1
|
Rothe P, Wamp S, Rosemeyer L, Rismondo J, Doellinger J, Gründling A, Halbedel S. Cytosolic Factors Controlling PASTA Kinase-Dependent ReoM Phosphorylation. Mol Microbiol 2024; 122:514-533. [PMID: 39245639 DOI: 10.1111/mmi.15307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Bacteria adapt the biosynthesis of their envelopes to specific growth conditions and prevailing stress factors. Peptidoglycan (PG) is the major component of the cell wall in Gram-positive bacteria, where PASTA kinases play a central role in PG biosynthesis regulation. Despite their importance for growth, cell division and antibiotic resistance, the mechanisms of PASTA kinase activation are not fully understood. ReoM, a recently discovered cytosolic phosphoprotein, is one of the main substrates of the PASTA kinase PrkA in the Gram-positive human pathogen Listeria monocytogenes. Depending on its phosphorylation, ReoM controls proteolytic stability of MurA, the first enzyme in the PG biosynthesis pathway. The late cell division protein GpsB has been implicated in PASTA kinase signalling. Consistently, we show that L. monocytogenes prkA and gpsB mutants phenocopied each other. Analysis of in vivo ReoM phosphorylation confirmed GpsB as an activator of PrkA leading to the description of structural features in GpsB that are important for kinase activation. We further show that ReoM phosphorylation is growth phase-dependent and that this kinetic is reliant on the protein phosphatase PrpC. ReoM phosphorylation was inhibited in mutants with defects in MurA degradation, leading to the discovery that MurA overexpression prevented ReoM phosphorylation. Overexpressed MurA must be able to bind its substrates and interact with ReoM to exert this effect, but the extracellular PASTA domains of PrkA or MurJ flippases were not required. Our results indicate that intracellular signals control ReoM phosphorylation and extend current models describing the mechanisms of PASTA kinase activation.
Collapse
Affiliation(s)
- Patricia Rothe
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Sabrina Wamp
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Lisa Rosemeyer
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Jeanine Rismondo
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Joerg Doellinger
- ZBS6 - Proteomics and Spectroscopy, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Angelika Gründling
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
2
|
Bai Y, Zhou Y, Chang R, Hu X, Zhou Y, Chen J, Zhang Z, Yao J. Transcription profiles and phenotype reveal global response of Staphylococcus aureus exposed to ultrasound and ultraviolet stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169146. [PMID: 38061661 DOI: 10.1016/j.scitotenv.2023.169146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/05/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Ultrasound and ultraviolet light have good inactivation performance against pathogens in sewage. In this study, the inactivation mechanisms of 60 kHz ultrasound and ultraviolet radiation against Staphylococcus aureus (S. aureus) were studied from the perspectives of cell phenotype and transcriptome for the first time. The results showed that both ultrasound and ultraviolet treatments had adverse impacts on the cellular morphology of S. aureus to varying degrees at cellular level. The transcriptomic analysis revealed that there were 225 and 1077 differentially expressed genes (DEGs) in the ultrasound and ultraviolet treatments, respectively. The result revealed that both ultrasound and ultraviolet could interfere with the expression of the genes involved in ABC transporters, amino acid and fatty acid metabolism to influence the membrane permeability. Besides the membrane permeability, ultraviolet also could disturb the ATP synthesis, DNA replication and cell division through restraining the expression of several genes related to carbohydrate metabolism, peptidoglycan synthesis, DNA-binding/repair protein synthesis. Compared with the single inactivation pathway of ultrasound, ultraviolet inactivation of S. aureus is multi-target and multi-pathway. We believe that the bactericidal mechanisms of ultrasound and ultraviolet radiation presented by this study could provide theoretical guidance for the synergistic inactivation of pathogens in sewage by ultrasound and ultraviolet radiation in the future.
Collapse
Affiliation(s)
- Yun Bai
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yuanhang Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Ruiting Chang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xueli Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yingying Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jiabo Chen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Juanjuan Yao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
3
|
Orta AK, Riera N, Li YE, Tanaka S, Yun HG, Klaic L, Clemons WM. The mechanism of the phage-encoded protein antibiotic from ΦX174. Science 2023; 381:eadg9091. [PMID: 37440661 DOI: 10.1126/science.adg9091] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
The historically important phage ΦX174 kills its host bacteria by encoding a 91-residue protein antibiotic called protein E. Using single-particle electron cryo-microscopy, we demonstrate that protein E bridges two bacterial proteins to form the transmembrane YES complex [MraY, protein E, sensitivity to lysis D (SlyD)]. Protein E inhibits peptidoglycan biosynthesis by obstructing the MraY active site leading to loss of lipid I production. We experimentally validate this result for two different viral species, providing a clear model for bacterial lysis and unifying previous experimental data. Additionally, we characterize the Escherichia coli MraY structure-revealing features of this essential enzyme-and the structure of the chaperone SlyD bound to a protein. Our structures provide insights into the mechanism of phage-mediated lysis and for structure-based design of phage therapeutics.
Collapse
Affiliation(s)
- Anna K Orta
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nadia Riera
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yancheng E Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shiho Tanaka
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hyun Gi Yun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lada Klaic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
4
|
Pseudomonas aeruginosa Alters Peptidoglycan Composition under Nutrient Conditions Resembling Cystic Fibrosis Lung Infections. mSystems 2022; 7:e0015622. [PMID: 35545925 PMCID: PMC9239049 DOI: 10.1128/msystems.00156-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epidemic strains of Pseudomonas aeruginosa are highly virulent opportunistic pathogens with increased transmissibility and enhanced antimicrobial resistance. Understanding the cellular mechanisms behind this heightened virulence and resistance is critical. Peptidoglycan (PG) is an integral component of P. aeruginosa cells that is essential to its survival and a target for antimicrobials. Here, we examined the global PG composition of two P. aeruginosa epidemic strains, LESB58 and LESlike1, and compared them to the common laboratory strains PAO1 and PA14. We also examined changes in PG composition when the strains were cultured under nutrient conditions that resembled cystic fibrosis lung infections. We identified 448 unique muropeptides and provide the first evidence for stem peptides modified with O-methylation, meso-diaminopimelic acid (mDAP) deamination, and novel substitutions of mDAP residues within P. aeruginosa PG. Our results also present the first evidence for both d,l- and l,d-endopeptidase activity on the PG sacculus of a Gram-negative organism. The PG composition of the epidemic strains varied significantly when grown under conditions resembling cystic fibrosis (CF) lung infections, showing increases in O-methylated stem peptides and decreases in l,d-endopeptidase activity as well as an increased abundance of de-N-acetylated sugars and l,d-transpeptidase activity, which are related to bacterial virulence and antibiotic resistance, respectively. We also identified strain-specific changes where LESlike1 increased the addition of unique amino acids to the terminus of the stem peptide and LESB58 increased amidase activity. Overall, this study demonstrates that P. aeruginosa PG composition is primarily influenced by nutrient conditions that mimic the CF lung; however, inherent strain-to-strain differences also exist. IMPORTANCE Using peptidoglycomics to examine the global composition of the peptidoglycan (PG) allows insights into the enzymatic activity that functions on this important biopolymer. Changes within the PG structure have implications for numerous physiological processes, including virulence and antimicrobial resistance. The identification of highly unique PG modifications illustrates the complexity of this biopolymer in Pseudomonas aeruginosa. Analyzing the PG composition of clinical P. aeruginosa epidemic strains provides insights into the increased virulence and antimicrobial resistance of these difficult-to-eradicate infections.
Collapse
|
5
|
Oluwole AO, Corey RA, Brown CM, Hernández-Rocamora VM, Stansfeld PJ, Vollmer W, Bolla JR, Robinson CV. Peptidoglycan biosynthesis is driven by lipid transfer along enzyme-substrate affinity gradients. Nat Commun 2022; 13:2278. [PMID: 35477938 PMCID: PMC9046198 DOI: 10.1038/s41467-022-29836-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 03/31/2022] [Indexed: 01/02/2023] Open
Abstract
Maintenance of bacterial cell shape and resistance to osmotic stress by the peptidoglycan (PG) renders PG biosynthetic enzymes and precursors attractive targets for combating bacterial infections. Here, by applying native mass spectrometry, we elucidate the effects of lipid substrates on the PG membrane enzymes MraY, MurG, and MurJ. We show that dimerization of MraY is coupled with binding of the carrier lipid substrate undecaprenyl phosphate (C55-P). Further, we demonstrate the use of native MS for biosynthetic reaction monitoring and find that the passage of substrates and products is controlled by the relative binding affinities of the different membrane enzymes. Overall, we provide a molecular view of how PG membrane enzymes convey lipid precursors through favourable binding events and highlight possible opportunities for intervention. Bacterial cell wall enzymes and their precursors are critical targets for antibiotic development. Here, the authors investigate several biosynthetic enzymes with their substrates and show that the passage of substrates and products in the pathway is controlled by their relative binding affinities.
Collapse
Affiliation(s)
- Abraham O Oluwole
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.,The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford, OX1 3QU, UK
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Chelsea M Brown
- School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
| | - Victor M Hernández-Rocamora
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.,School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Jani R Bolla
- The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford, OX1 3QU, UK. .,Department of Plant Sciences/Biology, University of Oxford, Oxford, OX1 3RB, UK.
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK. .,The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
6
|
Kumar S, Mollo A, Kahne D, Ruiz N. The Bacterial Cell Wall: From Lipid II Flipping to Polymerization. Chem Rev 2022; 122:8884-8910. [PMID: 35274942 PMCID: PMC9098691 DOI: 10.1021/acs.chemrev.1c00773] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The peptidoglycan (PG) cell wall is an extra-cytoplasmic glycopeptide polymeric structure that protects bacteria from osmotic lysis and determines cellular shape. Since the cell wall surrounds the cytoplasmic membrane, bacteria must add new material to the PG matrix during cell elongation and division. The lipid-linked precursor for PG biogenesis, Lipid II, is synthesized in the inner leaflet of the cytoplasmic membrane and is subsequently translocated across the bilayer so that the PG building block can be polymerized and cross-linked by complex multiprotein machines. This review focuses on major discoveries that have significantly changed our understanding of PG biogenesis in the past decade. In particular, we highlight progress made toward understanding the translocation of Lipid II across the cytoplasmic membrane by the MurJ flippase, as well as the recent discovery of a novel class of PG polymerases, the SEDS (shape, elongation, division, and sporulation) glycosyltransferases RodA and FtsW. Since PG biogenesis is an effective target of antibiotics, these recent developments may lead to the discovery of much-needed new classes of antibiotics to fight bacterial resistance.
Collapse
Affiliation(s)
- Sujeet Kumar
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aurelio Mollo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Bai J, Wu Y, Bu Q, Zhong K, Gao H. Comparative study on antibacterial mechanism of shikimic acid and quinic acid against Staphylococcus aureus through transcriptomic and metabolomic approaches. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Structural, molecular docking computational studies and in-vitro evidence for antibacterial activity of mixed ligand complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130481] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Subedi BP, Martin WF, Carbone V, Duin EC, Cronin B, Sauter J, Schofield LR, Sutherland-Smith AJ, Ronimus RS. Archaeal pseudomurein and bacterial murein cell wall biosynthesis share a common evolutionary ancestry. FEMS MICROBES 2021; 2:xtab012. [PMID: 37334239 PMCID: PMC10117817 DOI: 10.1093/femsmc/xtab012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/19/2021] [Indexed: 08/29/2023] Open
Abstract
Bacteria near-universally contain a cell wall sacculus of murein (peptidoglycan), the synthesis of which has been intensively studied for over 50 years. In striking contrast, archaeal species possess a variety of other cell wall types, none of them closely resembling murein. Interestingly though, one type of archaeal cell wall termed pseudomurein found in the methanogen orders Methanobacteriales and Methanopyrales is a structural analogue of murein in that it contains a glycan backbone that is cross-linked by a L-amino acid peptide. Here, we present taxonomic distribution, gene cluster and phylogenetic analyses that confirm orthologues of 13 bacterial murein biosynthesis enzymes in pseudomurein-containing methanogens, most of which are distantly related to their bacterial counterparts. We also present the first structure of an archaeal pseudomurein peptide ligase from Methanothermus fervidus DSM1088 (Mfer336) to a resolution of 2.5 Å and show that it possesses a similar overall tertiary three domain structure to bacterial MurC and MurD type murein peptide ligases. Taken together the data strongly indicate that murein and pseudomurein biosynthetic pathways share a common evolutionary history.
Collapse
Affiliation(s)
- Bishwa P Subedi
- AgResearch Ltd. Grasslands, Tennent Drive, Palmerston North 4442, New Zealand
- Massey University, Tennent Drive, Palmerston North 4442, New Zealand
| | - William F Martin
- Institute for Molecular Evolution, Heinrich-Heine University, Düsseldorf Universitätsstraße 1, D-40225, Germany
| | - Vincenzo Carbone
- AgResearch Ltd. Grasslands, Tennent Drive, Palmerston North 4442, New Zealand
| | - Eduardus C Duin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | - Bryan Cronin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | - Julia Sauter
- AgResearch Ltd. Grasslands, Tennent Drive, Palmerston North 4442, New Zealand
| | - Linley R Schofield
- AgResearch Ltd. Grasslands, Tennent Drive, Palmerston North 4442, New Zealand
| | | | - Ron S Ronimus
- AgResearch Ltd. Grasslands, Tennent Drive, Palmerston North 4442, New Zealand
| |
Collapse
|
10
|
Jackson M, Stevens CM, Zhang L, Zgurskaya HI, Niederweis M. Transporters Involved in the Biogenesis and Functionalization of the Mycobacterial Cell Envelope. Chem Rev 2021; 121:5124-5157. [PMID: 33170669 PMCID: PMC8107195 DOI: 10.1021/acs.chemrev.0c00869] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The biology of mycobacteria is dominated by a complex cell envelope of unique composition and structure and of exceptionally low permeability. This cell envelope is the basis of many of the pathogenic features of mycobacteria and the site of susceptibility and resistance to many antibiotics and host defense mechanisms. This review is focused on the transporters that assemble and functionalize this complex structure. It highlights both the progress and the limits of our understanding of how (lipo)polysaccharides, (glyco)lipids, and other bacterial secretion products are translocated across the different layers of the cell envelope to their final extra-cytoplasmic location. It further describes some of the unique strategies evolved by mycobacteria to import nutrients and other products through this highly impermeable barrier.
Collapse
Affiliation(s)
- Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Casey M. Stevens
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| | - Helen I. Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Arega AM, Mahapatra RK. Glycoconjugates, hypothetical proteins, and post-translational modification: Importance in host-pathogen interaction and antitubercular intervention development. Chem Biol Drug Des 2021; 98:30-48. [PMID: 33838076 DOI: 10.1111/cbdd.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022]
Abstract
With the emergence of multidrug-resistant bacteria, insufficiency of the established chemotherapy, and the existing vaccine BCG, tuberculosis (TB) subsists as the chief cause of death in different parts of the world. Thus, identification of novel target proteins is urgently required to develop more effective TB interventions. However, the novel vaccine and drug target knowledge based on the essentiality of the pathogen cell envelope components such as glycoconjugates, glycans, and the peptidoglycan layer of the lipid-rich capsule are limited. Furthermore, most of the genes encoding proteins are characterized as hypothetical and functionally unknown. Correspondingly, some researchers have shown that the lipid and sugar components of the envelope glycoconjugates are largely in charge of TB pathogenesis and encounter many drugs and vaccines. Therefore, in this review we provide an insight into a comprehensive study concerning the importance of cell envelope glycoconjugates and hypothetical proteins, the impact of post-translational modification, and the bioinformatics-based implications for better antitubercular intervention development.
Collapse
Affiliation(s)
- Aregitu Mekuriaw Arega
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India.,National Veterinary Institute, Debre Zeit, Ethiopia
| | | |
Collapse
|
12
|
Shin J, Choe D, Ransegnola B, Hong H, Onyekwere I, Cross T, Shi Q, Cho B, Westblade LF, Brito IL, Dörr T. A multifaceted cellular damage repair and prevention pathway promotes high-level tolerance to β-lactam antibiotics. EMBO Rep 2021; 22:e51790. [PMID: 33463026 PMCID: PMC7857431 DOI: 10.15252/embr.202051790] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
Bactericidal antibiotics are powerful agents due to their ability to convert essential bacterial functions into lethal processes. However, many important bacterial pathogens are remarkably tolerant against bactericidal antibiotics due to inducible damage repair responses. The cell wall damage response two-component system VxrAB of the gastrointestinal pathogen Vibrio cholerae promotes high-level β-lactam tolerance and controls a gene network encoding highly diverse functions, including negative control over multiple iron uptake systems. How this system contributes to tolerance is poorly understood. Here, we show that β-lactam antibiotics cause an increase in intracellular free iron levels and collateral oxidative damage, which is exacerbated in the ∆vxrAB mutant. Mutating major iron uptake systems dramatically increases ∆vxrAB tolerance to β-lactams. We propose that VxrAB reduces antibiotic-induced toxic iron and concomitant metabolic perturbations by downregulating iron uptake transporters and show that iron sequestration enhances tolerance against β-lactam therapy in a mouse model of cholera infection. Our results suggest that a microorganism's ability to counteract diverse antibiotic-induced stresses promotes high-level antibiotic tolerance and highlights the complex secondary responses elicited by antibiotics.
Collapse
Affiliation(s)
- Jung‐Ho Shin
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Donghui Choe
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonKorea
- KI for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeonKorea
| | - Brett Ransegnola
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Hye‐Rim Hong
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Ikenna Onyekwere
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Trevor Cross
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Qiaojuan Shi
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNYUSA
| | - Byung‐Kwan Cho
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonKorea
- KI for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeonKorea
- Intelligent Synthetic Biology CenterDaejeonKorea
| | - Lars F Westblade
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNYUSA
- Division of Infectious DiseasesDepartment of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Ilana L Brito
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNYUSA
| | - Tobias Dörr
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
- Cornell Institute of Host‐Microbe Interactions and DiseaseCornell UniversityIthacaNYUSA
| |
Collapse
|
13
|
Baker BR, Ives CM, Bray A, Caffrey M, Cochrane SA. Undecaprenol kinase: Function, mechanism and substrate specificity of a potential antibiotic target. Eur J Med Chem 2020; 210:113062. [PMID: 33310291 DOI: 10.1016/j.ejmech.2020.113062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The bifunctional undecaprenol kinase/phosphatase (UdpK) is a small, prokaryotic, integral membrane kinase, homologous with Escherichia coli diacylglycerol kinase and expressed by the dgkA gene. In Gram-positive bacteria, UdpK is involved in the homeostasis of the bacterial undecaprenoid pool, where it converts undecaprenol to undecaprenyl phosphate (C55P) and also catalyses the reverse process. C55P is the universal lipid carrier and critical to numerous glycopolymer and glycoprotein biosynthetic pathways in bacteria. DgkA gene expression has been linked to facilitating bacterial growth and survival in response to environmental stressors, as well being implicated as a resistance mechanism to the topical antibiotic bacitracin, by providing an additional route to C55P. Therefore, identification of UdpK inhibitors could lead to novel antibiotic treatments. A combination of homology modelling and mutagenesis experiments on UdpK have been used to identify residues that may be involved in kinase/phosphatase activity. In this review, we will summarise recent work on the mechanism and substrate specificity of UdpK.
Collapse
Affiliation(s)
- Brad R Baker
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Callum M Ives
- School of Medicine and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, D02 R590, Ireland; Division of Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Ashley Bray
- School of Medicine and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, D02 R590, Ireland
| | - Martin Caffrey
- School of Medicine and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, D02 R590, Ireland.
| | - Stephen A Cochrane
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK.
| |
Collapse
|
14
|
Assembly of Peptidoglycan Fragments-A Synthetic Challenge. Pharmaceuticals (Basel) 2020; 13:ph13110392. [PMID: 33203094 PMCID: PMC7696421 DOI: 10.3390/ph13110392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022] Open
Abstract
Peptidoglycan (PGN) is a major constituent of most bacterial cell walls that is recognized as a primary target of the innate immune system. The availability of pure PGN molecules has become key to different biological studies. This review aims to (1) provide an overview of PGN biosynthesis, focusing on the main biosynthetic intermediates; (2) focus on the challenges for chemical synthesis posed by the unique and complex structure of PGN; and (3) cover the synthetic routes of PGN fragments developed to date. The key difficulties in the synthesis of PGN molecules mainly involve stereoselective glycosylation involving NAG derivatives. The complex synthesis of the carbohydrate backbone commonly involves multistep sequences of chemical reactions to install the lactyl moiety at the O-3 position of NAG derivatives and to control enantioselective glycosylation. Recent advances are presented and synthetic routes are described according to the main strategy used: (i) based on the availability of starting materials such as glucosamine derivatives; (ii) based on a particular orthogonal synthesis; and (iii) based on the use of other natural biopolymers as raw materials.
Collapse
|
15
|
Hira J, Uddin MJ, Haugland MM, Lentz CS. From Differential Stains to Next Generation Physiology: Chemical Probes to Visualize Bacterial Cell Structure and Physiology. Molecules 2020; 25:E4949. [PMID: 33114655 PMCID: PMC7663024 DOI: 10.3390/molecules25214949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Chemical probes have been instrumental in microbiology since its birth as a discipline in the 19th century when chemical dyes were used to visualize structural features of bacterial cells for the first time. In this review article we will illustrate the evolving design of chemical probes in modern chemical biology and their diverse applications in bacterial imaging and phenotypic analysis. We will introduce and discuss a variety of different probe types including fluorogenic substrates and activity-based probes that visualize metabolic and specific enzyme activities, metabolic labeling strategies to visualize structural features of bacterial cells, antibiotic-based probes as well as fluorescent conjugates to probe biomolecular uptake pathways.
Collapse
Affiliation(s)
- Jonathan Hira
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| | - Md. Jalal Uddin
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| | - Marius M. Haugland
- Department of Chemistry and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Christian S. Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| |
Collapse
|
16
|
Anderson EM, Sychantha D, Brewer D, Clarke AJ, Geddes-McAlister J, Khursigara CM. Peptidoglycomics reveals compositional changes in peptidoglycan between biofilm- and planktonic-derived Pseudomonas aeruginosa. J Biol Chem 2019; 295:504-516. [PMID: 31771981 DOI: 10.1074/jbc.ra119.010505] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Peptidoglycan (PG) is a critical component of the bacterial cell wall and is composed of a repeating β-1,4-linked disaccharide of N-acetylglucosamine and N-acetylmuramic acid appended with a highly conserved stem peptide. In Gram-negative bacteria, PG is assembled in the cytoplasm and exported into the periplasm where it undergoes considerable maturation, modification, or degradation depending on the growth phase or presence of environmental stressors. These modifications serve important functions in diverse processes, including PG turnover, cell elongation/division, and antibiotic resistance. Conventional methods for analyzing PG composition are complex and time-consuming. We present here a streamlined MS-based method that combines differential analysis with statistical 1D annotation approaches to quantitatively compare PGs produced in planktonic- and biofilm-cultured Pseudomonas aeruginosa We identified a core assembly of PG that is present in high abundance and that does not significantly differ between the two growth states. We also identified an adaptive PG assembly that is present in smaller amounts and fluctuates considerably between growth states in response to physiological changes. Biofilm-derived adaptive PG exhibited significant changes compared with planktonic-derived PG, including amino acid substitutions of the stem peptide and modifications that indicate changes in the activity of amidases, deacetylases, and lytic transglycosylases. The results of this work also provide first evidence of de-N-acetylated muropeptides from P. aeruginosa The method developed here offers a robust and reproducible workflow for accurately determining PG composition in samples that can be used to assess global PG fluctuations in response to changing growth conditions or external stimuli.
Collapse
Affiliation(s)
- Erin M Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada
| | - David Sychantha
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada
| | - Dyanne Brewer
- Mass Spectrometry Facility, University of Guelph, Ontario N1G 2W1, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada
| | - Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada; Mass Spectrometry Facility, University of Guelph, Ontario N1G 2W1, Canada.
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada; Mass Spectrometry Facility, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
17
|
Abstract
The chapter about the Gram-positive bacterial cell wall gives a brief historical background on the discovery of Gram-positive cell walls and their constituents and microscopic methods applied for studying the Gram-positive cell envelope. Followed by the description of the different chemical building blocks of peptidoglycan and the biosynthesis of the peptidoglycan layers and high turnover of peptidoglycan during bacterial growth. Lipoteichoic acids and wall teichoic acids are highlighted as major components of the cell wall. Characterization of capsules and the formation of extracellular vesicles by Gram-positive bacteria close the section on cell envelopes which have a high impact on bacterial pathogenesis. In addition, the specialized complex and unusual cell wall of mycobacteria is introduced thereafter. Next a short back view is given on the development of electron microscopic examinations for studying bacterial cell walls. Different electron microscopic techniques and methods applied to examine bacterial cell envelopes are discussed in the view that most of the illustrated methods should be available in a well-equipped life sciences orientated electron microscopic laboratory. In addition, newly developed and mostly well-established cryo-methods like high-pressure freezing and freeze-substitution (HPF-FS) and cryo-sections of hydrated vitrified bacteria (CEMOVIS, Cryo-electron microscopy of vitreous sections) are described. At last, modern cryo-methods like cryo-electron tomography (CET) and cryo-FIB-SEM milling (focus ion beam-scanning electron microscopy) are introduced which are available only in specialized institutions, but at present represent the best available methods and techniques to study Gram-positive cell walls under close-to-nature conditions in great detail and at high resolution.
Collapse
Affiliation(s)
- Manfred Rohde
- Helmholtz Centre for Infection Research, HZI, Central Facility for Microscopy, ZEIM, Braunschweig, Germany
| |
Collapse
|
18
|
Cardiolipin Alters Rhodobacter sphaeroides Cell Shape by Affecting Peptidoglycan Precursor Biosynthesis. mBio 2019; 10:mBio.02401-18. [PMID: 30782656 PMCID: PMC6381277 DOI: 10.1128/mbio.02401-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The phospholipid composition of the cell membrane influences the spatial and temporal biochemistry of cells. We studied molecular mechanisms connecting membrane composition to cell morphology in the model bacterium Rhodobacter sphaeroides. The peptidoglycan (PG) layer of the cell wall is a dominant component of cell mechanical properties; consequently, it has been an important antibiotic target. We found that the anionic phospholipid cardiolipin (CL) plays a role in determination of the shape of R. sphaeroides cells by affecting PG precursor biosynthesis. Removing CL in R. sphaeroides alters cell morphology and increases its sensitivity to antibiotics targeting proteins synthesizing PG. These studies provide a connection to spatial biochemical control in mitochondria, which contain an inner membrane with topological features in common with R. sphaeroides. Cardiolipin (CL) is an anionic phospholipid that plays an important role in regulating protein biochemistry in bacteria and mitochondria. Deleting the CL synthase gene (Δcls) in Rhodobacter sphaeroides depletes CL and decreases cell length by 20%. Using a chemical biology approach, we found that a CL deficiency does not impair the function of the cell wall elongasome in R. sphaeroides; instead, biosynthesis of the peptidoglycan (PG) precursor lipid II is decreased. Treating R. sphaeroides cells with fosfomycin and d-cycloserine inhibits lipid II biosynthesis and creates phenotypes in cell shape, PG composition, and spatial PG assembly that are strikingly similar to those seen with R. sphaeroides Δcls cells, suggesting that CL deficiency alters the elongation of R. sphaeroides cells by reducing lipid II biosynthesis. We found that MurG—a glycosyltransferase that performs the last step of lipid II biosynthesis—interacts with anionic phospholipids in native (i.e., R. sphaeroides) and artificial membranes. Lipid II production decreases 25% in R. sphaeroides Δcls cells compared to wild-type cells, and overexpression of MurG in R. sphaeroides Δcls cells restores their rod shape, indicating that CL deficiency decreases MurG activity and alters cell shape. The R. sphaeroides Δcls mutant is more sensitive than the wild-type strain to antibiotics targeting PG synthesis, including fosfomycin, d-cycloserine, S-(3,4-dichlorobenzyl)isothiourea (A22), mecillinam, and ampicillin, suggesting that CL biosynthesis may be a potential target for combination chemotherapies that block the bacterial cell wall.
Collapse
|
19
|
Teo ACK, Lee SC, Pollock NL, Stroud Z, Hall S, Thakker A, Pitt AR, Dafforn TR, Spickett CM, Roper DI. Analysis of SMALP co-extracted phospholipids shows distinct membrane environments for three classes of bacterial membrane protein. Sci Rep 2019; 9:1813. [PMID: 30755655 PMCID: PMC6372662 DOI: 10.1038/s41598-018-37962-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/05/2018] [Indexed: 11/24/2022] Open
Abstract
Biological characterisation of membrane proteins lags behind that of soluble proteins. This reflects issues with the traditional use of detergents for extraction, as the surrounding lipids are generally lost, with adverse structural and functional consequences. In contrast, styrene maleic acid (SMA) copolymers offer a detergent-free method for biological membrane solubilisation to produce SMA-lipid particles (SMALPs) containing membrane proteins together with their surrounding lipid environment. We report the development of a reverse-phase LC-MS/MS method for bacterial phospholipids and the first comparison of the profiles of SMALP co-extracted phospholipids from three exemplar bacterial membrane proteins with different topographies: FtsA (associated membrane protein), ZipA (single transmembrane helix), and PgpB (integral membrane protein). The data showed that while SMA treatment per se did not preferentially extract specific phospholipids from the membrane, SMALP-extracted ZipA showed an enrichment in phosphatidylethanolamines and depletion in cardiolipins compared to the bulk membrane lipid. Comparison of the phospholipid profiles of the 3 SMALP-extracted proteins revealed distinct lipid compositions for each protein: ZipA and PgpB were similar, but in FtsA samples longer chain phosphatidylglycerols and phosphatidylethanolamines were more abundant. This method offers novel information on the phospholipid interactions of these membrane proteins.
Collapse
Affiliation(s)
- Alvin C K Teo
- School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry, CV4 7AL, UK
| | - Sarah C Lee
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Naomi L Pollock
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zoe Stroud
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Stephen Hall
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Alpesh Thakker
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Timothy R Dafforn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - David I Roper
- School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
20
|
Pawar A, Jha P, Konwar C, Chaudhry U, Chopra M, Saluja D. Ethambutol targets the glutamate racemase of Mycobacterium tuberculosis—an enzyme involved in peptidoglycan biosynthesis. Appl Microbiol Biotechnol 2018; 103:843-851. [DOI: 10.1007/s00253-018-9518-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 12/11/2022]
|
21
|
Dik DA, Fisher JF, Mobashery S. Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance. Chem Rev 2018; 118:5952-5984. [PMID: 29847102 PMCID: PMC6855303 DOI: 10.1021/acs.chemrev.8b00277] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The importance of the cell wall to the viability of the bacterium is underscored by the breadth of antibiotic structures that act by blocking key enzymes that are tasked with cell-wall creation, preservation, and regulation. The interplay between cell-wall integrity, and the summoning forth of resistance mechanisms to deactivate cell-wall-targeting antibiotics, involves exquisite orchestration among cell-wall synthesis and remodeling and the detection of and response to the antibiotics through modulation of gene regulation by specific effectors. Given the profound importance of antibiotics to the practice of medicine, the assertion that understanding this interplay is among the most fundamentally important questions in bacterial physiology is credible. The enigmatic regulation of the expression of the AmpC β-lactamase, a clinically significant and highly regulated resistance response of certain Gram-negative bacteria to the β-lactam antibiotics, is the exemplar of this challenge. This review gives a current perspective to this compelling, and still not fully solved, 35-year enigma.
Collapse
Affiliation(s)
- David A. Dik
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jed F. Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
22
|
Antibiotic Effects on Methicillin-Resistant Staphylococcus aureus Cytoplasmic Peptidoglycan Intermediate Levels and Evidence for Potential Metabolite Level Regulatory Loops. Antimicrob Agents Chemother 2017; 61:AAC.02253-16. [PMID: 28320719 DOI: 10.1128/aac.02253-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/10/2017] [Indexed: 11/20/2022] Open
Abstract
Cytoplasmic peptidoglycan (PG) precursor levels were determined in methicillin-resistant Staphylococcus aureus (MRSA) after exposure to several cell wall-targeting antibiotics. Three experiments were performed: (i) exposure to 4× MIC levels (acute); (ii) exposure to sub-MIC levels (subacute); (iii) a time course experiment of the effect of vancomycin. In acute exposure experiments, fosfomycin increased UDP-GlcNAc, as expected, and resulted in substantially lower levels of total UDP-linked metabolite accumulation relative to other pathway inhibitors, indicating reduced entry into this pathway. Upstream inhibitors (fosfomycin, d-cycloserine, or d-boroalanine) reduced UDP-MurNAc-pentapeptide levels by more than fourfold. Alanine branch inhibitors (d-cycloserine and d-boroalanine) reduced d-Ala-d-Ala levels only modestly (up to 4-fold) but increased UDP-MurNAc-tripeptide levels up to 3,000-fold. Downstream pathway inhibitors (vancomycin, bacitracin, moenomycin, and oxacillin) increased UDP-MurNAc-pentapeptide levels up to 350-fold and UDP-MurNAc-l-Ala levels up to 80-fold, suggesting reduced MurD activity by downstream inhibitor action. Sub-MIC exposures demonstrated effects even at 1/8× MIC which strongly paralleled acute exposure changes. Time course data demonstrated that UDP-linked intermediate levels respond rapidly to vancomycin exposure, with several intermediates increasing three- to sixfold within minutes. UDP-linked intermediate level changes were also multiphasic, with some increasing, some decreasing, and some increasing and then decreasing. The total (summed) UDP-linked intermediate pool increased by 1,475 μM/min during the first 10 min after vancomycin exposure, providing a revised estimate of flux in this pathway during logarithmic growth. These observations outline the complexity of PG precursor response to antibiotic exposure in MRSA and indicate likely sites of regulation (entry and MurD).
Collapse
|
23
|
Lombard J. Early evolution of polyisoprenol biosynthesis and the origin of cell walls. PeerJ 2016; 4:e2626. [PMID: 27812422 PMCID: PMC5088576 DOI: 10.7717/peerj.2626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/27/2016] [Indexed: 11/30/2022] Open
Abstract
After being a matter of hot debate for years, the presence of lipid membranes in the last common ancestor of extant organisms (i.e., the cenancestor) now begins to be generally accepted. By contrast, cenancestral cell walls have attracted less attention, probably owing to the large diversity of cell walls that exist in the three domains of life. Many prokaryotic cell walls, however, are synthesized using glycosylation pathways with similar polyisoprenol lipid carriers and topology (i.e., orientation across the cell membranes). Here, we provide the first systematic phylogenomic report on the polyisoprenol biosynthesis pathways in the three domains of life. This study shows that, whereas the last steps of the polyisoprenol biosynthesis are unique to the respective domain of life of which they are characteristic, the enzymes required for basic unsaturated polyisoprenol synthesis can be traced back to the respective last common ancestor of each of the three domains of life. As a result, regardless of the topology of the tree of life that may be considered, the most parsimonious hypothesis is that these enzymes were inherited in modern lineages from the cenancestor. This observation supports the presence of an enzymatic mechanism to synthesize unsaturated polyisoprenols in the cenancestor and, since these molecules are notorious lipid carriers in glycosylation pathways involved in the synthesis of a wide diversity of prokaryotic cell walls, it provides the first indirect evidence of the existence of a hypothetical unknown cell wall synthesis mechanism in the cenancestor.
Collapse
Affiliation(s)
- Jonathan Lombard
- Biosciences, University of Exeter, Exeter, United Kingdom; National Evolutionary Synthesis Center, Durham, NC, United States of America
| |
Collapse
|
24
|
Tsui HCT, Zheng JJ, Magallon AN, Ryan JD, Yunck R, Rued BE, Bernhardt TG, Winkler ME. Suppression of a deletion mutation in the gene encoding essential PBP2b reveals a new lytic transglycosylase involved in peripheral peptidoglycan synthesis in Streptococcus pneumoniae D39. Mol Microbiol 2016; 100:1039-65. [PMID: 26933838 DOI: 10.1111/mmi.13366] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In ellipsoid-shaped ovococcus bacteria, such as the pathogen Streptococcus pneumoniae (pneumococcus), side-wall (peripheral) peptidoglycan (PG) synthesis emanates from midcells and is catalyzed by the essential class B penicillin-binding protein PBP2b transpeptidase (TP). We report that mutations that inactivate the pneumococcal YceG-domain protein, Spd_1346 (renamed MltG), remove the requirement for PBP2b. ΔmltG mutants in unencapsulated strains accumulate inactivation mutations of class A PBP1a, which possesses TP and transglycosylase (TG) activities. The 'synthetic viable' genetic relationship between Δpbp1a and ΔmltG mutations extends to essential ΔmreCD and ΔrodZ mutations that misregulate peripheral PG synthesis. Remarkably, the single MltG(Y488D) change suppresses the requirement for PBP2b, MreCD, RodZ and RodA. Structural modeling and comparisons, catalytic-site changes and an interspecies chimera indicate that pneumococcal MltG is the functional homologue of the recently reported MltG endo-lytic transglycosylase of Escherichia coli. Depletion of pneumococcal MltG or mltG(Y488D) increases sphericity of cells, and MltG localizes with peripheral PG synthesis proteins during division. Finally, growth of Δpbp1a ΔmltG or mltG(Y488D) mutants depends on induction of expression of the WalRK TCS regulon of PG hydrolases. These results fit a model in which MltG releases anchored PG glycan strands synthesized by PBP1a for crosslinking by a PBP2b:RodA complex in peripheral PG synthesis.
Collapse
Affiliation(s)
| | - Jiaqi J Zheng
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Ariel N Magallon
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - John D Ryan
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Rachel Yunck
- Department of Microbiology and Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Britta E Rued
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Thomas G Bernhardt
- Department of Microbiology and Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| |
Collapse
|