Y, Huang L, Cheng G. Transfer dynamics of antimicrobial resistance among gram-negative bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176347. [PMID: 39306135 DOI: 10.1016/j.scitotenv.2024.176347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Antimicrobial resistance (AMR) in gram-negative bacteria (GNBs) is a significant global health concern, exacerbated by mobile genetic elements (MGEs). This review examines the transfer of antibiotic resistance genes (ARGs) within and between different species of GNB facilitated by MGEs, focusing on the roles of plasmids and phages. The impact of non-antibiotic chemicals, environmental factors affecting ARG transfer frequency, and underlying molecular mechanisms of bacterial resistance evolution are also discussed. Additionally, the study critically assesses the impact of fitness costs and compensatory evolution driven by MGEs in host organisms, shedding light on the transfer frequency of ARGs and host evolution within ecosystems. Overall, this comprehensive review highlights the factors and mechanisms influencing ARG movement among diverse GNB species and underscores the importance of implementing holistic One-Health strategies to effectively address the escalating public health challenges associated with AMR.
Collapse
Affiliation(s)
- Bangjuan Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Haris Raza Farhan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Linlin Yuan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Sui
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinhua Chu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaohan Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Ke CH, Lai PY, Hsu FY, Hsueh PR, Chiou MT, Lin CN. Antimicrobial susceptibility and resistome of Actinobacillus pleuropneumoniae in Taiwan: a next-generation sequencing analysis. Vet Q 2024; 44:1-13. [PMID: 38688482 PMCID: PMC11064736 DOI: 10.1080/01652176.2024.2335947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Actinobacillus pleuropneumoniae infection causes a high mortality rate in porcine animals. Antimicrobial resistance poses global threats to public health. The current study aimed to determine the antimicrobial susceptibilities and probe the resistome of A. pleuropneumoniae in Taiwan. Herein, 133 isolates were retrospectively collected; upon initial screening, 38 samples were subjected to next-generation sequencing (NGS). Over the period 2017-2022, the lowest frequencies of resistant isolates were found for ceftiofur, cephalexin, cephalothin, and enrofloxacin, while the highest frequencies of resistant isolates were found for oxytetracycline, streptomycin, doxycycline, ampicillin, amoxicillin, kanamycin, and florfenicol. Furthermore, most isolates (71.4%) showed multiple drug resistance. NGS-based resistome analysis revealed aminoglycoside- and tetracycline-related genes at the highest prevalence, followed by genes related to beta-lactam, sulfamethoxazole, florphenicol, and macrolide. A plasmid replicon (repUS47) and insertion sequences (IS10R and ISVAp11) were identified in resistant isolates. Notably, the multiple resistance roles of the insertion sequence IS10R were widely proposed in human medicine; however, this is the first time IS10R has been reported in veterinary medicine. Concordance analysis revealed a high consistency of phenotypic and genotypic susceptibility to florphenicol, tilmicosin, doxycycline, and oxytetracycline. The current study reports the antimicrobial characterization of A. pleuropneumoniae for the first time in Taiwan using NGS.
Collapse
Affiliation(s)
- Chiao-Hsu Ke
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pan-Yun Lai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Feng-Yang Hsu
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Tang Chiou
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chao-Nan Lin
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
9
|
Wójcicki M, Shymialevich D, Średnicka P, Emanowicz P, Ostrowska A, Cieślak H, Sokołowska B. Phenotypic Characterization and Genome Analysis of New Broad-Spectrum Virulent Salmophage, Salmonella Phage KKP_3822, for Biocontrol of Multidrug-Resistant Salmonella enterica Strains. Int J Mol Sci 2024; 25:12930. [PMID: 39684641 DOI: 10.3390/ijms252312930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/30/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Salmonella is one of the main foodborne pathogens. Irrational antibiotic management has led to an increase in the incidence of multidrug-resistant strains. Bacteriophages may be an alternative method of food biopreservation and contribute to reducing the number of food poisonings requiring pharmacotherapy. This study aimed to isolate a bacteriophage (phage) targeting indigenous multidrug-resistant (MDR) Salmonella strains, followed by their biological, morphological, and genomic characterization. In this study we isolated Salmonella phage KKP_3822, targeting MDR Salmonella Manchester strain KKP 1213. Salmonella phage KKP_3822 retained high activity in the temperature range from -20 °C to 40 °C and active acidity from pH 3 to 11. Temperatures of 70 °C and 80 °C and extreme pH values (2 and 12) significantly reduced the phage titer. Its activity decreased proportionally to the time of UV exposure. Genome analysis (linear dsDNA with a length of 114,843 bp) revealed the presence of 27 tRNA genes. Proteins encoded by the vB_Sen-IAFB3822 phage were divided into functional modules related to (i) phage structure/assembly, (ii) DNA replication/modification/regulation, (iii) phage lysis, and (iv) DNA packaging into the capsid. No genes associated with antibiotic resistance or integration into the host genome, markers of temperate bacteriophages, were annotated in the Salmonella phage KKP_3822 genome. Based on morphological features and whole-genome sequence analysis, the newly isolated Salmonella phage KKP_3822 shows the greatest similarity to representatives of tailed phages from the Caudoviricetes class, Demerecviridae family, and Epseptimavirus genus. Genome analysis confirmed the virulent nature of the Salmonella phage KKP_3822, making it a potential candidate for food biocontrol.
Collapse
Affiliation(s)
- Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Dziyana Shymialevich
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Paulina Średnicka
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Paulina Emanowicz
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Ciszewskiego 8 Str., 02-786 Warsaw, Poland
| | - Hanna Cieślak
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| |
Collapse
|
10
|
Goh YX, Anupoju SMB, Nguyen A, Zhang H, Ponder M, Krometis LA, Pruden A, Liao J. Evidence of horizontal gene transfer and environmental selection impacting antibiotic resistance evolution in soil-dwelling Listeria. Nat Commun 2024; 15:10034. [PMID: 39562586 DOI: 10.1038/s41467-024-54459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
Soil is an important reservoir of antibiotic resistance genes (ARGs) and understanding how corresponding environmental changes influence their emergence, evolution, and spread is crucial. The soil-dwelling bacterial genus Listeria, including L. monocytogenes, the causative agent of listeriosis, serves as a key model for establishing this understanding. Here, we characterize ARGs in 594 genomes representing 19 Listeria species that we previously isolated from soils in natural environments across the United States. Among the five putatively functional ARGs identified, lin, which confers resistance to lincomycin, is the most prevalent, followed by mprF, sul, fosX, and norB. ARGs are predominantly found in Listeria sensu stricto species, with those more closely related to L. monocytogenes tending to harbor more ARGs. Notably, phylogenetic and recombination analyses provide evidence of recent horizontal gene transfer (HGT) in all five ARGs within and/or across species, likely mediated by transformation rather than conjugation and transduction. In addition, the richness and genetic divergence of ARGs are associated with environmental conditions, particularly soil properties (e.g., aluminum and magnesium) and surrounding land use patterns (e.g., forest coverage). Collectively, our data suggest that recent HGT and environmental selection play a vital role in the acquisition and diversification of bacterial ARGs in natural environments.
Collapse
Affiliation(s)
- Ying-Xian Goh
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Anthony Nguyen
- Computational Modeling & Data Analytics Program, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Hailong Zhang
- Department of Business Information Technology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Monica Ponder
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Leigh-Anne Krometis
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
11
|
Yang J, Xu JF, Liang S. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and emerging treatment. Crit Rev Microbiol 2024:1-19. [PMID: 39556143 DOI: 10.1080/1040841x.2024.2429599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/22/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Pseudomonas aeruginosa, able to survive on the surfaces of medical devices, is a life-threatening pathogen that mainly leads to nosocomial infection especially in immunodeficient and cystic fibrosis (CF) patients. The antibiotic resistance in P. aeruginosa has become a world-concerning problem, which results in reduced and ineffective therapy efficacy. Besides intrinsic properties to decrease the intracellular content and activity of antibiotics, P. aeruginosa develops acquired resistance by gene mutation and acquisition, as well as adaptive resistance under specific situations. With in-depth research on drug resistance mechanisms and the development of biotechnology, innovative strategies have emerged and yielded benefits such as screening for new antibiotics based on artificial intelligence technology, utilizing drugs synergistically, optimizing administration, and developing biological therapy. This review summarizes the recent advances in the mechanisms of antibiotic resistance and emerging treatments for combating resistance, aiming to provide a reference for the development of therapy against drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Jian Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuo Liang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Xia L, Wang J, Chen M, Li G, Wang W, An T. Biofilm formation mechanisms of mixed antibiotic-resistant bacteria in water: Bacterial interactions and horizontal transfer of antibiotic-resistant plasmids. JOURNAL OF HAZARDOUS MATERIALS 2024; 481:136554. [PMID: 39566460 DOI: 10.1016/j.jhazmat.2024.136554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/02/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Over 95 % of bacteria on water supply pipeline surfaces exist in biofilms, which are hotspots for antibiotic resistance gene (ARG) transmission. This study established mixed biofilm culture systems on a metal iron substrate using Escherichia coli: antibiotic-sensitive bacteria (ASB) and antibiotic-resistant bacteria (ARB). The growth rate and extracellular polymeric substances (EPS) content of mixed biofilm surpassed single-species biofilms due to synergistic interactions among different bacteria. However, the composition of mixed biofilms formed by ASB and ARB became unstable after 72 h, linked to reduced polysaccharide proportions in EPS and inter-bacterial competition. The bacterial composition and conjugative transfer frequency of ARGs in mixed biofilms indicate that biofilm formation significantly enhances horizontal transfer of ARGs. Notably, the conjugative transfer frequency of the mixed biofilm formed by two ARB increased 100-fold within five days. In contrast, the conjugative transfer frequency in the mixed biofilm formed by ASB and ARB was unstable; inter-bacterial competition led to plasmid loss associated with horizontal transfer of ARGs, ultimately resulting in biofilm shedding. Furthermore, genes associated with ARG transfer and biofilm growth up-regulated by 1.5 - 6 and 2 - 7 times, respectively, in mixed biofilm. These findings highlight a mutually reinforcing relationship between biofilm formation and horizontal ARG transmission, with significant environmental implications.
Collapse
Affiliation(s)
- Longji Xia
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiaping Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Min Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
13
|
Golban M, Charostad J, Kazemian H, Heidari H. Phage-Derived Endolysins Against Resistant Staphylococcus spp.: A Review of Features, Antibacterial Activities, and Recent Applications. Infect Dis Ther 2024:10.1007/s40121-024-01069-z. [PMID: 39549153 DOI: 10.1007/s40121-024-01069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024] Open
Abstract
Antimicrobial resistance is a significant global public health issue, and the dissemination of antibiotic resistance in Gram-positive bacterial pathogens has significantly increased morbidity, mortality rates, and healthcare costs. Among them, Staphylococcus, especially methicillin-resistant Staphylococcus aureus (MRSA), causes a wide range of diseases due to its diverse pathogenic factors and infection strategies. These bacteria also present significant issues in veterinary medicine and food safety. Effectively managing staphylococci-related problems necessitates a concerted effort to implement preventive measures, rapidly detect the pathogen, and develop new and safe antimicrobial therapies. In recent years, there has been growing interest in using endolysins to combat bacterial infections. These enzymes, which are also referred to as lysins, are a unique class of hydrolytic enzymes synthesized by double-stranded DNA bacteriophages. They possess glycosidase, lytic transglycosylase, amidase, and endopeptidase activities, effectively destroying the peptidoglycan layer and resulting in bacterial lysis. This unique property makes endolysins powerful antimicrobial agents, particularly against Gram-positive organisms with more accessible peptidoglycan layers. Therefore, considering the potential benefits of endolysins compared to conventional antibiotics, we have endeavored to gather and review the characteristics and uses of endolysins derived from staphylococcal bacteriophages, as well as their antibacterial effectiveness against Staphylococcus spp. based on conducted experiments and trials.
Collapse
Affiliation(s)
- Mina Golban
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hamid Heidari
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
14
|
Ifedinezi OV, Nnaji ND, Anumudu CK, Ekwueme CT, Uhegwu CC, Ihenetu FC, Obioha P, Simon BO, Ezechukwu PS, Onyeaka H. Environmental Antimicrobial Resistance: Implications for Food Safety and Public Health. Antibiotics (Basel) 2024; 13:1087. [PMID: 39596781 PMCID: PMC11591122 DOI: 10.3390/antibiotics13111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is a serious global health issue, aggravated by antibiotic overuse and misuse in human medicine, animal care, and agriculture. This study looks at the different mechanisms that drive AMR, such as environmental contamination, horizontal gene transfer, and selective pressure, as well as the severe implications of AMR for human and animal health. This study demonstrates the need for concerted efforts across the scientific, healthcare, agricultural, and policy sectors to control the emergence of AMR. Some crucial strategies discussed include developing antimicrobial stewardship (AMS) programs, encouraging targeted narrow-spectrum antibiotic use, and emphasizing the significance of strict regulatory frameworks and surveillance systems, like the Global Antimicrobial Resistance and Use Surveillance System (GLASS) and the Access, Watch, and Reserve (AWaRe) classification. This study also emphasizes the need for national and international action plans in combating AMR and promotes the One Health strategy, which unifies environmental, animal, and human health. This study concludes that preventing the spread of AMR and maintaining the effectiveness of antibiotics for future generations requires a comprehensive, multidisciplinary, and internationally coordinated strategy.
Collapse
Affiliation(s)
| | - Nnabueze Darlington Nnaji
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
- Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria
| | | | | | | | | | - Promiselynda Obioha
- Microbiology Research Unit, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Blessing Oteta Simon
- Department of Public Health Sciences, National Open University of Nigeria, Abuja 900108, Nigeria
| | | | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
15
|
Arndt F, Siems K, Walker SV, Bryan NC, Leuko S, Moeller R, Boschert AL. Systematic screening of 42 vancomycin-resistant Enterococcus faecium strains for resistance, biofilm, and desiccation in simulated microgravity. NPJ Microgravity 2024; 10:103. [PMID: 39537632 PMCID: PMC11561132 DOI: 10.1038/s41526-024-00447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Vancomycin-resistant Enterococcus faecium (VRE) presents significant challenges in healthcare, particularly for hospitalized and immunocompromised patients, including astronauts with dysregulated immune function. We investigated 42 clinical E. faecium isolates in simulated microgravity (sim. µg) using a 2-D Clinostat, with standard gravity conditions (1 g) as a control. Isolates were tested against 22 antibiotics and characterized for biofilm formation and desiccation tolerance. Results showed varied responses in minimum inhibitory concentration (MIC) values for seven antibiotics after sim. µg exposure. Additionally, 55% of isolates showed a trend of increased biofilm production, and 59% improved desiccation tolerance. This investigation provides initial insights into E. faecium's changes in response to simulated spaceflight, revealing shifts in antibiotic resistance, biofilm formation, and desiccation tolerance. The observed adaptability emphasizes the need to further understand VRE's resilience to microgravity, which is crucial for preventing infections and ensuring crew health on future long-duration space missions.
Collapse
Affiliation(s)
- Franca Arndt
- Institute of Aerospace Medicine, Aerospace Microbiology, German Aerospace Center (DLR), Cologne, Germany.
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany.
| | - Katharina Siems
- Institute of Aerospace Medicine, Aerospace Microbiology, German Aerospace Center (DLR), Cologne, Germany
| | - Sarah V Walker
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany
| | - Noelle C Bryan
- Department of Cardiac Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Stefan Leuko
- Institute of Aerospace Medicine, Aerospace Microbiology, German Aerospace Center (DLR), Cologne, Germany
| | - Ralf Moeller
- Institute of Aerospace Medicine, Aerospace Microbiology, German Aerospace Center (DLR), Cologne, Germany
| | - Alessa L Boschert
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Haq K, Figgitt M, Lee D. Phage Therapy Against Antibiotic-Resistant and Multidrug-Resistant Infections Involving Nonhealing Wounds and Prosthetic Joint Infections Associated With Biofilms: A Mini-Review. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:6252415. [PMID: 39545100 PMCID: PMC11563716 DOI: 10.1155/2024/6252415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Chronic wounds and prosthetic joint infections are difficult to treat and are associated with a high burden of disease and economic cost. The rise of antibiotic resistance and the understanding of biofilm formation has inflamed an already challenging situation. Bacteriophage therapy has been used throughout the last century to treat bacterial infections. However, in the last 10 years, there has been a resurgence in phage therapy as a novel innovative treatment for nonhealing wounds. This mini systemic review assesses relevant clinical studies, case series and trials over 5 years associated with safety, treatment and success rates of phage therapy concerning nonhealing and prosthetic joint infections. A search of PubMed, Web of Science, Cochrane and Clinical Trials.gov databases resulted in 3151 studies, 27 met the criteria, and a total of 152 bacterial infections were treated from 130 individuals. Most common pathogen isolated in wounds was P. aeruginosa, and S. aureus was mostly associated with prosthetic joint infections. Treatment modalities differed across studies, adverse effects were limited, and success rate was deemed to be 91%.
Collapse
Affiliation(s)
- Kashif Haq
- Department of Life Sciences, School of Health Sciences, Birmingham City University, Birmingham B15 3TN, UK
| | - Martin Figgitt
- Department of Life Sciences, School of Health Sciences, Birmingham City University, Birmingham B15 3TN, UK
| | - David Lee
- Department of Life Sciences, School of Health Sciences, Birmingham City University, Birmingham B15 3TN, UK
| |
Collapse
|
17
|
Gama GSP, Pimenta AS, Feijó FMC, Aires CAM, de Melo RR, dos Santos CS, de Medeiros LCD, da Costa Monteiro TV, Fasciotti M, de Medeiros PL, de Morais MRM, de Azevedo TKB. Antimicrobial Impact of Wood Vinegar Produced Through Co-Pyrolysis of Eucalyptus Wood and Aromatic Herbs. Antibiotics (Basel) 2024; 13:1056. [PMID: 39596750 PMCID: PMC11590886 DOI: 10.3390/antibiotics13111056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The search for substances that can overcome microorganisms' resistance and enhance the antimicrobial activity of given products has attracted the attention of researchers. Eucalyptus wood vinegar (WV) is a promising product for developing alternative antimicrobials. OBJECTIVES This study aimed to evaluate whether the production of WV in the co-pyrolysis of eucalyptus wood with aromatic herbs would incorporate compounds from them into WV and if that would enhance its antimicrobial action. METHODOLOGY WV was produced alone and through co-pyrolysis with marjoram (Origanum majorana), Peruvian oregano (Origanum vulgare), rosemary (Salvia rosmarinus), thyme (Thymus vulgaris), and Turkish oregano (Origanum onites) at a proportion of 25% of herbs to the bone-dry wood weight. The antimicrobial effects were assessed against strains of gram-negative and -positive bacteria, and Candida glabrata. Microorganisms' colony growth in agar had their absorbances recorded after inoculation and incubation. Chemical characterization of the new products was performed by gas chromatography and mass spectrometry (GC/MS). RESULTS After coproduction, there were relevant chemical changes concerning the original WV. Thymol, for instance, was incorporated into the WV through co-pyrolysis with marjoram, Peruvian and Turkish oregano, and thyme. The coproducts were more efficient than the WV produced only with wood, with thyme-incorporated products having the highest efficiency. This can be attributed to the increase and incorporation of the substances after coproduction, and particularly the role of thymol in enhancing the antimicrobial action. CONCLUSION Given the results, the co-production of WV with eucalyptus wood and aromatic herbs has the potential to provide alternative antimicrobial products.
Collapse
Affiliation(s)
- Gil Sander Próspero Gama
- Graduate Program in Forest Sciences—PPGCFL, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba 59280-000, RN, Brazil; (G.S.P.G.); (L.C.D.d.M.); (P.L.d.M.); (M.R.M.d.M.); (T.K.B.d.A.)
| | - Alexandre Santos Pimenta
- Graduate Program in Forest Sciences—PPGCFL, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba 59280-000, RN, Brazil; (G.S.P.G.); (L.C.D.d.M.); (P.L.d.M.); (M.R.M.d.M.); (T.K.B.d.A.)
| | - Francisco Marlon Carneiro Feijó
- Graduate Program in Environment, Technology, and Society—PPGATS, Universidade Federal Rural do Semiárido—UFERSA, Av. Francisco Mota, 572—Bairro Costa e Silva, Mossoró 59625-900, RN, Brazil; (F.M.C.F.); (R.R.d.M.); (C.S.d.S.)
| | - Caio Augusto Martins Aires
- Departament of Health Sciences, Universidade Federal Rural do Semiárido—UFERSA, Av. Francisco Mota, 572—Bairro Costa e Silva, Mossoró 59625-900, RN, Brazil;
| | - Rafael Rodolfo de Melo
- Graduate Program in Environment, Technology, and Society—PPGATS, Universidade Federal Rural do Semiárido—UFERSA, Av. Francisco Mota, 572—Bairro Costa e Silva, Mossoró 59625-900, RN, Brazil; (F.M.C.F.); (R.R.d.M.); (C.S.d.S.)
| | - Caio Sérgio dos Santos
- Graduate Program in Environment, Technology, and Society—PPGATS, Universidade Federal Rural do Semiárido—UFERSA, Av. Francisco Mota, 572—Bairro Costa e Silva, Mossoró 59625-900, RN, Brazil; (F.M.C.F.); (R.R.d.M.); (C.S.d.S.)
| | - Lúcio César Dantas de Medeiros
- Graduate Program in Forest Sciences—PPGCFL, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba 59280-000, RN, Brazil; (G.S.P.G.); (L.C.D.d.M.); (P.L.d.M.); (M.R.M.d.M.); (T.K.B.d.A.)
| | - Thays Vieira da Costa Monteiro
- Laboratory of Organic Analyses, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, Xerém, Duque de Caxias 25250-020, RJ, Brazil; (T.V.d.C.M.); (M.F.)
| | - Maíra Fasciotti
- Laboratory of Organic Analyses, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, Xerém, Duque de Caxias 25250-020, RJ, Brazil; (T.V.d.C.M.); (M.F.)
| | - Priscila Lira de Medeiros
- Graduate Program in Forest Sciences—PPGCFL, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba 59280-000, RN, Brazil; (G.S.P.G.); (L.C.D.d.M.); (P.L.d.M.); (M.R.M.d.M.); (T.K.B.d.A.)
| | - Maria Rita Macêdo de Morais
- Graduate Program in Forest Sciences—PPGCFL, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba 59280-000, RN, Brazil; (G.S.P.G.); (L.C.D.d.M.); (P.L.d.M.); (M.R.M.d.M.); (T.K.B.d.A.)
| | - Tatiane Kelly Barbosa de Azevedo
- Graduate Program in Forest Sciences—PPGCFL, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba 59280-000, RN, Brazil; (G.S.P.G.); (L.C.D.d.M.); (P.L.d.M.); (M.R.M.d.M.); (T.K.B.d.A.)
| |
Collapse
|
18
|
Jandl B, Dighe S, Baumgartner M, Makristathis A, Gasche C, Muttenthaler M. Gastrointestinal Biofilms: Endoscopic Detection, Disease Relevance, and Therapeutic Strategies. Gastroenterology 2024; 167:1098-1112.e5. [PMID: 38876174 DOI: 10.1053/j.gastro.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 06/16/2024]
Abstract
Gastrointestinal biofilms are matrix-enclosed, highly heterogenic and spatially organized polymicrobial communities that can cover large areas in the gastrointestinal tract. Gut microbiota dysbiosis, mucus disruption, and epithelial invasion are associated with pathogenic biofilms that have been linked to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel diseases, gastric cancer, and colorectal cancer. Intestinal biofilms are highly prevalent in ulcerative colitis and irritable bowel syndrome patients, and most endoscopists will have observed such biofilms during colonoscopy, maybe without appreciating their biological and clinical importance. Gut biofilms have a protective extracellular matrix that renders them challenging to treat, and effective therapies are yet to be developed. This review covers gastrointestinal biofilm formation, growth, appearance and detection, biofilm architecture and signalling, human host defence mechanisms, disease and clinical relevance of biofilms, therapeutic approaches, and future perspectives. Critical knowledge gaps and open research questions regarding the biofilm's exact pathophysiological relevance and key hurdles in translating therapeutic advances into the clinic are discussed. Taken together, this review summarizes the status quo in gut biofilm research and provides perspectives and guidance for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Bernhard Jandl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry, Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Maximillian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Athanasios Makristathis
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria; Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Markus Muttenthaler
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
19
|
Naga NG, Shaaban MI, El-Metwally MM. An insight on the powerful of bacterial quorum sensing inhibition. Eur J Clin Microbiol Infect Dis 2024; 43:2071-2081. [PMID: 39158799 PMCID: PMC11534983 DOI: 10.1007/s10096-024-04920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
Bacteria have their own language through which they communicate with one another like all higher organisms. So, many researchers are working hard to identify and comprehend the components of this bacterial communication, known as quorum sensing (QS). In quorum sensing, bacteria use signaling molecules called autoinducers (AIs) to exchange information. Many natural compounds and extraction techniques have been intensively studied to disrupt bacterial signaling and examine their effectiveness for bacterial pathogenesis control. Quorum sensing inhibitors can interfere with QS and block the action of AI signaling molecules. Recent research indicates that quorum sensing inhibitors (QSIs) and quorum quenching enzymes (QQEs) show great promise in reducing the pathogenicity of bacteria and inhibiting biofilm synthesis. In addition, the effectiveness of QQEs and QSIs in experimental animal models was demonstrated. These are taken into account in the development of innovative medical devices, such as dressings and catheters, to prevent bacterial infections. The present review highlights this aspect with a prospective vision for its development and application.
Collapse
Affiliation(s)
- Nourhan G Naga
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Mona I Shaaban
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
20
|
Sakagianni A, Koufopoulou C, Koufopoulos P, Feretzakis G, Kalles D, Paxinou E, Myrianthefs P, Verykios VS. The Synergy of Machine Learning and Epidemiology in Addressing Carbapenem Resistance: A Comprehensive Review. Antibiotics (Basel) 2024; 13:996. [PMID: 39452262 PMCID: PMC11505168 DOI: 10.3390/antibiotics13100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Carbapenem resistance poses a significant threat to public health by undermining the efficacy of one of the last lines of antibiotic defense. Addressing this challenge requires innovative approaches that can enhance our understanding and ability to combat resistant pathogens. This review aims to explore the integration of machine learning (ML) and epidemiological approaches to understand, predict, and combat carbapenem-resistant pathogens. It examines how leveraging large datasets and advanced computational techniques can identify patterns, predict outbreaks, and inform targeted intervention strategies. METHODS The review synthesizes current knowledge on the mechanisms of carbapenem resistance, highlights the strengths and limitations of traditional epidemiological methods, and evaluates the transformative potential of ML. Real-world applications and case studies are used to demonstrate the practical benefits of combining ML and epidemiology. Technical and ethical challenges, such as data quality, model interpretability, and biases, are also addressed, with recommendations provided for overcoming these obstacles. RESULTS By integrating ML with epidemiological analysis, significant improvements can be made in predictive accuracy, identifying novel patterns in disease transmission, and designing effective public health interventions. Case studies illustrate the benefits of interdisciplinary collaboration in tackling carbapenem resistance, though challenges such as model interpretability and data biases must be managed. CONCLUSIONS The combination of ML and epidemiology holds great promise for enhancing our capacity to predict and prevent carbapenem-resistant infections. Future research should focus on overcoming technical and ethical challenges to fully realize the potential of these approaches. Interdisciplinary collaboration is key to developing sustainable strategies to combat antimicrobial resistance (AMR), ultimately improving patient outcomes and safeguarding public health.
Collapse
Affiliation(s)
| | - Christina Koufopoulou
- Anesthesiology Department, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Petros Koufopoulos
- Internal Medicine Department, Sismanogleio General Hospital, 15126 Marousi, Greece;
| | - Georgios Feretzakis
- School of Science and Technology, Hellenic Open University, 26335 Patras, Greece; (G.F.); (D.K.); (E.P.)
| | - Dimitris Kalles
- School of Science and Technology, Hellenic Open University, 26335 Patras, Greece; (G.F.); (D.K.); (E.P.)
| | - Evgenia Paxinou
- School of Science and Technology, Hellenic Open University, 26335 Patras, Greece; (G.F.); (D.K.); (E.P.)
| | - Pavlos Myrianthefs
- Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vassilios S. Verykios
- School of Science and Technology, Hellenic Open University, 26335 Patras, Greece; (G.F.); (D.K.); (E.P.)
| |
Collapse
|
21
|
Judan Cruz KG, Takumi O, Bongulto KA, Gandalera EE, Kagia N, Watanabe K. Natural compound-induced downregulation of antimicrobial resistance and biofilm-linked genes in wastewater Aeromonas species. Front Cell Infect Microbiol 2024; 14:1456700. [PMID: 39469451 PMCID: PMC11513397 DOI: 10.3389/fcimb.2024.1456700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/18/2024] [Indexed: 10/30/2024] Open
Abstract
Addressing the global antimicrobial resistance (AMR) crisis requires a multifaceted innovative approach to mitigate impacts on public health, healthcare and economic systems. In the complex evolution of AMR, biofilms and the acquisition of antimicrobial resistance genes (ARGs) play a pivotal role. Aeromonas is a major AMR player that often forms biofilm, harbors ARGs and is frequently detected in wastewater. Existing wastewater treatment plants (WWTPs) do not have the capacity to totally eliminate antimicrobial-resistant bacteria favoring the evolution of ARGs in wastewater. Besides facilitating the emergence of AMR, biofilms contribute significantly to biofouling process within the activated sludge of WWTP bioreactors. This paper presents the inhibition of biofilm formation, the expression of biofilm-linked genes and ARGs by phytochemicals andrographolide, docosanol, lanosterol, quercetin, rutin and thymohydroquinone. Aeromonas species were isolated and purified from activated sludge samples. The ARGs were detected in the isolated Aeromonas species through PCR. Aeromonas biofilms were quantified following the application of biocompounds through the microtiter plate assay. qPCR analyses of related genes were done for confirmation. Findings showed that the natural compounds inhibited the formation of biofilms and reduced the expression of genes linked to biofilm production as well as ARGs in wastewater Aeromonas. This indicates the efficacy of these compounds in targeting and controlling both ARGs and biofilm formation, highlighting their potential as innovative solutions for combating antimicrobial resistance and biofouling.
Collapse
Affiliation(s)
- Khristina G. Judan Cruz
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Okamoto Takumi
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Kenneth A. Bongulto
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Emmanuel E. Gandalera
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Ngure Kagia
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
22
|
Tang KHD, Li R. Aged Microplastics and Antibiotic Resistance Genes: A Review of Aging Effects on Their Interactions. Antibiotics (Basel) 2024; 13:941. [PMID: 39452208 PMCID: PMC11504238 DOI: 10.3390/antibiotics13100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Microplastic aging affects the dynamics of antibiotic resistance genes (ARGs) on microplastics, yet no review presents the effects of microplastic aging on the associated ARGs. Objectives: This review, therefore, aims to discuss the effects of different types of microplastic aging, as well as the other pollutants on or around microplastics and the chemicals leached from microplastics, on the associated ARGs. Results: It highlights that microplastic photoaging generally results in higher sorption of antibiotics and ARGs due to increased microplastic surface area and functional group changes. Photoaging produces reactive oxygen species, facilitating ARG transfer by increasing bacterial cell membrane permeability. Reactive oxygen species can interact with biofilms, suggesting combined effects of microplastic aging on ARGs. The effects of mechanical aging were deduced from studies showing larger microplastics anchoring more ARGs due to rough surfaces. Smaller microplastics from aging penetrate deeper and smaller places and transport ARGs to these places. High temperatures are likely to reduce biofilm mass and ARGs, but the variation of ARGs on microplastics subjected to thermal aging remains unknown due to limited studies. Biotic aging results in biofilm formation on microplastics, and biofilms, often with unique microbial structures, invariably enrich ARGs. Higher oxidative stress promotes ARG transfer in the biofilms due to higher cell membrane permeability. Other environmental pollutants, particularly heavy metals, antibacterial, chlorination by-products, and other functional genes, could increase microplastic-associated ARGs, as do microplastic additives like phthalates and bisphenols. Conclusions: This review provides insights into the environmental fate of co-existing microplastics and ARGs under the influences of aging. Further studies could examine the effects of mechanical and thermal MP aging on their interactions with ARGs.
Collapse
Affiliation(s)
- Kuok Ho Daniel Tang
- Department of Environmental Science, College of Agriculture, Life & Environmental Sciences, The University of Arizona (UA), Tucson, AZ 85721, USA
- School of Natural Resources and Environment, UA Microcampus, Northwest A&F University (NWAFU), Yangling 712100, China;
| | - Ronghua Li
- School of Natural Resources and Environment, UA Microcampus, Northwest A&F University (NWAFU), Yangling 712100, China;
- Department of Environmental Science and Engineering, College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, China
| |
Collapse
|
23
|
Khatoon H, Mohd Faudzi SM. Exploring quinoxaline derivatives: An overview of a new approach to combat antimicrobial resistance. Eur J Med Chem 2024; 276:116675. [PMID: 39004020 DOI: 10.1016/j.ejmech.2024.116675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a long-standing global issue ever since the introduction of penicillin, the first antibiotic. Scientists are constantly working to develop innovative antibiotics that are more effective and superior. Unfortunately, the misuse of antibiotics has resulted in their declining effectiveness over the years. By 2050, it is projected that approximately 10 million lives could be lost annually due to antibiotic resistance. Gaining insight into the mechanisms behind the development and transmission of AMR in well-known bacteria including Escherichia coli, Bacillus pumilus, Enterobacter aerogenes, Salmonella typhimurium, and the gut microbiota is crucial for researchers. Environmental contamination in third world and developing countries also plays a significant role in the increase of AMR. Despite the availability of numerous recognized antibiotics to combat bacterial infections, their effectiveness is diminishing due to the growing problem of AMR. The overuse of antibiotics has led to an increase in resistance rates and negative impacts on global health. This highlights the importance of implementing strong antimicrobial stewardship and improving global monitoring, as emphasized by the World Health Organization (WHO) and other organizations. In the face of these obstacles, quinoxaline derivatives have emerged as promising candidates. They are characterized by their remarkable efficacy against a broad spectrum of harmful bacteria, including strains that are resistant to multiple drugs. These compounds are known for their strong structural stability and adaptability, making them a promising and creative solution to the AMR crisis. This review aims to assess the effectiveness of quinoxaline derivatives in treating drug-resistant infections, with the goal of making a meaningful contribution to the global fight against AMR.
Collapse
Affiliation(s)
- Hena Khatoon
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Siti Munirah Mohd Faudzi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
24
|
Liu HY, Prentice EL, Webber MA. Mechanisms of antimicrobial resistance in biofilms. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:27. [PMID: 39364333 PMCID: PMC11445061 DOI: 10.1038/s44259-024-00046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
Most bacteria in nature exist in aggregated communities known as biofilms, and cells within a biofilm demonstrate major physiological changes compared to their planktonic counterparts. Biofilms are associated with many different types of infections which can have severe impacts on patients. Infections involving a biofilm component are often chronic and highly recalcitrant to antibiotic therapy as a result of intrinsic physical factors including extracellular matrix production, low growth rates, altered antibiotic target production and efficient exchange of resistance genes. This review describes the biofilm lifecycle, phenotypic characteristics of a biofilm, and contribution of matrix and persister cells to biofilms intrinsic tolerance to antimicrobials. We also describe how biofilms can evolve antibiotic resistance and transfer resistance genes within biofilms. Multispecies biofilms and the impacts of various interactions, including cooperation and competition, between species on tolerance to antimicrobials in polymicrobial biofilm communities are also discussed.
Collapse
Affiliation(s)
- Ho Yu Liu
- Quadram Institute Biosciences, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
- Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7TJ UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, Norfolk NR4 7UG UK
| | - Emma L Prentice
- Quadram Institute Biosciences, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
| | - Mark A Webber
- Quadram Institute Biosciences, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
- Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7TJ UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, Norfolk NR4 7UG UK
| |
Collapse
|
25
|
Ma W, Guo J, Deng C, Huang X, Sun Y, Xu L, Qin Q. Characterization of the Chromosomally Located Metallo- β-Lactamase Genes blaIMP-45 and blaVIM-2 in a Carbapenem-Resistant Pseudomonas aeruginosa Clinical Isolate. Microb Drug Resist 2024; 30:422-431. [PMID: 39234777 DOI: 10.1089/mdr.2024.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Objective: Characterization of the multidrug resistance (MDR) region in P. aeruginosa strain PA59 revealed the presence of antibiotic resistance genes, including blaIMP-45 and blaVIM-2, within a complex genetic landscape of mobile genetic elements. Methods: Carbapenem-resistant Pseudomonas aeruginosa (CRPA) strains were isolated from Shanghai Changhai Hospital. Polymerase chain reaction (PCR) was used to detect the β-lactamase genes in the isolated strains. Strains carrying two or more genes were subjected to whole-genome sequencing (WGS) and in-depth bioinformatics analysis. Results: A total of 94 CRPA strains were isolated, among which PA59 was determined to carry blaIMP-45 and blaVIM-2 genes. Compared with single-gene positive or other blaIMP and blaVIM dual-gene positive strains reported, PA59 exhibited a broader range of drug resistance. We discovered a multidrug resistant (MDR)-related region composed of various mobile elements in the PA59 chromosome. This region carried many resistance genes, including the target genes blaIMP-45 and blaVIM-2. By further comparing the mobile elements GI13 and Ph08, we speculated that this integron structure carrying blaIMP-45 and blaVIM-2 was initially integrated into the genomic island or prophage, forming a more complex genetic structure, and then further integrated into the PA59 chromosome through plasmids. Phylogenetic tree analysis showed limited sequence similarity between PA59 and other CRPA strains. Conclusions: This study identified PA59 as the first reported P. aeruginosa strain carrying both blaIMP-45 and blaVIM-2 on the chromosome. The assembly and annotation of the PA59 genome provide valuable insights into the genomic diversity and gene content of this clinically important pathogen, aiding the development of effective strategies against antibiotic resistance.
Collapse
Affiliation(s)
- Wei Ma
- Department of Laboratory Diagnostics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie Guo
- Department of Laboratory Diagnostics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Changzi Deng
- Department of Laboratory Diagnostics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaochun Huang
- Department of Laboratory Diagnostics, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yukai Sun
- Department of Laboratory Diagnostics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Li Xu
- Department of Laboratory Diagnostics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qin Qin
- Department of Laboratory Diagnostics, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
26
|
Jardak M, Lami R, Saadaoui O, Jlidi H, Stien D, Aifa S, Mnif S. Control of Staphylococcus epidermidis biofilm by surfactins of an endophytic bacterium Bacillus sp. 15 F. Enzyme Microb Technol 2024; 180:110477. [PMID: 39003969 DOI: 10.1016/j.enzmictec.2024.110477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
The present paper deals with the preparation and annotation of a surfactin(s) derived from a culture of the endophytic bacterium Bacillus 15 F. The LC-MS analysis of the acetonitrile fraction confirmed the presence of surfactins Leu/Ile7 C15, Leu/Ile7 C14 and Leu/Ile7 C13 with [M+H]+ at m/z 1036.6895, 1022.6741 and 1008.6581, respectively. Various concentrations of the surfactin(s) (hereafter referred to as surfactin-15 F) were used to reduce the adhesion of Staphylococcus epidermidis S61, which served as a model for studying antibiofilm activity on polystyrene surfaces. Incubation of Staphylococcus epidermidis S61 with 62.5 µg/ml of surfactin-15 F resulted in almost complete inhibition of biofilm formation (90.3 ± 3.33 %), and a significant reduction of cell viability (resazurin-based fluorescence was more than 200 times lower). The antiadhesive effect of surfactin-15 F was confirmed by scanning electron microscopy. Surfactin-15 F demonstrated an eradication effect against preformed biofilm, causing severe disruption of Staphylococcus epidermidis S61 biofilm structure and reducing viability. The results suggest that surfactins produced by endophytic bacteria could be an alternative to synthetic products. Surfactin-15 F, used in wound dressings, demonstrated an efficient treatment of the preformed Staphylococcus epidermidis S61 biofilm, and thus having a great potential in medical applications.
Collapse
Affiliation(s)
- Marwa Jardak
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, P O Box 1177, Sidi Mansour Road, Sfax 3018, Tunisia.
| | - Raphaël Lami
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Banyuls-sur-Mer 66650, France
| | - Oumaima Saadaoui
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, P O Box 1177, Sidi Mansour Road, Sfax 3018, Tunisia
| | - Hajer Jlidi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, P O Box 1177, Sidi Mansour Road, Sfax 3018, Tunisia
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Banyuls-sur-Mer 66650, France
| | - Sami Aifa
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, P O Box 1177, Sidi Mansour Road, Sfax 3018, Tunisia
| | - Sami Mnif
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, P O Box 1177, Sidi Mansour Road, Sfax 3018, Tunisia
| |
Collapse
|
27
|
Jamwal V, Palmo T, Singh K. Understanding the mechanisms of antimicrobial resistance and potential therapeutic approaches against the Gram-negative pathogen Acinetobacter baumannii. RSC Med Chem 2024; 15:d4md00449c. [PMID: 39386059 PMCID: PMC11457259 DOI: 10.1039/d4md00449c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Globally, the emergence of anti-microbial resistance in pathogens has become a serious threat to human health and well-being. Infections caused by drug-resistant microorganisms in hospitals are associated with increased morbidity, mortality, and healthcare costs. Acinetobacter baumannii is a Gram-negative bacterium belonging to the ESKAPE group and is widely associated with nosocomial infections. It persists in hospitals and survives antibiotic treatment, prompting acute infections such as urinary tract infections, pneumonia, bacteremia, meningitis, and wound-related infections. An innovation void in drug discovery and the lack of new therapeutic measures against A. baumannii continue to afflict infection control against the rising drug-resistant cases. The emergence of drug-resistant A. baumannii strains has also led to the incessant collapse of newly discovered antibiotics. Therefore exploring novel strategies is requisite to give impetus to A. baumannii drug discovery. The present review discusses the bacterial research community's efforts in the field of A. baumannii, focusing on the strategies adapted to identify potent scaffolds and novel targets to bolster and diversify the chemical space available for drug discovery. Firstly, we have discussed existing chemotherapy and various anti-microbial resistance mechanisms in A. baumannii bacterial strains. Next, we elaborate on multidisciplinary approaches and strategies that may be the way forward to combat the current menace caused by the drug-resistant A. baumannii strains. The review highlights the recent advances in drug discovery, including combinational therapy, high-throughput screening, drug repurposing, nanotechnology, and anti-microbial peptides, which are imperative tools to fight bacterial pathogens in the future.
Collapse
Affiliation(s)
- Vishwani Jamwal
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Tashi Palmo
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
28
|
Fakeeha G, AlHarbi S, Auda S, Balto H. The Impact of Silver Nanoparticles' Size on Biofilm Eradication. Int Dent J 2024:S0020-6539(24)01418-7. [PMID: 39266402 DOI: 10.1016/j.identj.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION Efficient intracanal disinfection is required for a successful regenerative endodontic treatment. Thus, this study aimed to identify the silver nanoparticles' (NPs) size (AgNPs) with the highest antibiofilm efficacy when mixed with calcium hydroxide [Ca(OH)2] to eradicate an in vitro endodontic biofilm. METHODS The various sizes of AgNPs and mixtures were characterized by scanning electron microscopy, transmission electron microscopy, and ultraviolet-visible spectroscopy. A total of 168 dentin root segments were prepared, sterilized, and inoculated for 3 weeks with Actinomyces naeslundii and Fusobacterium nucleatum. Samples were randomly allocated to 4 experimental groups (n = 28/group): 2 nm AgNPs + 35% Ca(OH)2, 5 nm AgNPs + 35% Ca(OH)2, 10 nm AgNPs + 35% Ca(OH)2, and 35% Ca(OH)2 alone. Samples exposed to saline and triple antibiotic paste (TAP) acted as negative and positive control groups, respectively. After 1 and 2 weeks, samples were stained with LIVE/DEAD BacLight dye and examined under a confocal laser scanning microscope to determine the proportion of dead bacteria. RESULTS The characterization procedure revealed a spherical NP's structure with minor aggregations. Except for Ca(OH)2 group, all groups had significantly higher antibiofilm efficacy at 2 weeks. Both the 10 nm mixture (99.5%) and TAP (99.2%) exhibited the highest antibiofilm efficacy at 2 weeks and were not significantly different from one another (P > .05). No significant difference was noted between the 2 and 5 nm mixtures at 1 week (81% and 84%) and 2 weeks (89% and 91%). CONCLUSION The 10 nm AgNPs (0.02%) + 35% Ca(OH)2 mixture exhibited the highest antibiofilm efficacy at 2 weeks compared to all other mixtures at both observation periods. Interestingly, the 10 nm mixture performed similarly to TAP at 2 weeks. Excluding Ca(OH)2 group, longer application significantly improved the antibiofilm efficacy of all tested medicaments. CLINICAL RELEVANCE The 10 nm AgNPs + 35% Ca(OH)2 mixture revealed promising results as an intracanal medicament in the regenerative endodontic treatment protocol.
Collapse
Affiliation(s)
- Ghazal Fakeeha
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Sarah AlHarbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sayed Auda
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Balto
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
29
|
Makk J, Toumi M, Krett G, Lange-Enyedi NT, Schachner-Groehs I, Kirschner AKT, Tóth E. Temporal changes in the morphological and microbial diversity of biofilms on the surface of a submerged stone in the Danube River. Biol Futur 2024; 75:261-277. [PMID: 38970754 DOI: 10.1007/s42977-024-00228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Epilithic biofilms are ubiquitous in large river environments and are crucial for biogeochemical processes, but their community structures and functions remain poorly understood. In this paper, the seasonal succession in the morphological structure and the taxonomic composition of an epilithic bacterial biofilm community at a polluted site of the Danube River were followed using electron microscopy, high-throughput 16S rRNA gene amplicon sequencing and multiplex/taxon-specific PCRs. The biofilm samples were collected from the same submerged stone and carried out bimonthly in the littoral zone of the Danube River, downstream of a large urban area. Scanning electron microscopy showed that the biofilm was composed of diatoms and a variety of bacteria with different morphologies. Based on amplicon sequencing, the bacterial communities were dominated by the phyla Pseudomonadota and Bacteroidota, while the most abundant archaea belonged to the phyla Nitrososphaerota and Nanoarchaeota. The changing environmental factors had an effect on the composition of the epilithic microbial community. Critical levels of faecal pollution in the water were associated with increased relative abundance of Sphaerotilus, a typical indicator of "sewage fungus", but the composition and diversity of the epilithic biofilms were also influenced by several other environmental factors such as temperature, water discharge and total suspended solids (TSS). The specific PCRs showed opportunistic pathogenic bacteria (e.g. Pseudomonas spp., Legionella spp., P. aeruginosa, L. pneumophila, Stenotrophomonas maltophilia) in some biofilm samples, but extended spectrum β-lactamase (ESBL) genes and macrolide resistance genes could not be detected.
Collapse
Affiliation(s)
- Judit Makk
- Department of Microbiology, Faculty of Science, Institute of Biology, Eötvös Loránd University, Pázmány P. Sétány 1/C, 1117, Budapest, Hungary.
| | - Marwene Toumi
- Department of Microbiology, Faculty of Science, Institute of Biology, Eötvös Loránd University, Pázmány P. Sétány 1/C, 1117, Budapest, Hungary
| | - Gergely Krett
- Department of Microbiology, Faculty of Science, Institute of Biology, Eötvös Loránd University, Pázmány P. Sétány 1/C, 1117, Budapest, Hungary
| | - Nóra Tünde Lange-Enyedi
- Department of Microbiology, Faculty of Science, Institute of Biology, Eötvös Loránd University, Pázmány P. Sétány 1/C, 1117, Budapest, Hungary
| | - Iris Schachner-Groehs
- Center for Pathophysiology, Infectiology and Immunology, Institute of Hygiene and Applied Immunology - Water Microbiology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Alexander K T Kirschner
- Center for Pathophysiology, Infectiology and Immunology, Institute of Hygiene and Applied Immunology - Water Microbiology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
- Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500, Krems an Der Donau, Austria
| | - Erika Tóth
- Department of Microbiology, Faculty of Science, Institute of Biology, Eötvös Loránd University, Pázmány P. Sétány 1/C, 1117, Budapest, Hungary
| |
Collapse
|
30
|
Grodner B, Shi H, Farchione O, Vill AC, Ntekas I, Diebold PJ, Wu DT, Chen CY, Kim DM, Zipfel WR, Brito IL, De Vlaminck I. Spatial mapping of mobile genetic elements and their bacterial hosts in complex microbiomes. Nat Microbiol 2024; 9:2262-2277. [PMID: 38918467 PMCID: PMC11371653 DOI: 10.1038/s41564-024-01735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
The exchange of mobile genetic elements (MGEs) facilitates the spread of functional traits including antimicrobial resistance within bacterial communities. Tools to spatially map MGEs and identify their bacterial hosts in complex microbial communities are currently lacking, limiting our understanding of this process. Here we combined single-molecule DNA fluorescence in situ hybridization (FISH) with multiplexed ribosomal RNA-FISH to enable simultaneous visualization of both MGEs and bacterial taxa. We spatially mapped bacteriophage and antimicrobial resistance (AMR) plasmids and identified their host taxa in human oral biofilms. This revealed distinct clusters of AMR plasmids and prophage, coinciding with densely packed regions of host bacteria. Our data suggest spatial heterogeneity in bacterial taxa results in heterogeneous MGE distribution within the community, with MGE clusters resulting from horizontal gene transfer hotspots or expansion of MGE-carrying strains. Our approach can help advance the study of AMR and phage ecology in biofilms.
Collapse
Affiliation(s)
- Benjamin Grodner
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Hao Shi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Kanvas Biosciences, Inc, Monmouth Junction, NJ, USA
| | - Owen Farchione
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Albert C Vill
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ioannis Ntekas
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Peter J Diebold
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - David T Wu
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Chia-Yu Chen
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - David M Kim
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Warren R Zipfel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
31
|
Hatami A. Phytochemical profiling and antibacterial activities of Ziziphora tenuior root extracts: a molecular docking against VanA of vancomycin-resistant enterococci. 3 Biotech 2024; 14:217. [PMID: 39220828 PMCID: PMC11362404 DOI: 10.1007/s13205-024-04056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Medicinal plants, renowned for their antibacterial phytocompounds and secondary metabolites, hold significant promise in addressing antibiotic-resistant bacterial strains. This study aimed to conduct phytochemical profiling of the methanolic and dichloromethane extracts of Ziziphora tenuior root using the GC-MS technique. These extracts' antioxidant potential was assessed via DPPH assay and their antibacterial activity was evaluated against S. aureus, E. coli, and VRE bacterial strains. Furthermore, the drug-ligand interactions between the extracts' biocompounds and d-alanyl-d-lactate ligase (VanA) protein of vancomycin-resistant enterococci strains (VRE) were analyzed using molecular docking. Based on the results, 74% of methanolic extract consisted of (3methyl, 24S)-stigmast-5-en-3-ol (which is a β-sitosterol), followed by Tetrasiloxane, decamethyl (15.5%), and 1-methyl-4-phenyl-5-thioxo-1,2,4-triazolidin-3-one (10.5%). Also, the only predominant compound identified in the dichloromethane extract was Benzo[h]quinoline, 2,4-dimethyl-. Both extracts showed antioxidant activity, while the antioxidant activity of the methanolic extract (IC50 = 95.33 μg/ml) was significantly higher than that of the dichloromethane extract (IC50 = 934.23 μg/ml). Also, both extracts displayed substantial antibacterial efficacy against the tested pathogens, particularly against VRE. Moreover, the in silico analysis revealed that (3methyl, 24S)-stigmast-5-en-3-ol and Benzo[h]quinoline,2,4-dimethyl- exhibited notable interactions with VanA through docking energy values of - 9.0 and - 9.1 kcal/mol, respectively. Furthermore, these compounds formed 2 and 1 hydrogen bonds with VanA, respectively, highlighting their potential as effective interactants. These findings provide valuable visions into the therapeutic potentials of these plant-derived biocompounds in combating antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Asma Hatami
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| |
Collapse
|
32
|
Frigoli M, Krupa MP, Hooyberghs G, Lowdon JW, Cleij TJ, Diliën H, Eersels K, van Grinsven B. Electrochemical Sensors for Antibiotic Detection: A Focused Review with a Brief Overview of Commercial Technologies. SENSORS (BASEL, SWITZERLAND) 2024; 24:5576. [PMID: 39275486 PMCID: PMC11398233 DOI: 10.3390/s24175576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
Antimicrobial resistance (AMR) poses a significant threat to global health, powered by pathogens that become increasingly proficient at withstanding antibiotic treatments. This review introduces the factors contributing to antimicrobial resistance (AMR), highlighting the presence of antibiotics in different environmental and biological matrices as a significant contributor to the resistance. It emphasizes the urgent need for robust and effective detection methods to identify these substances and mitigate their impact on AMR. Traditional techniques, such as liquid chromatography-mass spectrometry (LC-MS) and immunoassays, are discussed alongside their limitations. The review underscores the emerging role of biosensors as promising alternatives for antibiotic detection, with a particular focus on electrochemical biosensors. Therefore, the manuscript extensively explores the principles and various types of electrochemical biosensors, elucidating their advantages, including high sensitivity, rapid response, and potential for point-of-care applications. Moreover, the manuscript investigates recent advances in materials used to fabricate electrochemical platforms for antibiotic detection, such as aptamers and molecularly imprinted polymers, highlighting their role in enhancing sensor performance and selectivity. This review culminates with an evaluation and summary of commercially available and spin-off sensors for antibiotic detection, emphasizing their versatility and portability. By explaining the landscape, role, and future outlook of electrochemical biosensors in antibiotic detection, this review provides insights into the ongoing efforts to combat the escalating threat of AMR effectively.
Collapse
Affiliation(s)
- Margaux Frigoli
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Mikolaj P Krupa
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Geert Hooyberghs
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Joseph W Lowdon
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Thomas J Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
33
|
Lozano-Villegas KJ, Rondón-Barragán IS. Virulence and Antimicrobial-Resistant Gene Profiles of Salmonella spp. Isolates from Chicken Carcasses Markets in Ibague City, Colombia. Int J Microbiol 2024; 2024:4674138. [PMID: 39220438 PMCID: PMC11364481 DOI: 10.1155/2024/4674138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Salmonella spp. is one of the leading causes of foodborne bacterial infections, with major impacts on public health and healthcare system. Salmonella is commonly transmitted via the fecal-to-oral route, and food contaminated with the bacteria (e.g., poultry products) is considered a common source of infection, being a potential risk for public health. The study aims to characterize the antimicrobial resistance- and virulence-associated genes in Salmonella isolates recovered from chicken marketed carcasses (n = 20). The presence of 14 antimicrobial and 23 virulence genes was evaluated using end-point PCR. The antimicrobial genes were detected in the following proportion among the isolates: bla TEM 100%, dfrA1 and bla CMY2 90% (n = 18), aadA1 75% (n = 15), sul1 and sul2 50% (n = 10), floR 45% (n = 9), qnrD 20% (n = 4), and aadA2 15% (n = 3). catA, sul3, qnrS, and aac(6')-Ib genes were absent in all isolates. Regarding virulence-associated genes, all Salmonella strains contain invA, fimA, avrA, msgA, sopB, and sopE. The cdtB gene was present in 95% (n = 19) of isolates, whereas spvC and spvB were present in 55% (n = 11). Other virulence genes such as spiC, lpfC, lpfA, and csgA were present in 90% (n = 18) of strains. The presence of antimicrobial and virulence genes in several Salmonella strains in chicken meat suggests the potential pathogenicity of the strains, which is relevant given the possibility of cross-contamination which represents a significant threat to public health.
Collapse
Affiliation(s)
- Kelly Johanna Lozano-Villegas
- Immunobiology and Pathogenesis Research GroupFaculty of Veterinary Medicine and ZootechnicsUniversity of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Tolima, Colombia
- Poultry Research GroupLaboratory of Immunology and Molecular BiologyFaculty of Veterinary Medicine and ZootechnicsUniversidad del Tolima, Santa Helena Highs, Ibagué 730006299, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Immunobiology and Pathogenesis Research GroupFaculty of Veterinary Medicine and ZootechnicsUniversity of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Tolima, Colombia
- Poultry Research GroupLaboratory of Immunology and Molecular BiologyFaculty of Veterinary Medicine and ZootechnicsUniversidad del Tolima, Santa Helena Highs, Ibagué 730006299, Tolima, Colombia
| |
Collapse
|
34
|
Milani G, Cortimiglia C, Belloso Daza MV, Greco E, Bassi D, Cocconcelli PS. Microplastic-Mediated Transfer of Tetracycline Resistance: Unveiling the Role of Mussels in Marine Ecosystems. Antibiotics (Basel) 2024; 13:727. [PMID: 39200027 PMCID: PMC11350897 DOI: 10.3390/antibiotics13080727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
The global threat of antimicrobial resistance (AMR) is exacerbated by the mobilization of antimicrobial resistance genes (ARGs) occurring in different environmental niches, including seawater. Marine environments serve as reservoirs for resistant bacteria and ARGs, further complicated by the ubiquity of microplastics (MPs). MPs can adsorb pollutants and promote bacterial biofilm formation, creating conditions favorable to the dissemination of ARGs. This study explores the dynamics of ARG transfer in the marine bivalve Mytilus galloprovincialis within a seawater model, focusing on the influence of polyethylene MPs on the mobilization of the Tn916-carrying tetM gene and plasmid-encoded ermB. Experiments revealed that biofilm formation on MPs by Enterococcus faecium and Listeria monocytogenes facilitated the transfer of the tetM resistance gene, but not the ermB gene. Furthermore, the presence of MPs significantly increased the conjugation frequency of tetM within mussels, indicating that MPs enhance the potential for ARG mobilization in marine environments. These findings highlight the role of MPs and marine organisms in ARG spread, underscoring the ecological and public health implications.
Collapse
Affiliation(s)
| | | | | | | | | | - Pier Sandro Cocconcelli
- Dipartimento di Scienze e Tecnologie Alimentari per una Filiera Agro-Alimentare Sostenibile (DISTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (G.M.); (C.C.); (M.V.B.D.); (E.G.); (D.B.)
| |
Collapse
|
35
|
Hatami A. Phytochemical characterisation of dichloromethane and methanolic extracts of the Ziziphora tenuior leaves and evaluation of their antioxidant and antibacterial activities. Nat Prod Res 2024:1-8. [PMID: 39086216 DOI: 10.1080/14786419.2024.2386127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Medicinal plants, known for their antibacterial phytocompounds and secondary metabolites, offer promising potential in combating antibiotic-resistant bacteria. This study aimed to perform a phytochemical analysis of the methanol and dichloromethane extracts obtained from Ziziphora tenuior leaves using GC-MS. Furthermore, the antioxidant activity of the extracts was evaluated through the DPPH assay. And, their antibacterial activity was assessed against S. aureus, E. coli, methicillin-resistant S. aureus, and vancomycin-resistant enterococcus (VRE) bacterial strains. Based on the results 90-92% of these extracts consisted of phytocompounds with pharmaceutical properties. Of these, 5-methyl- 2-(1-methylethylidele), Cyclohexanone (Pulegone; C10H16O) comprised the highest percentage of the extracts, constituting 62% of methanolic extract and 81% of dichloromethane extract. Also, both methanolic and dichloromethane extracts showed potent antioxidant activity with IC50 of 277.6 µg/ml and 49.6 µg/ml, respectively. Moreover, these extracts demonstrated considerable antibacterial activity against the tested pathogens, especially against S. aureus and VRE.
Collapse
Affiliation(s)
- Asma Hatami
- Department of Medicinal Chemistry, University of Isfahan, Isfahan, Iran
| |
Collapse
|
36
|
Tabassum T, Hossain MS, Ercumen A, Benjamin-Chung J, Abedin MF, Rahman M, Jahan F, Haque M, Mahmud ZH. Isolation and characterization of cefotaxime resistant Escherichia coli from household floors in rural Bangladesh. Heliyon 2024; 10:e34367. [PMID: 39114038 PMCID: PMC11305256 DOI: 10.1016/j.heliyon.2024.e34367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Antimicrobial resistance (AMR) is a rising health concern worldwide. As an indicator organism, E. coli, specifically extended-spectrum β-lactamase (ESBL) producing E. coli, can be used to detect AMR in the environment and estimate the risk of transmitting resistance among humans, animals and the environment. This study focused on detecting cefotaxime resistant E. coli in floor swab samples from 49 households in rural villages in Bangladesh. Following isolation of cefotaxime resistant E. coli, DNA extracted from isolates was subjected to molecular characterization for virulence and resistance genes, determination of resistance to multiple classes of antibiotics to define multidrug resistant (MDR) and extensively drug resistant (XDR) strains, and the biofilm forming capacity of the isolates. Among 49 households, floor swabs from 35 (71 %) households tested positive for cefotaxime resistant E. coli. Notably, all of the 91 representative isolates were ESBL producers, with the majority (84.6 %) containing the bla CTX-M gene, followed by the bla TEM and bla SHV genes detected in 22.0 % and 6.6 % of the isolates, respectively. All isolates were MDR, and one isolate was XDR. In terms of pathogenic strains, 8.8 % of the isolates were diarrheagenic and 5.5 % were extraintestinal pathogenic E. coli (ExPEC). At 25 °C, 45 % of the isolates formed strong biofilm, whereas 43 % and 12 % formed moderate and weak biofilm, respectively. On the other hand, at 37 °C, 1.1 %, 4.4 % and 93.4 % of the isolates were strong, moderate and weak biofilm formers, respectively, and 1.1 % showed no biofilm formation. The study emphasizes the importance of screening and characterizing cefotaxime resistant E. coli from household floors in a developing country setting to understand AMR exposure associated with floors.
Collapse
Affiliation(s)
- Tahani Tabassum
- Laboratory of Environmental Health, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, 1212, Bangladesh
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Merul Badda, Dhaka, Bangladesh
| | - Md. Sakib Hossain
- Laboratory of Environmental Health, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, 1212, Bangladesh
| | - Ayse Ercumen
- Department of Forestry and Environmental Resources, Global Water, Sanitation and Hygiene Cluster, NC State University, Raleigh, NC, 27607, USA
| | - Jade Benjamin-Chung
- Department of Epidemiology & Population Health, Stanford University School of Medicine, CA, 94305-5101, USA
| | - Md. Foysal Abedin
- Laboratory of Environmental Health, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, 1212, Bangladesh
| | - Mahbubur Rahman
- Environmental Health and WASH, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, 1212, Bangladesh
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Sweden
| | - Farjana Jahan
- Environmental Health and WASH, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, 1212, Bangladesh
| | - Munima Haque
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Merul Badda, Dhaka, Bangladesh
| | - Zahid Hayat Mahmud
- Laboratory of Environmental Health, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, 1212, Bangladesh
| |
Collapse
|
37
|
Fraiture MA, Gobbo A, Guillitte C, Marchesi U, Verginelli D, De Greve J, D'aes J, Vanneste K, Papazova N, Roosens NH. Pilot market surveillance of GMM contaminations in alpha-amylase food enzyme products: A detection strategy strengthened by a newly developed qPCR method targeting a GM Bacillus licheniformis producing alpha-amylase. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100186. [PMID: 38179151 PMCID: PMC10762378 DOI: 10.1016/j.fochms.2023.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 12/02/2023] [Indexed: 01/06/2024]
Abstract
Using high-throughput metagenomics on commercial microbial fermentation products, DNA from a new unauthorized genetically modified microorganism (GMM), namely the GM B. licheniformis strain producing alpha-amylase (GMM alpha-amylase2), was recently discovered and characterized. On this basis, a new qPCR method targeting an unnatural association of sequences specific to the GMM alpha-amylase2 strain was designed and developed in this study, allowing to strengthen the current GMM detection strategy. The performance of the newly developed qPCR method was assessed for its specificity and sensitivity to comply with the minimum performance requirements established by the European Network of GMO Laboratories for GMO analysis. Moreover, the transferability of the in house validated qPCR method was demonstrated. Finally, its applicability was confirmed by a pilot market surveillance of GMM contaminations conducted for the first time on 40 alpha-amylase food enzyme products labelled as containing alpha-amylase. This pilot market surveillance allowed also to highlight numerous contaminations with GMM alpha-amylase2, including frequent cross-contaminations with other GMM strains previously characterized. In addition, the presence of full-length AMR genes, raising health concerns, was also reported.
Collapse
Affiliation(s)
- Marie-Alice Fraiture
- Sciensano, Transversal Activities in Applied Genomics (TAG), rue Juliette Wytsman 14, 1050 Brussels, Belgium
| | - Andrea Gobbo
- Sciensano, Transversal Activities in Applied Genomics (TAG), rue Juliette Wytsman 14, 1050 Brussels, Belgium
| | - Chloé Guillitte
- Sciensano, Transversal Activities in Applied Genomics (TAG), rue Juliette Wytsman 14, 1050 Brussels, Belgium
| | - Ugo Marchesi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M.Aleandri”, Unità Operativa Semplice a valenza Direzionale – Ricerca e controllo degli organismi geneticamente modificati, via Appia Nuova 1411, 00178 Roma, Italia
| | - Daniela Verginelli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M.Aleandri”, Unità Operativa Semplice a valenza Direzionale – Ricerca e controllo degli organismi geneticamente modificati, via Appia Nuova 1411, 00178 Roma, Italia
| | - Joke De Greve
- Sciensano, Transversal Activities in Applied Genomics (TAG), rue Juliette Wytsman 14, 1050 Brussels, Belgium
| | - Jolien D'aes
- Sciensano, Transversal Activities in Applied Genomics (TAG), rue Juliette Wytsman 14, 1050 Brussels, Belgium
| | - Kevin Vanneste
- Sciensano, Transversal Activities in Applied Genomics (TAG), rue Juliette Wytsman 14, 1050 Brussels, Belgium
| | - Nina Papazova
- Sciensano, Transversal Activities in Applied Genomics (TAG), rue Juliette Wytsman 14, 1050 Brussels, Belgium
| | - Nancy H.C. Roosens
- Sciensano, Transversal Activities in Applied Genomics (TAG), rue Juliette Wytsman 14, 1050 Brussels, Belgium
| |
Collapse
|
38
|
David A, Tahrioui A, Tareau AS, Forge A, Gonzalez M, Bouffartigues E, Lesouhaitier O, Chevalier S. Pseudomonas aeruginosa Biofilm Lifecycle: Involvement of Mechanical Constraints and Timeline of Matrix Production. Antibiotics (Basel) 2024; 13:688. [PMID: 39199987 PMCID: PMC11350761 DOI: 10.3390/antibiotics13080688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing acute and chronic infections, especially in immunocompromised patients. Its remarkable adaptability and resistance to various antimicrobial treatments make it difficult to eradicate. Its persistence is enabled by its ability to form a biofilm. Biofilm is a community of sessile micro-organisms in a self-produced extracellular matrix, which forms a scaffold facilitating cohesion, cell attachment, and micro- and macro-colony formation. This lifestyle provides protection against environmental stresses, the immune system, and antimicrobial treatments, and confers the capacity for colonization and long-term persistence, often characterizing chronic infections. In this review, we retrace the events of the life cycle of P. aeruginosa biofilm, from surface perception/contact to cell spreading. We focus on the importance of extracellular appendages, mechanical constraints, and the kinetics of matrix component production in each step of the biofilm life cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sylvie Chevalier
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000 Rouen, France
| |
Collapse
|
39
|
Wang D, Liu L, Xu X, Wang C, Wang Y, Deng Y, Zhang T. Distributions, interactions, and dynamics of prokaryotes and phages in a hybrid biological wastewater treatment system. MICROBIOME 2024; 12:134. [PMID: 39039555 PMCID: PMC11265110 DOI: 10.1186/s40168-024-01853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/03/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Understanding the interactions and dynamics of microbiotas within biological wastewater treatment systems is essential for ensuring their stability and long-term sustainability. In this study, we developed a systematic framework employing multi-omics and Hi-C sequencing to extensively investigate prokaryotic and phage communities within a hybrid biofilm and activated sludge system. RESULTS We uncovered distinct distribution patterns, metabolic capabilities, and activities of functional prokaryotes through the analysis of 454 reconstructed prokaryotic genomes. Additionally, we reconstructed a phage catalog comprising 18,645 viral operational taxonomic units (vOTUs) with high length and contiguity using hybrid assembly, and a distinct distribution of phages was depicted between activated sludge (AS) and biofilm. Importantly, 1340 host-phage pairs were established using Hi-C and conventional in silico methods, unveiling the host-determined phage prevalence. The majority of predicted hosts were found to be involved in various crucial metabolic processes, highlighting the potential vital roles of phages in influencing substance metabolism within this system. Moreover, auxiliary metabolic genes (AMGs) related to various categories (e.g., carbohydrate degradation, sulfur metabolism, transporter) were predicted. Subsequent activity analysis emphasized their potential ability to mediate host metabolism during infection. We also profiled the temporal dynamics of phages and their associated hosts using 13-month time-series metagenomic data, further demonstrating their tight interactions. Notably, we observed lineage-specific infection patterns, such as potentially host abundance- or phage/host ratio-driven phage population changes. CONCLUSIONS The insights gained from this research contribute to the growing body of knowledge surrounding interactions and dynamics of host-phage and pave the way for further exploration and potential applications in the field of microbial ecology. Video Abstract.
Collapse
Affiliation(s)
- Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Chunxiao Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China.
- School of Public Health, The University of Hong Kong, Hong Kong SAR, China.
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau SAR, China.
| |
Collapse
|
40
|
Wang Z, Li N, Zhou X, Wei S, Zhu Y, Li M, Gong J, He Y, Dong X, Gao C, Cheng S. Optimization of fermentation parameters to improve the biosynthesis of selenium nanoparticles by Bacillus licheniformis F1 and its comprehensive application. BMC Microbiol 2024; 24:271. [PMID: 39033096 PMCID: PMC11264884 DOI: 10.1186/s12866-024-03410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Selenium nanoparticles (SeNPs) are increasingly gaining attention due to its characteristics of low toxicity, high activity, and stability. Additionally, Bacillus licheniformis, as a probiotic, has achieved remarkable research outcomes in diverse fields such as medicine, feed processing, and pesticides, attracting widespread attention. Consequently, evaluating the activity of probiotics and SeNPs is paramount. The utilization of probiotics to synthesize SeNPs, achieving large-scale industrialization, is a current hotspot in the field of SeNPs synthesis and is currently the most promising synthetic method. To minimize production costs and maximize yield of SeNPs, this study selected agricultural by-products that are nutrient-rich, cost-effective, and readily available as culture medium components. This approach not only fulfills industrial production requirements but also mitigates the impact on downstream processes. RESULTS The experimental findings revealed that SeNPs synthesized by B. licheniformis F1 exhibited a spherical morphology with diameters ranging from 110 to 170 nm and demonstrating high stability. Both the secondary metabolites of B. licheniformis F1 and the synthesized SeNPs possessed significant free radical scavenging ability. To provide a more robust foundation for acquiring large quantities of SeNPs via fermentation with B. licheniformis F1, key factors were identified through single-factor experiments and response surface methodology (RSM) include a 2% seed liquid inoculum, a temperature of 37 ℃, and agitation at 180 rpm. Additionally, critical factors during the optimization process were corn powder (11.18 g/L), soybean meal (10.34 g/L), and NaCl (10.68 g/L). Upon validating the optimized conditions and culture medium, B. licheniformis F1 can synthesize nearly 100.00% SeNPs from 5 mmol/L sodium selenite. Subsequently, pilot-scale verification in a 5 L fermentor using the optimized medium resulted in a shortened fermentation time, significantly reducing production costs. CONCLUSION In this study, the efficient production of SeNPs by the probiotic B. licheniformis F1 was successfully achieved, leading to a significant reduction in fermentation costs. The exploration of the practical applications of this strain holds significant potential and provides valuable guidance for facilitating the industrial-scale implementation of microbial synthesis of SeNPs.
Collapse
Affiliation(s)
- Zhangqian Wang
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China
| | - Nana Li
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China
| | - Xin Zhou
- Medical Department of Gaoming Hospital of TCM, Foshan, 528500, China
| | - Shiya Wei
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China
| | - Ying Zhu
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China
| | - Mengjun Li
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China
| | - Jue Gong
- Hubei National Se-rich Technology Development Co., Ltd., Enshi, 445000, China
| | - Yi He
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China
| | - Xingxing Dong
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China.
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China.
| | - Chao Gao
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China.
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China.
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China.
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China.
| |
Collapse
|
41
|
Aladekoyi O, Siddiqui S, Hania P, Hamza R, Gilbride K. Accumulation of antibiotics in the environment: Have appropriate measures been taken to protect Canadian human and ecological health? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116513. [PMID: 38820820 DOI: 10.1016/j.ecoenv.2024.116513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
In Canada, every day, contaminants of emerging concern (CEC) are discharged from waste treatment facilities into freshwaters. CECs such as pharmaceutical active compounds (PhACs), personal care products (PCPs), per- and polyfluoroalkyl substances (PFAS), and microplastics are legally discharged from sewage treatment plants (STPs), water reclamation plants (WRPs), hospital wastewater treatment plants (HWWTPs), or other forms of wastewater treatment facilities (WWTFs). In 2006, the Government of Canada established the Chemicals Management Plan (CMP) to classify chemicals based on a risk-priority assessment, which ranked many CECs such as PhACs as being of low urgency, therefore permitting these substances to continue being released into the environment at unmonitored rates. The problem with ranking PhACs as a low priority is that CMP's risk management assessment overlooks the long-term environmental and synergistic effects of PhAC accumulation, such as the long-term risk of antibiotic CEC accumulation in the spread of antibiotic resistance genes. The goal of this review is to specifically investigate antibiotic CEC accumulation and associated environmental risks to human and environmental health, as well as to determine whether appropriate legislative strategies are in place within Canada's governance framework. In this research, secondary data on antibiotic CEC levels in Canadian and international wastewaters, their potential to promote antibiotic-resistant residues, associated environmental short- and long-term risks, and synergistic effects were all considered. Unlike similar past reviews, this review employed an interdisciplinary approach to propose new strategies from the perspectives of science, engineering, and law.
Collapse
Affiliation(s)
- Oluwatosin Aladekoyi
- Department of Chemistry and Biology, Toronto Metropolitan University (formerly Ryerson University), Canada
| | - Salsabil Siddiqui
- Department of Chemistry and Biology, Toronto Metropolitan University (formerly Ryerson University), Canada
| | - Patricia Hania
- Department of Business and Law, Toronto Metropolitan University (formerly Ryerson University), Canada; TMU Urban Water, Toronto Metropolitan University (formerly Ryerson University), Canada
| | - Rania Hamza
- Department of Civil Engineering, Toronto Metropolitan University (formerly Ryerson University), Canada; TMU Urban Water, Toronto Metropolitan University (formerly Ryerson University), Canada
| | - Kimberley Gilbride
- Department of Chemistry and Biology, Toronto Metropolitan University (formerly Ryerson University), Canada; TMU Urban Water, Toronto Metropolitan University (formerly Ryerson University), Canada.
| |
Collapse
|
42
|
Elgayar FA, Gouda MK, Badran AA, El Halfawy NM. Pathogenomics analysis of high-risk clone ST147 multidrug-resistant Klebsiella pneumoniae isolated from a patient in Egypt. BMC Microbiol 2024; 24:256. [PMID: 38987681 PMCID: PMC11234735 DOI: 10.1186/s12866-024-03389-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The emergence of multi-drug-resistant Klebsiella pneumoniae (MDR-KP) represents a serious clinical health concern. Antibiotic resistance and virulence interactions play a significant role in the pathogenesis of K. pneumoniae infections. Therefore, tracking the clinical resistome and virulome through monitoring antibiotic resistance genes (ARG) and virulence factors in the bacterial genome using computational analysis tools is critical for predicting the next epidemic. METHODS In the current study, one hundred extended spectrum β-lactamase (ESBL)-producing clinical isolates were collected from Mansoura University Hospital, Egypt, in a six-month period from January to June 2022. One isolate was selected due to the high resistance phenotype, and the genetic features of MDR-KP recovered from hospitalized patient were investigated. Otherwise, the susceptibility to 25 antimicrobials was determined using the DL Antimicrobial Susceptibility Testing (AST) system. Whole genome sequencing (WGS) using Illumina NovaSeq 6000 was employed to provide genomic insights into K. pneumoniae WSF99 clinical isolate. RESULTS The isolate K. pneumoniae WSF99 was phenotypically resistant to the antibiotics under investigation via antibiotic susceptibility testing. WGS analysis revealed that WSF99 total genome length was 5.7 Mb with an estimated 5,718 protein-coding genes and a G + C content of 56.98 mol%. Additionally, the allelic profile of the WSF99 isolate was allocated to the high-risk clone ST147. Furthermore, diverse antibiotic resistance genes were determined in the genome that explain the high-level resistance phenotypes. Several β-lactamase genes, including blaCTX-M-15, blaTEM-1, blaTEM-12, blaSHV-11, blaSHV-67, and blaOXA-9, were detected in the WSF99 isolate. Moreover, a single carbapenemase gene, blaNDM-5, was predicted in the genome, positioned within a mobile cassette. In addition, other resistance genes were predicted in the genome including, aac(6')-Ib, aph(3')-VI, sul1, sul2, fosA, aadA, arr-2, qnrS1, tetA and tetC. Four plasmid replicons CoIRNAI, IncFIB(K), IncFIB(pQil), and IncR were predicted in the genome. The draft genome analysis revealed the occurrence of genetic mobile elements positioned around the ARGs, suggesting the ease of dissemination via horizontal gene transfer. CONCLUSIONS This study reports a comprehensive pathogenomic analysis of MDR-KP isolated from a hospitalized patient. These findings could be relevant for future studies investigating the diversity of antimicrobial resistance and virulence in Egypt.
Collapse
Affiliation(s)
- Fatma A Elgayar
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharram Bek 21511, Alexandria, Egypt
| | - Mona K Gouda
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharram Bek 21511, Alexandria, Egypt
| | - Alaa Aboelnour Badran
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nancy M El Halfawy
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharram Bek 21511, Alexandria, Egypt.
| |
Collapse
|
43
|
Pitiriga VC, Campos E, Bakalis J, Saroglou G, Tsakris A. Differences in the Dwell Time of Peripherally Inserted Central Catheters between Patients with Catheter Colonization and Those Developing Central Line-Associated Bloodstream Infection: A Single Centre Retrospective Cohort Study. Antibiotics (Basel) 2024; 13:632. [PMID: 39061314 PMCID: PMC11273596 DOI: 10.3390/antibiotics13070632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Substantial knowledge gaps exist concerning the varying durations of peripherally inserted central catheter (PICC) placements that lead to either central line-associated bloodstream infection (CLABSI) or catheter colonization. We aimed to compare PICCs dwell time between patients who developed CLABSIs due to multidrug-resistant microorganisms (MDROs) and patients with catheter colonization by MDROs. Data from 86 patients admitted consecutively to a tertiary-care hospital from 2017 to 2020 were retrospectively analyzed. The mean dwell time was 25.73 ± 16.19 days in the PICC-CLABSI group and 16.36 ± 10.28 days in the PICC-colonization group (p = 0.002). The mean dwell time was 17.38 ± 9.5 days in the PICC-MDRO group and 22.48 ± 15.64 days in the PICC-non-MDRO group (p = 0.005). Within the PICC-CLABSI group, the mean dwell time for CLABSIs caused by MDROs was 21.50 ± 12.31 days, compared to 27.73 ± 16.98 days for CLABSIs caused by non-MDROs (p = 0.417). Within the PICC-colonization group, the mean dwell time was 15.55 ± 7.73 days in PICCs colonized by MDROs and 16.92 ± 11.85 days in PICCs colonized by non-MDROs (p = 0.124). The findings of the present study suggest that CLABSIs caused by MDROs in PICCs are associated with a shorter mean catheter dwell time compared to those caused by non-MDROs, underscoring the importance of considering infections by MDROs when evaluating PICC dwell times.
Collapse
Affiliation(s)
- Vassiliki C. Pitiriga
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Elsa Campos
- Department of Internal Medicine, Metropolitan Hospital, 9 Ethnarchou Makariou Street, 18547 Athens, Greece
| | - John Bakalis
- Department of Internal Medicine, Metropolitan Hospital, 9 Ethnarchou Makariou Street, 18547 Athens, Greece
| | - George Saroglou
- Department of Internal Medicine, Metropolitan Hospital, 9 Ethnarchou Makariou Street, 18547 Athens, Greece
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| |
Collapse
|
44
|
D’Aquila P, De Rose E, Sena G, Scorza A, Cretella B, Passarino G, Bellizzi D. Quorum Quenching Approaches against Bacterial-Biofilm-Induced Antibiotic Resistance. Antibiotics (Basel) 2024; 13:619. [PMID: 39061301 PMCID: PMC11273524 DOI: 10.3390/antibiotics13070619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
With the widespread phenomenon of antibiotic resistance and the diffusion of multiple drug-resistant bacterial strains, enormous efforts are being conducted to identify suitable alternative agents against pathogenic microorganisms. Since an association between biofilm formation and antibiotic resistance phenotype has been observed, a promising strategy pursued in recent years focuses on controlling and preventing this formation by targeting and inhibiting the Quorum Sensing (QS) system, whose central role in biofilm has been extensively demonstrated. Therefore, the research and development of Quorum Quenching (QQ) compounds, which inhibit QS, has gradually attracted the attention of researchers and has become a new strategy for controlling harmful microorganisms. Among these, a number of both natural and synthetic compounds have been progressively identified as able to interrupt the intercellular communication within a microbial community and the adhesion to a surface, thus disintegrating mature/preformed biofilms. This review describes the role played by QS in the formation of bacterial biofilms and then focuses on the mechanisms of different natural and synthetic QS inhibitors (QSIs) exhibiting promising antibiofilm ability against Gram-positive and Gram-negative bacterial pathogens and on their applications as biocontrol strategies in various fields.
Collapse
Affiliation(s)
- Patrizia D’Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Elisabetta De Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Giada Sena
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Angelo Scorza
- Villa Ermelinda, Progetto Terza Età, 88842 Cutro, Italy; (A.S.); (B.C.)
| | | | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| |
Collapse
|
45
|
Thompson E, Qureshi A. Pathogens in FRI - Do bugs matter? - An analysis of FRI studies to assess your enemy. J Orthop 2024; 53:59-72. [PMID: 38476676 PMCID: PMC10925936 DOI: 10.1016/j.jor.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Fracture-related infection (FRI) is a devasting complication for both patients and their treating Orthopaedic surgeon that can lead to loss of limb function or even amputation. The unique and unpredictable features of FRI make its diagnosis and treatment a significant challenge. It has substantial morbidity and financial implications for patients, their families and healthcare providers. In this article, we perform an in-depth and comprehensive review of FRI through recent and seminal literature to highlight evolving definitions, diagnostic and treatment approaches, focusing on common pathogens such as Staphylococcus aureus, polymicrobial infections and multi-drug-resistant organisms (MDRO). Furthermore, multiple resistance mechanisms and adaptations for microbial survival are discussed, as well as modern evidence-based medical and surgical advancements in treatment strategies in combating FRI.
Collapse
Affiliation(s)
- Emmet Thompson
- Limb Reconstruction Service, Trauma & Orthopaedic Department, University Hospital Southampton, Southampton, UK
| | - Amir Qureshi
- Limb Reconstruction Service, Trauma & Orthopaedic Department, University Hospital Southampton, Southampton, UK
| |
Collapse
|
46
|
Xu Q, Ali S, Afzal M, Nizami AS, Han S, Dar MA, Zhu D. Advancements in bacterial chemotaxis: Utilizing the navigational intelligence of bacteria and its practical applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172967. [PMID: 38705297 DOI: 10.1016/j.scitotenv.2024.172967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
The fascinating world of microscopic life unveils a captivating spectacle as bacteria effortlessly maneuver through their surroundings with astonishing accuracy, guided by the intricate mechanism of chemotaxis. This review explores the complex mechanisms behind this behavior, analyzing the flagellum as the driving force and unraveling the intricate signaling pathways that govern its movement. We delve into the hidden costs and benefits of this intricate skill, analyzing its potential to propagate antibiotic resistance gene while shedding light on its vital role in plant colonization and beneficial symbiosis. We explore the realm of human intervention, considering strategies to manipulate bacterial chemotaxis for various applications, including nutrient cycling, algal bloom and biofilm formation. This review explores the wide range of applications for bacterial capabilities, from targeted drug delivery in medicine to bioremediation and disease control in the environment. Ultimately, through unraveling the intricacies of bacterial movement, we can enhance our comprehension of the intricate web of life on our planet. This knowledge opens up avenues for progress in fields such as medicine, agriculture, and environmental conservation.
Collapse
Affiliation(s)
- Qi Xu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shehbaz Ali
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Afzal
- Soil & Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Song Han
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Mudasir A Dar
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
47
|
Jara J, Alba C, Del Campo R, Fernández L, Sáenz de Pipaón M, Rodríguez JM, Orgaz B. Linking preterm infant gut microbiota to nasograstric enteral feeding tubes: exploring potential interactions and microbial strain transmission. Front Pediatr 2024; 12:1397398. [PMID: 38952433 PMCID: PMC11215057 DOI: 10.3389/fped.2024.1397398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Preterm birth is a growing problem worldwide. Staying at a neonatal intensive care unit (NICU) after birth is critical for the survival of preterm infants whose feeding often requires the use of nasogastric enteral feeding tubes (NEFT). These can be colonized by hospital-associated pathobionts that can access the gut of the preterm infants through this route. Since the gut microbiota is the most impactful factor on maturation of the immune system, any disturbance in this may condition their health. Therefore, the aim of this study is to assess the impact of NEFT-associated microbial communities on the establishment of the gut microbiota in preterm infants. Material and methods A metataxonomic analysis of fecal and NEFT-related samples obtained during the first 2 weeks of life of preterm infants was performed. The potential sharing of strains isolated from the same set of samples of bacterial species involved in NICU's outbreaks, was assessed by Random Amplification of Polymorphic DNA (RAPD) genotyping. Results In the samples taken 48 h after birth (NEFT-1 and Me/F1), Staphylococcus spp. was the most abundant genera (62% and 14%, respectively) and it was latter displaced to 5.5% and 0.45%, respectively by Enterobacteriaceae. Significant differences in beta diversity were detected in NEFT and fecal samples taken at day 17 after birth (NEFT-3 and F3) (p = 0.003 and p = 0.024, respectively). Significant positive correlations were found between the most relevant genera detected in NEFT-3 and F3. 28% of the patients shared at least one RAPD-PCR profile in fecal and NEFT samples and 11% of the total profiles were found at least once simultaneously in NEFT and fecal samples from the same patient. Conclusion The results indicate a parallel bacterial colonization of the gut of preterm neonates and the NEFTs used for feeding, potentially involving strain sharing between these niches. Moreover, the same bacterial RAPD profiles were found in neonates hospitalized in different boxes, suggesting a microbial transference within the NICU environment. This study may assist clinical staff in implementing best practices to mitigate the spread of pathogens that could threaten the health of preterm infants.
Collapse
Affiliation(s)
- J. Jara
- Department of Galenic Pharmacy and Food Science, School of Veterinary Sciences, University Complutense of Madrid (UCM), Madrid, Spain
| | - C. Alba
- Department of Nutrition and Food Science, School of Veterinary Sciences, University Complutense of Madrid (UCM), Madrid, Spain
| | - R. Del Campo
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | - L. Fernández
- Department of Galenic Pharmacy and Food Science, School of Veterinary Sciences, University Complutense of Madrid (UCM), Madrid, Spain
| | - M. Sáenz de Pipaón
- Department of Neonatology, La Paz University Hospital of Madrid, Madrid, Spain
- Department of Pediatrics, Autonoma University of Madrid, Madrid, Spain
| | - J. M. Rodríguez
- Department of Nutrition and Food Science, School of Veterinary Sciences, University Complutense of Madrid (UCM), Madrid, Spain
| | - B. Orgaz
- Department of Galenic Pharmacy and Food Science, School of Veterinary Sciences, University Complutense of Madrid (UCM), Madrid, Spain
| |
Collapse
|
48
|
Xiao R, Huang D, Du L, Tang X, Song B, Yin L, Chen Y, Zhou W, Gao L, Li R, Huang H, Zeng G. Molecular insights into linkages among free-floating macrophyte-derived organic matter, the fate of antibiotic residues, and antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134351. [PMID: 38653136 DOI: 10.1016/j.jhazmat.2024.134351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Macrophyte rhizospheric dissolved organic matter (ROM) served as widespread abiotic components in aquatic ecosystems, and its effects on antibiotic residues and antibiotic resistance genes (ARGs) could not be ignored. However, specific influencing mechanisms for ROM on the fate of antibiotic residues and expression of ARGs still remained unclear. Herein, laboratory hydroponic experiments for water lettuce (Pistia stratiotes) were carried out to explore mutual interactions among ROM, sulfamethoxazole (SMX), bacterial community, and ARGs expression. Results showed ROM directly affect SMX concentrations through the binding process, while CO and N-H groups were main binding sites for ROM. Dynamic changes of ROM molecular composition diversified the DOM pool due to microbe-mediated oxidoreduction, with enrichment of heteroatoms (N, S, P) and decreased aromaticity. Microbial community analysis showed SMX pressure significantly stimulated the succession of bacterial structure in both bulk water and rhizospheric biofilms. Furthermore, network analysis further confirmed ROM bio-labile compositions as energy sources and electron shuttles directly influenced microbial structure, thereby facilitating proliferation of antibiotic resistant bacteria (Methylotenera, Sphingobium, Az spirillum) and ARGs (sul1, sul2, intl1). This investigation will provide scientific supports for the control of antibiotic residues and corresponding ARGs in aquatic ecosystems.
Collapse
Affiliation(s)
- Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yashi Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lan Gao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Hai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| |
Collapse
|
49
|
Shapiro JA. A very brief note on why bacterial evolution has physiology. J Physiol 2024; 602:2395-2399. [PMID: 37641409 DOI: 10.1113/jp284409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
The majority of bacteria live and evolve in surface biofilms. Both growth in biofilms and horizontal transfer of DNA are regulated by quorum-sensing pheromone signals. The common regulation of bacterial surface growth and DNA transfers illustrates how physiology contributes to bacterial evolution.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
50
|
Miftode IL, Vâță A, Miftode RȘ, Parângă T, Luca MC, Manciuc C, Țimpău AS, Radu V, Roșu MF, Stămăteanu LO, Leca D, Anton-Păduraru DT, Miftode EG. The Impact of Urinary Catheterization on the Antibiotic Susceptibility of ESBL-Producing Enterobacterales: A Challenging Duo. Antibiotics (Basel) 2024; 13:462. [PMID: 38786190 PMCID: PMC11117663 DOI: 10.3390/antibiotics13050462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION Antimicrobial resistance (AMR) is currently a growing concern among healthcare providers, underscoring the importance of describing the regional susceptibility profile for common microorganisms that are associated with urinary tract infections (UTIs). This knowledge serves as the foundation for proper empirical therapeutic recommendations tailored to local susceptibility patterns. RESULTS We found a high prevalence of ESBL-producing strains (36.9%), with Escherichia coli and Klebsiella spp. being the most prevalent isolated bacteria. Among the catheterized patients, Klebsiella spp. emerged as the primary etiology, with a significant correlation between catheterization and Proteus spp. (p = 0.02) and Providencia stuartii (p < 0.0001). We observed significant correlations between urinary catheterization and older age (68.9 ± 13.7 years vs. 64.2 ± 18.1 years in non-catheterized patients, p = 0.026) and with the presence of an isolate with extensive drug resistance (p < 0.0001) or even pandrug resistance (p < 0.0001). Susceptibility rates significantly decreased for almost all the tested antibiotics during the study period. Notably, susceptibility was markedly lower among catheterized patients, with the most pronounced differences observed for carbapenems (59.6% versus 83.4%, p < 0.0001) and aminoglycosides (37.1% versus 46.9%, p = 0.0001). MATERIALS AND METHODS We conducted a retrospective study analyzing the susceptibility profiles of 724 extended-spectrum beta-lactamases (ESBL)-producing Enterobacterales isolated from urine cultures. Our focus was on highlighting susceptibility profiles among isolates associated with urinary catheterization and assessing the shifts in the susceptibility rates over time. CONCLUSIONS The constant rise in AMR rates among Enterobacterales presents significant challenges in treating severe infections, particularly among urinary catheterized patients. This trend leaves clinicians with limited or no effective treatment options. Consequently, the development and implementation of personalized treatment protocols are imperative to ensure efficient empirical therapies.
Collapse
Affiliation(s)
- Ionela-Larisa Miftode
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.-L.M.); (A.V.); (T.P.); (M.C.L.); (C.M.); (L.O.S.); (D.L.); (E.G.M.)
- St. Parascheva Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania;
| | - Andrei Vâță
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.-L.M.); (A.V.); (T.P.); (M.C.L.); (C.M.); (L.O.S.); (D.L.); (E.G.M.)
- St. Parascheva Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania;
| | - Radu-Ștefan Miftode
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania;
| | - Tudorița Parângă
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.-L.M.); (A.V.); (T.P.); (M.C.L.); (C.M.); (L.O.S.); (D.L.); (E.G.M.)
- St. Parascheva Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania;
| | - Mihaela Cătălina Luca
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.-L.M.); (A.V.); (T.P.); (M.C.L.); (C.M.); (L.O.S.); (D.L.); (E.G.M.)
- St. Parascheva Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania;
| | - Carmen Manciuc
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.-L.M.); (A.V.); (T.P.); (M.C.L.); (C.M.); (L.O.S.); (D.L.); (E.G.M.)
- St. Parascheva Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania;
| | - Amalia Stefana Țimpău
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania;
| | - Viorel Radu
- Department of Urology, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
| | - Manuel Florin Roșu
- St. Parascheva Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania;
- Department of Intensive Care Unit, Infectious Diseases Clinical Hospital, 700115 Iasi, Romania
| | - Lidia Oana Stămăteanu
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.-L.M.); (A.V.); (T.P.); (M.C.L.); (C.M.); (L.O.S.); (D.L.); (E.G.M.)
- St. Parascheva Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania;
| | - Daniela Leca
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.-L.M.); (A.V.); (T.P.); (M.C.L.); (C.M.); (L.O.S.); (D.L.); (E.G.M.)
- St. Parascheva Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania;
| | - Dana Teodora Anton-Păduraru
- Department of Mother and Child Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania;
| | - Egidia Gabriela Miftode
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.-L.M.); (A.V.); (T.P.); (M.C.L.); (C.M.); (L.O.S.); (D.L.); (E.G.M.)
- St. Parascheva Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania;
| |
Collapse
|