1
|
Yang Y, Zhou Y, Li X, He Y, Bai Y, Wang B, Chen S, Liu C. Transcriptome profiling reveals transcriptional regulation of Protegrin-1 on immune defense and development in porcine granulosa cells. Gene 2024; 890:147819. [PMID: 37741593 DOI: 10.1016/j.gene.2023.147819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Protegrin-1 (PG1) is an antimicrobial peptide (AMP) that has garnered increasing attention due to its potent immune defense activity. Our previous studies demonstrated the ability of PG1 to enhance proliferation and inhibit apoptosis of porcine granulosa cells (GCs) under oxidative stress. GCs play a crucial role in ovary follicular development. However, the specific function and underlying mechanisms of AMP in follicular development still need further elucidation. The present study aimed to comprehensively explore the biological effects of PG1 on porcine GCs using transcriptome profiling by RNA sequencing technology. Isolated GCs were incubated with or without PG1 for 24 h and transcriptome-wide analysis was exerted to identify differentially expressed genes (DEGs). The results of expression analysis revealed 1,235 DEGs, including 242 up-regulated genes and 993 down-regulated genes (|log2 (FoldChange)| > 1; adjusted P-value < 0.05). The expression levels of 7 selected DEGs were validated by quantitative reverse transcription-polymerase chain reaction (RT-qPCR) analysis, which was consistent with the RNA-sequencing data. Among the significant DEGs, several genes associated with GC function and ovarian follicle development were identified, such as estrogen receptor 2 (ESR2), growth and differentiation factor 6 (GDF6), cell division cycle 20 homolog (CDC20), Notch3, ephrin and Eph receptor system, Egl nine homolog 3 (EGLN3), and BCL2 like 14 (BCL2L14). Gene Ontology (GO) analysis revealed that the top three significant GO terms were inflammatory response, defense response, and granulocyte migration. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis presented that DEGs were mainly enriched in the immune system, infectious disease, signaling molecules and interaction, and immune disease. Furthermore, Ingenuity Pathway Analysis (IPA) predicted that the top activated pathway was Liver X Receptor (LXR)/ Retinoid X Receptor (RXR) Activation which is known to be associated with female reproduction. Predicted protein-protein interactions (PPIs) analysis identified complement C3 (C3) as the top node with the highest degree of network connection and revealed that DEGs in the sub-networks were involved in cytokine-cytokine receptor interaction, neuroactive ligand-receptor interaction, chemokine signaling pathway, and metabolic process. In conclusion, this study expanded the understanding of the effects of PG1 on porcine GCs at the transcriptomic level and provided a theoretical basis for further investigation into the role of PG1 in immune defense and mammalian ovarian follicular development.
Collapse
Affiliation(s)
- Yiqing Yang
- Department of Life Science and Engineering, Foshan University, China
| | - Yuanyuan Zhou
- Department of Life Science and Engineering, Foshan University, China
| | - Xuan Li
- Department of Life Science and Engineering, Foshan University, China
| | - Yinlin He
- Department of Life Science and Engineering, Foshan University, China
| | - Yinshan Bai
- Department of Life Science and Engineering, Foshan University, China
| | - Bingyun Wang
- Department of Life Science and Engineering, Foshan University, China
| | - Shengfeng Chen
- Department of Life Science and Engineering, Foshan University, China
| | - Canying Liu
- Department of Life Science and Engineering, Foshan University, China.
| |
Collapse
|
2
|
Fux AC, Casonato Melo C, Michelini S, Swartzwelter BJ, Neusch A, Italiani P, Himly M. Heterogeneity of Lipopolysaccharide as Source of Variability in Bioassays and LPS-Binding Proteins as Remedy. Int J Mol Sci 2023; 24:ijms24098395. [PMID: 37176105 PMCID: PMC10179214 DOI: 10.3390/ijms24098395] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Lipopolysaccharide (LPS), also referred to as endotoxin, is the major component of Gram-negative bacteria's outer cell wall. It is one of the main types of pathogen-associated molecular patterns (PAMPs) that are known to elicit severe immune reactions in the event of a pathogen trespassing the epithelial barrier and reaching the bloodstream. Associated symptoms include fever and septic shock, which in severe cases, might even lead to death. Thus, the detection of LPS in medical devices and injectable pharmaceuticals is of utmost importance. However, the term LPS does not describe one single molecule but a diverse class of molecules sharing one common feature: their characteristic chemical structure. Each bacterial species has its own pool of LPS molecules varying in their chemical composition and enabling the aggregation into different supramolecular structures upon release from the bacterial cell wall. As this heterogeneity has consequences for bioassays, we aim to examine the great variability of LPS molecules and their potential to form various supramolecular structures. Furthermore, we describe current LPS quantification methods and the LPS-dependent inflammatory pathway and show how LPS heterogeneity can affect them. With the intent of overcoming these challenges and moving towards a universal approach for targeting LPS, we review current studies concerning LPS-specific binders. Finally, we give perspectives for LPS research and the use of LPS-binding molecules.
Collapse
Affiliation(s)
- Alexandra C Fux
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Cristiane Casonato Melo
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Sara Michelini
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Benjamin J Swartzwelter
- Department of Microbiology, Immunology, and Pathology, 1601 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Andreas Neusch
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Naples, Italy
| | - Martin Himly
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
| |
Collapse
|
3
|
Moreno-Morales J, Guardiola S, Ballesté-Delpierre C, Giralt E, Vila J. A new synthetic protegrin as a promising peptide with antibacterial activity against MDR Gram-negative pathogens. J Antimicrob Chemother 2022; 77:3077-3085. [PMID: 35972429 DOI: 10.1093/jac/dkac284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/30/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Protegrins are a family of natural peptides from the innate immune system of vertebrates, with broad-spectrum antimicrobial activity. However, the toxicity and haemolysis of protegrin-1 (PG-1) at low concentrations renders it useless for therapeutic application. We rationally designed PLP-3, a novel synthetic PG-1-like peptide, comprising key activity features of protegrins in a constrained bicyclic structure. Our main objective was to investigate PLP-3's activity against MDR strains of Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae and to analyse its haemolysis and cytotoxicity. METHODS Peptide synthesis was performed via solid phase and intramolecular ligation in solution, and the correct folding of the peptide was verified by circular dichroism. Antimicrobial activity was performed through broth microdilution. The test panel contained 45 bacterial strains belonging to A. baumannii, P. aeruginosa and K. pneumoniae (15 strains per species) comprising colistin-resistant and MDR strains. Cytotoxicity was assessed by XTT cell viability assays using HeLa and A549 cells and haemolysis of human erythrocytes. RESULTS PLP-3 was successfully synthesized, and its antiparallel β-sheet conformation was confirmed. Antimicrobial activity screening showed MIC90 values of 2 mg/L for A. baumannii, 16 mg/L for K. pneumoniae and 8 mg/L for P. aeruginosa. The haemolysis IC50 value was 48.53 mg/L. Cytotoxicity against human HeLa and A549 cells showed values of ca. 200 mg/L in both cell lines resulting in a 100-fold selectivity window for bacterial over human cells. CONCLUSIONS PLP-3 has potent antimicrobial activity, especially against A. baumannii, while maintaining low haemolysis and toxicity against human cell lines at antimicrobial concentrations. These characteristics make PLP-3 a promising peptide with an interesting therapeutic window.
Collapse
Affiliation(s)
| | | | - Clara Ballesté-Delpierre
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, Madrid, Spain
| | - Ernest Giralt
- IRB Barcelona, Barcelona, Spain.,Department of Inorganic and Organic Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vila
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, Madrid, Spain.,Department of Clinical Microbiology, Hospital Clinic, Barcelona, Spain
| |
Collapse
|
4
|
Ganesan R, Dughbaj MA, Ramirez L, Beringer S, Aboye TL, Shekhtman A, Beringer PM, Camarero JA. Engineered Cyclotides with Potent Broad in Vitro and in Vivo Antimicrobial Activity. Chemistry 2021; 27:12702-12708. [PMID: 34159664 PMCID: PMC8410672 DOI: 10.1002/chem.202101438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 12/18/2022]
Abstract
The search for novel antimicrobial agents to combat microbial pathogens is intensifying in response to the rapid development of drug resistance to current antibiotic therapeutics. Respiratory failure and septicemia are the leading causes of mortality among hospitalized patients. Here, the development of a novel engineered cyclotide with effective broad-spectrum antibacterial activity against several ESKAPE bacterial strains and clinical isolates is reported. The most active antibacterial cyclotide was extremely stable in serum, showed little hemolytic activity, and provided protection in vivo in a murine model of P. aeruginosa peritonitis. These results highlight the potential of the cyclotide scaffold for the development of novel antimicrobial therapeutic leads for the treatment of bacteremia.
Collapse
Affiliation(s)
- Rajasekaran Ganesan
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Mansour A. Dughbaj
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Lisa Ramirez
- Department of Chemistry, State University of New York, Albany, NY 12222, USA
| | - Steven Beringer
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Teshome L. Aboye
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Alexander Shekhtman
- Department of Chemistry, State University of New York, Albany, NY 12222, USA
| | - Paul M. Beringer
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90033, USA
| |
Collapse
|
5
|
Sancho S, Briz M, Yeste M, Bonet S, Bussalleu E. Effects of the antimicrobial peptide protegrine 1 on sperm viability and bacterial load of boar seminal doses. Reprod Domest Anim 2018; 52 Suppl 4:69-71. [PMID: 29052326 DOI: 10.1111/rda.13061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The presence of bacteria adversely affects boar sperm quality of seminal doses intended for artificial insemination. Currently, the most common measure to prevent bacteriospermia is the addition of antibiotics in semen extenders; however, mounting evidence shows that microbial resistance exists. A promising alternative to replace antibiotics are antimicrobial peptides. In this study, the effects of the antimicrobial peptide protegrine 1 (PG1) on the sperm viability and bacterial load of boar seminal doses were evaluated. Three different concentrations of PG1 (2.5, 25 and 100 μg/ml) were tested over a storing period of 10 days at 17°C. Sperm viability was analysed by fluorescence microscopy (SYBR14/propidium iodide), and bacterial load was assessed by plating 100 μl of each sample in Luria-Bertani medium and incubated at 37°C for 72 hr under aerobic conditions. Protegrine 1 was effective in controlling the bacterial load in all the assessed concentrations (p < .05), reaching the lowest values at the highest concentrations of the antimicrobial peptide. Nevertheless, sperm viability was significantly (p < .05) reduced by all tested concentrations of this peptide, the most cytotoxic effects being observed at the highest PG1 concentrations. Despite these results, the use of PG1 as an alternative to antibiotics cannot be totally discarded, as further studies using the truncated form of this peptide are needed.
Collapse
Affiliation(s)
- S Sancho
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, INTEA, University of Girona, Catalonia, Spain
| | - M Briz
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, INTEA, University of Girona, Catalonia, Spain
| | - M Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, INTEA, University of Girona, Catalonia, Spain
| | - S Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, INTEA, University of Girona, Catalonia, Spain
| | - E Bussalleu
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, INTEA, University of Girona, Catalonia, Spain
| |
Collapse
|
6
|
Immuno-Stimulatory Peptides as a Potential Adjunct Therapy against Intra-Macrophagic Pathogens. Molecules 2017; 22:molecules22081297. [PMID: 28777342 PMCID: PMC6152048 DOI: 10.3390/molecules22081297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 01/09/2023] Open
Abstract
The treatment of infectious diseases is increasingly prone to failure due to the rapid spread of antibiotic-resistant pathogens. Antimicrobial peptides (AMPs) are natural components of the innate immune system of most living organisms. Their capacity to kill microbes through multiple mechanisms makes the development of bacterial resistance less likely. Additionally, AMPs have important immunomodulatory effects, which critically contribute to their role in host defense. In this paper, we review the most recent evidence for the importance of AMPs in host defense against intracellular pathogens, particularly intra-macrophagic pathogens, such as mycobacteria. Cathelicidins and defensins are reviewed in more detail, due to the abundance of studies on these molecules. The cell-intrinsic as well as the systemic immune-related effects of the different AMPs are discussed. In the face of the strong potential emerging from the reviewed studies, the prospects for future use of AMPs as part of the therapeutic armamentarium against infectious diseases are presented.
Collapse
|