1
|
Zhanel GG, Mansour C, Mikolayanko S, Lawrence CK, Zelenitsky S, Ramirez D, Schweizer F, Bay D, Adam H, Lagacé-Wiens P, Walkty A, Irfan N, Clark N, Nicolau D, Tascini C, Karlowsky JA. Cefepime-Taniborbactam: A Novel Cephalosporin/β-Lactamase Inhibitor Combination. Drugs 2024; 84:1219-1250. [PMID: 39214942 DOI: 10.1007/s40265-024-02082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Taniborbactam (formerly known as VNRX-5133) is a novel bicyclic boronate β-lactamase inhibitor of serine β-lactamases (SBLs) [Ambler classes A, C, and D] and metallo-β-lactamases (MBLs) [Ambler class B], including NDM and VIM, but not IMP. Cefepime-taniborbactam is active in vitro against most isolates of carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant Pseudomonas aeruginosa (CRPA), including both carbapenemase-producing and carbapenemase-non-producing CRE and CRPA, as well as against multidrug-resistant (MDR), ceftazidime-avibactam-resistant, meropenem-vaborbactam-resistant, and ceftolozane-tazobactam-resistant Enterobacterales and P. aeruginosa. The addition of taniborbactam to cefepime resulted in a > 64-fold reduction in MIC90 compared with cefepime alone for a 2018-2021 global collection of > 13,000 clinical isolates of Enterobacterales. In the same study, against > 4600 P. aeruginosa, a fourfold MIC reduction was observed with cefepime-taniborbactam, compared with cefepime alone. Whole genome sequencing studies have shown that resistance towards cefepime-taniborbactam in Enterobacterales arises due to the presence of multiple resistance mechanisms, often in concert, including production of IMP, PBP3 alterations, permeability (porin) defects, and upregulation of efflux pumps. In P. aeruginosa, elevated cefepime-taniborbactam MICs are also associated with the presence of multiple, concurrent mechanisms, most frequently IMP, PBP3 mutations, and upregulation of efflux pumps, as well as AmpC (PDC) overexpression. The pharmacokinetics of taniborbactam are dose proportional, follow a linear model, and do not appear to be affected when combined with cefepime. Taniborbactam's approximate volume of distribution (Vd) at steady state is 20 L and the approximate elimination half-life (t½) is 2.3 h, which are similar to cefepime. Furthermore, like cefepime, taniborbactam is primarily cleared renally, and clearance corresponds with renal function. Pharmacodynamic studies (in vitro and in vivo) have reported that cefepime-taniborbactam has bactericidal activity against various β-lactamase-producing Gram-negative bacilli that are not susceptible to cefepime alone. It has been reported that antimicrobial activity best correlated with taniborbactam exposure (area under the curve). A phase III clinical trial showed that cefepime-taniborbactam (2 g/0.5 g administered as an intravenous infusion over 2 h) was superior to meropenem for the treatment of complicated urinary tract infection (cUTI), including acute pyelonephritis, caused by Enterobacterales species and P. aeruginosa while demonstrating similar safety compared with meropenem. The safety and tolerability of taniborbactam and cefepime-taniborbactam has been reported in one pharmacokinetic trial, and in two pharmacokinetic trials and one phase III clinical trial, respectively. Cefepime-taniborbactam appears to be well tolerated in both healthy subjects and patients. Headache and gastrointestinal upset are the most common drug-related adverse effects associated with cefepime-taniborbactam use. Cefepime-taniborbactam will likely have a role in the treatment of infections proven or suspected to be caused by MDR Gram-negative bacteria, including Enterobacterales and P. aeruginosa. In particular, it may be useful in the treatment of infections caused by isolates that harbor an MBL (NDM, VIM) enzyme, although further clinical data are needed. Additional safety and efficacy studies may support indications for cefepime-taniborbactam beyond cUTI.
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 502 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| | - Celine Mansour
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Stacey Mikolayanko
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Courtney K Lawrence
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sheryl Zelenitsky
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Danyel Ramirez
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Frank Schweizer
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 502 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Denice Bay
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 502 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Heather Adam
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 502 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
- Clinical Microbiology, Diagnostic Services, Shared Health, Winnipeg, MB, Canada
| | - Philippe Lagacé-Wiens
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 502 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
- Clinical Microbiology, Diagnostic Services, Shared Health, Winnipeg, MB, Canada
| | - Andrew Walkty
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 502 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
- Clinical Microbiology, Diagnostic Services, Shared Health, Winnipeg, MB, Canada
| | - Neal Irfan
- Department of Pharmacy, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Nina Clark
- Division of Infectious Diseases, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - David Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Carlo Tascini
- First Division of Infectious Diseases, Cotugno Hospital, Naples, Italy
| | - James A Karlowsky
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 502 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
- Clinical Microbiology, Diagnostic Services, Shared Health, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Almyroudi MP, Chang A, Andrianopoulos I, Papathanakos G, Mehta R, Paramythiotou E, Koulenti D. Novel Antibiotics for Gram-Negative Nosocomial Pneumonia. Antibiotics (Basel) 2024; 13:629. [PMID: 39061311 PMCID: PMC11273951 DOI: 10.3390/antibiotics13070629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Nosocomial pneumonia, including hospital-acquired pneumonia and ventilator-associated pneumonia, is the leading cause of death related to hospital-acquired infections among critically ill patients. A growing proportion of these cases are attributed to multi-drug-resistant (MDR-) Gram-negative bacteria (GNB). MDR-GNB pneumonia often leads to delayed appropriate treatment, prolonged hospital stays, and increased morbidity and mortality. This issue is compounded by the increased toxicity profiles of the conventional antibiotics required to treat MDR-GNB infections. In recent years, several novel antibiotics have been licensed for the treatment of GNB nosocomial pneumonia. These novel antibiotics are promising therapeutic options for treatment of nosocomial pneumonia by MDR pathogens with certain mechanisms of resistance. Still, antibiotic resistance remains an evolving global crisis, and resistance to novel antibiotics has started emerging, making their judicious use crucial to prolong their shelf-life. This article presents an up-to-date review of these novel antibiotics and their current role in the antimicrobial armamentarium. We critically present data for the pharmacokinetics/pharmacodynamics, the in vitro spectrum of antimicrobial activity and resistance, and in vivo data for their clinical and microbiological efficacy in trials. Where possible, available data are summarized specifically in patients with nosocomial pneumonia, as this cohort may exhibit 'critical illness' physiology that affects drug efficacy.
Collapse
Affiliation(s)
- Maria Panagiota Almyroudi
- Emergency Department, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Aina Chang
- Department of Critical Care Medicine, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
- Department of Haematology, King’s College London, London SE5 9RS, UK
| | - Ioannis Andrianopoulos
- Department of Critical Care, University Hospital of Ioannina, University of Ioannina, 45110 Ioannina, Greece
| | - Georgios Papathanakos
- Department of Critical Care, University Hospital of Ioannina, University of Ioannina, 45110 Ioannina, Greece
| | - Reena Mehta
- Department of Critical Care Medicine, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
- Pharmacy Department, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Kings College London, London SE5 9RS, UK
| | | | - Despoina Koulenti
- Department of Critical Care Medicine, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
- Antibiotic Optimisation Group, UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia
| |
Collapse
|
3
|
Giacobbe DR, Di Pilato V, Vena A, Marchese A, Bassetti M. Interpreting the results of rapid molecular diagnostic tests for carbapenem-resistant Enterobacterales infection: current clinical perspective while waiting for further evidence. Expert Rev Mol Diagn 2024; 24:583-590. [PMID: 39054637 DOI: 10.1080/14737159.2024.2383851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Carbapenem-resistant Enterobacterales (CRE) causing severe infections in humans have represented an important challenge for clinicians worldwide during the past two decades. AREAS COVERED Novel β-lactams and β-lactam/β-lactamase inhibitor combinations have led to a shift in the first-line approach to the treatment of severe CRE infections from polymyxin-based regimens to treatment with less toxic agents. This new scenario offers the opportunity to apply rapid molecular diagnostic tests for CRE infection to identify different types of carbapenemases. Herein, the authors provide an overview of this subject and follow it with their expert perspectives. EXPERT OPINION When considering studies actually measuring the clinical impact of rapid molecular tests in real-life scenarios, high certainty evidence from randomized controlled trials is still limited and not focused on CRE infections. Nonetheless, it is indisputable that rapid molecular tests have been shown to impact early therapeutic choices (in terms of both escalation and de-escalation) when used in real-life settings, thus issues in the clinical interpretation of their results are already relevant. Overall, increased expertise is required for the appropriate interpretation of rapid molecular tests for personalized antibiotic selection by understanding their strengths and limitations.
Collapse
Affiliation(s)
- Daniele Roberto Giacobbe
- Infectious Diseases Unit, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Antonio Vena
- Infectious Diseases Unit, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Anna Marchese
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- UO Microbiologia, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Matteo Bassetti
- Infectious Diseases Unit, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
4
|
Yeary J, Hacker L, Liang SY. Managing Antimicrobial Resistance in the Emergency Department. Emerg Med Clin North Am 2024; 42:461-483. [PMID: 38641399 DOI: 10.1016/j.emc.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
(Basic awareness and understanding of antimicrobial resistance and prevailing mechanisms can aid emergency physicians in providing appropriate care to patients with infections due to a multidrug-resistant organism (MDRO). Empiric treatment of MDRO infections should be approached with caution and guided by the most likely pathogens based on differential diagnosis, severity of the illness, suspected source of infection, patient-specific factors, and local antibiotic susceptibility patterns. Newer broad-spectrum antibiotics should be reserved for critically ill patients where there is a high likelihood of infection with an MDRO.).
Collapse
Affiliation(s)
- Julianne Yeary
- Department of Pharmacy, Barnes Jewish Hospital, 1 Barnes Jewish Place, St Louis, MO 63110, USA.
| | - Larissa Hacker
- Department of Pharmacy, UW Health, 600 Highland Avenue, Madison, WI 53792, USA
| | - Stephen Y Liang
- Department of Emergency Medicine and Division of Infectious Diseases, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Mendes Pedro D, Paulo SE, Santos CM, Fonseca AB, Melo Cristino J, Pereira ÁA, Caneiras C. Extensively drug-resistant Pseudomonas aeruginosa: clinical features and treatment with ceftazidime/avibactam and ceftolozane/tazobactam in a tertiary care university hospital center in Portugal - A cross-sectional and retrospective observational study. Front Microbiol 2024; 15:1347521. [PMID: 38414772 PMCID: PMC10896734 DOI: 10.3389/fmicb.2024.1347521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024] Open
Abstract
Introduction Extensively drug-resistant Pseudomonas aeruginosa (XDR-PA) is a growing concern due to its increasing incidence, limited therapeutic options, limited data on the optimal treatment, and high mortality rates. The study aimed to characterize the population, the outcome and the microbiological characteristics of XDR-PA identified in a Portuguese university hospital center. Methods All XDR-PA isolates between January 2019 and December 2021 were identified. XDR-PA was defined as resistance to piperacillin-tazobactam, third and fourth generation cephalosporins, carbapenems, aminoglycosides and fluoroquinolones. A retrospective analysis of the medical records was performed. Results One hundred seventy-eight individual episodes among 130 patients with XDR-PA detection were identified. The most common sources of infection were respiratory (32%) and urinary tracts (30%), although skin and soft tissue infections (18%) and primary bacteremia (14%) were also prevalent. Colonization was admitted in 64 cases. Several patients had risk factors for complicated infections, most notably immunosuppression, structural lung abnormalities, major surgery, hemodialysis or foreign intravascular or urinary devices. XDR-PA identification was more frequent in male patients with an average age of 64.3 ± 17.5 years. One non-susceptibility to colistin was reported. Only 12.4% were susceptible to aztreonam. Ceftazidime-avibactam (CZA) was susceptible in 71.5% of the tested isolates. Ceftolozane-tazobactam (C/T) was susceptible in 77.5% of the tested isolates. Antibiotic regimens with XDR-PA coverage were reserved for patients with declared infection, except to cystic fibrosis. The most frequently administered antibiotics were colistin (41 cases), CZA (39 cases), and C/T (16 cases). When combination therapy was used, CZA plus colistin was preferred. The global mortality rate among infected patients was 35.1%, significantly higher in those with hematologic malignancy (50.0%, p < 0.05), followed by the ones with bacteremia (44.4%, p < 0.05) and those medicated with colistin (39.0%, p < 0.05), especially the ones with respiratory infections (60.0%). Among patients treated with CZA or C/T, the mortality rate seemed to be lower. Discussion XDR-PA infections can be severe and difficult to treat, with a high mortality rate. Even though colistin seems to be a viable option, it is likely less safe and efficient than CZA and C/T. To the best of the authors' knowledge, this is the first description of the clinical infection characteristics and treatment of XDR-PA in Portugal.
Collapse
Affiliation(s)
- Diogo Mendes Pedro
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
- Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Laboratório de Microbiologia na Saúde Ambiental, Laboratório Associado TERRA, Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio Eduardo Paulo
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
- Unidade Local do Programa de Prevenção e Controlo de Infeções e das Resistências aos Antimicrobianos, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
| | - Carla Mimoso Santos
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
- Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Unidade Local do Programa de Prevenção e Controlo de Infeções e das Resistências aos Antimicrobianos, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
| | - Ana Bruschy Fonseca
- Serviço de Patologia Clínica, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
| | - José Melo Cristino
- Serviço de Patologia Clínica, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
- Instituto de Microbiologia, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Álvaro Ayres Pereira
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
- Unidade Local do Programa de Prevenção e Controlo de Infeções e das Resistências aos Antimicrobianos, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
| | - Cátia Caneiras
- Laboratório de Microbiologia na Saúde Ambiental, Laboratório Associado TERRA, Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, Monte da Caparica, Portugal
- Instituto de Medicina Preventiva e Saúde Pública, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Markovska R, Stankova P, Stoeva T, Keuleyan E, Mihova K, Boyanova L. In Vitro Antimicrobial Activity of Five Newly Approved Antibiotics against Carbapenemase-Producing Enterobacteria-A Pilot Study in Bulgaria. Antibiotics (Basel) 2024; 13:81. [PMID: 38247640 PMCID: PMC10812743 DOI: 10.3390/antibiotics13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
To solve the problem with pan-drug resistant and extensively drug-resistant Gram-negative microbes, newly approved drugs such as ceftazidime/avibactam, cefiderocol, plazomicin, meropenem/vaborbactam, and eravacycline have been introduced in practice. The aim of the present study was to collect carbapenemase-producing clinical Enterobacterales isolates, to characterize their carbapenemase genes and clonal relatedness, and to detect their susceptibility to commonly used antimicrobials and the above-mentioned newly approved antibiotics. Sixty-four carbapenemase producers were collected in a period of one year from four Bulgarian hospitals, mainly including Klebsiella pneumoniae (89% of the isolates) and also single Proteus mirabilis, Providencia stuartii and Citrobacter freundii isolates. The main genotype was blaNDM-1 (in 61%), followed by blaKPC-2 (23%), blaVIM-1 (7.8%) and blaOXA-48 (7.8%). Many isolates showed the presence of ESBL (blaCTX-M-15/-3 in 76.6%) and AmpC (blaCMY-4 in 37.5% or blaCMY-99 in 7.8% of isolates). The most common MLST type was K. pneumoniae ST11 (57.8%), followed by ST340 (12.5%), ST258 (6.3%) and ST101 (6.3%). The isolates were highly resistant to standard-group antibiotics, except they were susceptible to tigecycline (83.1%), colistin (79.7%), fosfomycin (32.8%), and aminoglycosides (20.3-35.9%). Among the newly approved compounds, plazomicin (90.6%) and eravacycline (76.3%) showed the best activity. Susceptibility to ceftazidime/avibactam and meropenem/vaborbactam was 34.4% and 27.6%, respectively. For cefiderocol, a large discrepancy was observed between the percentages of susceptible isolates according to EUCAST susceptibility breakpoints (37.5%) and those of CLSI (71.8%), detected by the disk diffusion method. This study is the first report to show patterns of susceptibility to five newly approved antibiotics among molecularly characterized isolates in Bulgaria. The data may contribute to both the improvement of treatment of individual patients and the choice of infection control strategy and antibiotic policy.
Collapse
Affiliation(s)
- Rumyana Markovska
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| | - Petya Stankova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| | - Temenuga Stoeva
- Department of Microbiology and Virology, University Multiprofile Hospital for Active Treatment (UMHAT) ”Saint Marina”, Medical University of Varna, 9002 Varna, Bulgaria;
| | - Emma Keuleyan
- Department of Clinical Microbiology, Medical Institute-Ministry of the Interior, 1606 Sofia, Bulgaria;
| | - Kalina Mihova
- Molecular Medicine Center, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Lyudmila Boyanova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| |
Collapse
|
7
|
Nau R, Seele J, Eiffert H. New Antibiotics for the Treatment of Nosocomial Central Nervous System Infections. Antibiotics (Basel) 2024; 13:58. [PMID: 38247617 PMCID: PMC10812395 DOI: 10.3390/antibiotics13010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Nosocomial central nervous system (CNS) infections with carbapenem- and colistin-resistant Gram-negative and vancomycin-resistant Gram-positive bacteria are an increasing therapeutic challenge. Here, we review pharmacokinetic and pharmacodynamic data and clinical experiences with new antibiotics administered intravenously for the treatment of CNS infections by multi-resistant bacteria. Cefiderocol, a new siderophore extended-spectrum cephalosporin, pharmacokinetically behaves similar to established cephalosporins and at high doses will probably be a valuable addition in our therapeutic armamentarium for CNS infections. The new glycopeptides dalbavancin, telavancin, and oritavancin are highly bound to plasma proteins. Although effective in animal models of meningitis, it is unlikely that they reach effective cerebrospinal fluid (CSF) concentrations after intravenous administration alone. The β-lactam/β-lactamase inhibitor combinations have the principal problem that both compounds must achieve adequate CSF concentrations. In the commercially available combinations, the dose of the β-lactamase inhibitor tends to be too low to achieve adequate CSF concentrations. The oxazolidinone tedizolid has a broader spectrum but a less suitable pharmacokinetic profile than linezolid. The halogenated tetracycline eravacycline does not reach CSF concentrations sufficient to treat colistin-resistant Gram-negative bacteria with usual intravenous dosing. Generally, treatment of CNS infections should be intravenous, whenever possible, to avoid adverse effects of intraventricular therapy (IVT). An additional IVT can overcome the limited penetration of many new antibiotics into CSF. It should be considered for patients in which the CNS infection responds poorly to systemic antimicrobial therapy alone.
Collapse
Affiliation(s)
- Roland Nau
- Department of Neuropathology, University Medicine Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
- Department of Geriatrics, Protestant Hospital Göttingen-Weende, 37075 Göttingen, Germany
| | - Jana Seele
- Department of Neuropathology, University Medicine Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
- Department of Geriatrics, Protestant Hospital Göttingen-Weende, 37075 Göttingen, Germany
| | - Helmut Eiffert
- Department of Neuropathology, University Medicine Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
- Amedes MVZ for Laboratory Medicine, Medical Microbiology and Infectiology, 37077 Göttingen, Germany
| |
Collapse
|
8
|
Di Pilato V, Codda G, Niccolai C, Willison E, Wong JLC, Coppo E, Frankel G, Marchese A, Rossolini GM. Functional features of KPC-109, a novel 270-loop KPC-3 mutant mediating resistance to avibactam-based β-lactamase inhibitor combinations and cefiderocol. Int J Antimicrob Agents 2024; 63:107030. [PMID: 37931849 DOI: 10.1016/j.ijantimicag.2023.107030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/02/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVES To investigate a ceftazidime/avibactam (CZA)-resistant Klebsiella pneumoniae (NE368), isolated from a patient exposed to CZA, expressing a novel K. pneumoniae carbapenemase (KPC)-3 variant (KPC-109). METHODS Antimicrobial susceptibility testing was performed by reference broth microdilution. Whole-genome sequencing (WGS) analysis of NE368 was performed combining a short- and long-reads approach (Illumina and Oxford Nanopore Technologies). Functional characterization of KPC-109 was performed to investigate the impact of KPC-109 production on the β-lactam resistance phenotype of various Escherichia coli and Klebsiella pneumoniae strains, including derivatives of K. pneumoniae with OmpK35 and OmpK36 porin alterations. Horizontal transfer of the KPC-109-encoding plasmid was investigated by conjugation and transformation experiments. RESULTS K. pneumoniae NE368 was isolated from a patient after repeated CZA exposure, and showed resistance to CZA, fluoroquinolones, piperacillin/tazobactam, expanded-spectrum cephalosporins, amikacin, carbapenems and cefiderocol. WGS revealed the presence of a large chimeric plasmid of original structure (pKPN-NE368), encoding a novel 270-loop mutated KPC-3 variant (KPC-109; ins_270_KYNKDD). KPC-109 production mediated resistance/decreased susceptibility to avibactam-based combinations (with ceftazidime, cefepime and aztreonam) and cefiderocol, with a trade-off on carbapenem resistance. However, in the presence of porin alterations commonly encountered in high-risk clonal lineages of K. pneumoniae, KPC-109 was also able to confer clinical-level resistance to carbapenems. Resistance of NE368 to cefiderocol was likely contributed by KPC-109 production acting in concert with a mutated EnvZ sensor kinase. The KPC-109-encoding plasmid did not appear to be conjugative. CONCLUSIONS These findings expand current knowledge about the diversity of emerging KPC enzyme variants with 270-loop alterations that can be encountered in the clinical setting.
Collapse
Affiliation(s)
- Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.
| | - Giulia Codda
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Claudia Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Edward Willison
- Microbiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Joshua L C Wong
- Department of Life Sciences, Imperial College London, London, UK
| | - Erika Coppo
- Microbiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gad Frankel
- Department of Life Sciences, Imperial College London, London, UK
| | - Anna Marchese
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy; Microbiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| |
Collapse
|
9
|
Emeraud C, Bernabeu S, Dortet L. In Vitro Susceptibility of Aztreonam-Vaborbactam, Aztreonam-Relebactam and Aztreonam-Avibactam Associations against Metallo-β-Lactamase-Producing Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:1493. [PMID: 37887194 PMCID: PMC10604182 DOI: 10.3390/antibiotics12101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Despite the availability of new options (ceftazidime-avibactam, imipenem-relebactam, meropenem-vaborbactam and cefiderocol), it is still very difficult to treat infections caused by metallo-β-lactamase (MBLs)-producers resistant to aztreonam. The in vitro efficacy of aztreonam in association with avibactam, vaborbactam or relebactam was evaluated on a collection of MBL-producing Enterobacterales, MBL-producing P. aeruginosa and highly drug-resistant S. maltophilia. METHODS A total of fifty-two non-duplicate MBL-producing Enterobacterales, five MBL-producing P. aeruginosa and five multidrug-resistant S. maltophila isolates were used in this study. The minimum inhibitory concentrations (MICs) of aztreonam, meropenem-vaborbactam and imipenem-relebactam were determined by Etest® (bioMérieux, La Balme-les-Grottes) according to EUCAST recommendations. For aztreonam-avibactam, aztreonam-vaborbactam and aztreonam-relebactam associations, the MICs were determined using Etest® on Mueller-Hinton (MH) agar supplemented with 8 mg/L of avibactam, 8 mg/L of vaborbactam and 4 mg/L of relebactam. The MICs were interpreted according to EUCAST guidelines. RESULTS The susceptibility rates of aztreonam-avibactam, aztreonam-vaborbactam and aztreonam-relebactam with a standard exposure of aztreonam (1g × 3, IV) were 84.6% (44/52), 55.8% and 34.6% for Enterobacterales and 0% for all combinations for P. aeruginosa and S. maltophila. The susceptibility rates of aztreonam-avibactam, aztreonam-vaborbactam and aztreonam-relebactam with a high exposure of aztreonam (2g × 4, IV) were 92.3%, 78.9% and 57.7% for Enterobacterales, 75%, 60% and 60% for P. aeruginosa and 100%, 100% and 40% for S. maltophila. CONCLUSIONS As previously demonstrated for an aztreonam/ceftazidime-avibactam combination, aztreonam plus imipenem-relebactam and aztreonam plus meropenem-vaborbactam might be useful options, but with potentially lower efficiency, to treat infections caused by aztreonam-non-susceptible MBL-producing Gram-negative strains.
Collapse
Affiliation(s)
- Cécile Emeraud
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique—Hôpitaux de Paris, 94270 Le Kremlin-Bicêtre, France; (C.E.); (S.B.)
- INSERM UMR 1184, RESIST Unit, Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin-Bicêtre, France
| | - Sandrine Bernabeu
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique—Hôpitaux de Paris, 94270 Le Kremlin-Bicêtre, France; (C.E.); (S.B.)
- INSERM UMR 1184, RESIST Unit, Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin-Bicêtre, France
| | - Laurent Dortet
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique—Hôpitaux de Paris, 94270 Le Kremlin-Bicêtre, France; (C.E.); (S.B.)
- INSERM UMR 1184, RESIST Unit, Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
10
|
Andrianopoulos I, Maniatopoulou T, Lagos N, Kazakos N, Papathanasiou A, Papathanakos G, Koulenti D, Kittas C, Koulouras V. Acinetobacter baumannii Bloodstream Infections in the COVID-19 Era: A Comparative Analysis between COVID-19 and Non-COVID-19 Critically Ill Patients. Microorganisms 2023; 11:1811. [PMID: 37512983 PMCID: PMC10383443 DOI: 10.3390/microorganisms11071811] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The coronavirus disease (COVID-19) pandemic increased the incidence of severe infections caused by multidrug-resistant (MDR) pathogens among critically ill patients, such as Acinetobacter baumannii (AB), whose bloodstream infections (BSIs) have been associated with significant mortality. Whether there is any difference in outcome between COVID-19 and non-COVID-19 patients with AB BSI still remains unknown. We conducted a retrospective study comparing clinical characteristics and outcomes of COVID-19 versus non-COVID-19 critically ill patients with AB BSI. Overall, 133 patients with AB BSI (102 COVID-19, 31 non-COVID-19) were studied. The 28-day mortality rate was high and did not differ significantly (69.6% COVID-19 vs. 61.3% non-COVID-19, p = 0.275). Patients with septic shock had a higher mortality rate irrespective of their status with the majority of deaths occurring during the first 7 days. COVID-19 patients were more likely to have ventilator-associated pneumonia (VAP) as the source of BSI (55.8% vs. 22.3%, respectively, p = 0.0001) and were more likely to develop acute respiratory distress syndrome (ARDS) (78.4% vs. 48.4%, respectively, p = 0.001), sepsis (86.3% vs. 67.7%, respectively, p = 0.03), and septic shock (88.3% vs. 58.1%, respectively, p = 0.007) compared to the non-COVID-19 patient group. In conclusion, COVID-19 patients with A. baumannii BSI have a high rate of mortality and more often develop septic shock, while VAP is the main origin of their BSI.
Collapse
Affiliation(s)
| | | | - Nikolaos Lagos
- Intensive Care Unit, University Hospital of Ioannina, 45500 Ioannina, Greece
| | - Nikolaos Kazakos
- Intensive Care Unit, University Hospital of Ioannina, 45500 Ioannina, Greece
| | | | | | - Despoina Koulenti
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
- Second Critical Care Department, Attikon University Hospital, Rimini Street, 12462 Athens, Greece
| | - Christos Kittas
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece
| | - Vasilios Koulouras
- Intensive Care Unit, University Hospital of Ioannina, 45500 Ioannina, Greece
| |
Collapse
|