1
|
Kang X, Yue XR, Wang CX, Wang JR, Zhao JN, Yang ZP, Fu QK, Wu CS, Hu W, Li YZ, Yue XJ. Ribosome engineering of Myxococcus xanthus for enhancing the heterologous production of epothilones. Microb Cell Fact 2024; 23:346. [PMID: 39725983 DOI: 10.1186/s12934-024-02627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Ribosome engineering is a semi-empirical technique used to select antibiotic-resistant mutants that exhibit altered secondary metabolism. This method has been demonstrated to effectively select mutants with enhanced synthesis of natural products in many bacterial species, including actinomycetes. Myxobacteria are recognized as fascinating producers of natural active products. However, it remains uncertain whether this technique is similarly effective in myxobacteria, especially for the heterologous production of epothilones in Myxococcus xanthus. RESULTS Antibiotics that target the ribosome and RNA polymerase (RNAP) were evaluated for ribosome engineering of the epothilone-producing strain M. xanthus ZE9. The production of epothilone was dramatically altered in different resistant mutants. We screened the mutants resistant to neomycin and rifampicin and found that the yield of epothilones in the resistant mutant ZE9N-R22 was improved by sixfold compared to that of ZE9. Our findings indicate that the improved growth of the mutants, the upregulation of epothilone biosynthetic genes, and specific mutations identified through genome re-sequencing may collectively contribute to the yield improvement. Ultimately, the total titer of epothilones achieved in a 10 L bioreactor reached 93.4 mg/L. CONCLUSIONS Ribosome engineering is an efficient approach to obtain M. xanthus strains with enhanced production of epothilones through various interference mechanisms. Here, we discuss the potential mechanisms of the semi-empirical method.
Collapse
Affiliation(s)
- Xu Kang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
- Taishan College, Shandong University, Jinan, 250100, China
| | - Xiao-Ran Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Chen-Xi Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Jia-Rui Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Jun-Ning Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Zhao-Peng Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Qin-Ke Fu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Chang-Sheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
2
|
Su Z, Zhang Y, Yuan Z, Rao Y. Biosynthesis of Natural and Unnatural Perylenequinones for Drug Development. ChemMedChem 2024; 19:e202400295. [PMID: 38943237 DOI: 10.1002/cmdc.202400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/01/2024]
Abstract
A wide range of perylenequinones (PQs) with diverse structures and versatile bioactivities have long been isolated, positioning them as highly promising agents for photodynamic therapy (PDT). However, the lack of an efficient and cost-effective method to obtain these compounds and to introduce structural diversity and complexity currently hinders their further research and application. In this concept, we present a comprehensive overview of the advancements in the biosynthetic pathways of natural PQs based on their structural classification, and also summarize recent progress in the biosynthesis of natural PQs and derivatives. These pioneering efforts may pave the way for structure modification and large-scale bioproduction of natural and unnatural PQs through synthetic biology strategies to promote their drug development.
Collapse
Affiliation(s)
- Zengping Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
3
|
Rodríguez M, Cuervo L, Prado‐Alonso L, González‐Moreno MS, Olano C, Méndez C. The role of Streptomyces to achieve the United Nations sustainable development goals. Burning questions in searching for new compounds. Microb Biotechnol 2024; 17:e14541. [PMID: 39096299 PMCID: PMC11297445 DOI: 10.1111/1751-7915.14541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024] Open
Affiliation(s)
- Miriam Rodríguez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| | - Lorena Cuervo
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| | - Laura Prado‐Alonso
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| | - María Soledad González‐Moreno
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| |
Collapse
|
4
|
Liu Z, Li K, Li J, Zhuang Z, Guo L, Bai L. Characterization and functional evidence for Orf2 of Streptomyces sp. 139 as a novel dipeptidase E. Appl Microbiol Biotechnol 2024; 108:326. [PMID: 38717487 PMCID: PMC11078827 DOI: 10.1007/s00253-024-13161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
Aspartyl dipeptidase (dipeptidase E) can hydrolyze Asp-X dipeptides (where X is any amino acid), and the enzyme plays a key role in the degradation of peptides as nutrient sources. Dipeptidase E remains uncharacterized in Streptomyces. Orf2 from Streptomyces sp. 139 is located in the exopolysaccharide biosynthesis gene cluster, which may be a novel dipeptidase E with "S134-H170-D198" catalytic triad by sequence and structure comparison. Herein, recombinant Orf2 was expressed in E. coli and characterized dipeptidase E activity using the Asp-ρNA substrate. The optimal pH and temperature for Orf2 are 7.5 and 40 ℃; Vmax and Km of Orf2 are 0.0787 mM·min-1 and 1.709 mM, respectively. Orf2 exhibits significant degradation activities to Asp-Gly-Gly, Asp-Leu, Asp-His, and isoAsp-Leu and minimal activities to Asp-Pro and Asp-Ala. Orf2 contains a Ser-His-Asp catalytic triad characterized by point mutation. In addition, the Asp147 residue of Orf2 is also proven to be critical for the enzyme's activity through molecular docking and point mutation. Transcriptome analysis reveals the upregulation of genes associated with ribosomes, amino acid biosynthesis, and aminoacyl-tRNA biosynthesis in the orf2 mutant strain. Compared with the orf2 mutant strain and WT, the yield of crude polysaccharide does not change significantly. However, crude polysaccharides from the orf2 mutant strain exhibit a wider range of molecular weight distribution. The results indicate that the Orf2 links nutrient stress to secondary metabolism as a novel dipeptidase E. KEY POINTS: • A novel dipeptidase E with a Ser-His-Asp catalytic triad was characterized from Streptomyces sp. 139. • Orf2 was involved in peptide metabolism both in vitro and in vivo. • Orf2 linked nutrient stress to mycelia formation and secondary metabolism in Streptomyces.
Collapse
Affiliation(s)
- Zhe Liu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Kemeng Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jialin Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhuochen Zhuang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lianhong Guo
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Liping Bai
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
5
|
Zhang Y, Feng L, Hemu X, Tan NH, Wang Z. OSMAC Strategy: A promising way to explore microbial cyclic peptides. Eur J Med Chem 2024; 268:116175. [PMID: 38377824 DOI: 10.1016/j.ejmech.2024.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Microbial secondary metabolites are pivotal for the development of novel drugs. However, conventional culture techniques, have left a vast array of unexpressed biosynthetic gene clusters (BGCs) in microorganisms, hindering the discovery of metabolites with distinct structural features and diverse biological functions. To address this limitation, several innovative strategies have been emerged. The "One Strain Many Compounds" (OSMAC) strategy, which involves altering microbial culture conditions, has proven to be particularly effective in mining numerous novel secondary metabolites for the past few years. Among these, microbial cyclic peptides stand out. These peptides often comprise rare amino acids, unique chemical structures, and remarkable biological function. With the advancement of the OSMAC strategy, a plethora of new cyclic peptides have been identified from diverse microbial genera. This work reviews the progress in mining novel compounds using the OSMAC strategy and the applications of this strategy in discovering 284 microbial cyclic peptides from 63 endophytic strains, aiming to offer insights for the further explorations into novel active cyclic peptides.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xinya Hemu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ning-Hua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
6
|
de Lima Júnior AA, de Sousa EC, de Oliveira THB, de Santana RCF, da Silva SKR, Coelho LCBB. Genus Streptomyces: Recent advances for biotechnological purposes. Biotechnol Appl Biochem 2023; 70:1504-1517. [PMID: 36924211 DOI: 10.1002/bab.2455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/06/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
Actinomycetes are a distinct group of filamentous bacteria. The Streptomyces genus within this group has been extensively studied over the years, with substantial contributions to society and science. This genus is known for its antimicrobial production, as well as antitumor, biopesticide, and immunomodulatory properties. Therefore, the extraordinary plasticity of the Streptomyces genus has inspired new research techniques. The newest way of exploring Streptomyces has comprised the discovery of new natural metabolites and the application of emerging tools such as CRISPR technology in drug discovery. In this narrative review, we explore relevant published literature concerning the ongoing novelties of the Streptomyces genus.
Collapse
Affiliation(s)
- Apolonio Alves de Lima Júnior
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, S/N, Cidade Universitária, Recife, Pernambuco, Brazil
| | | | - Thales Henrique Barbosa de Oliveira
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, S/N, Cidade Universitária, Recife, Pernambuco, Brazil
| | | | | | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, S/N, Cidade Universitária, Recife, Pernambuco, Brazil
| |
Collapse
|
7
|
Cuervo L, Malmierca MG, García-Salcedo R, Méndez C, Salas JA, Olano C, Ceniceros A. Co-Expression of Transcriptional Regulators and Housekeeping Genes in Streptomyces spp.: A Strategy to Optimize Metabolite Production. Microorganisms 2023; 11:1585. [PMID: 37375086 DOI: 10.3390/microorganisms11061585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The search for novel bioactive compounds to overcome resistance to current therapeutics has become of utmost importance. Streptomyces spp. are one of the main sources of bioactive compounds currently used in medicine. In this work, five different global transcriptional regulators and five housekeeping genes, known to induce the activation or overproduction of secondary metabolites in Streptomyces coelicolor, were cloned in two separated constructs and expressed in 12 different strains of Streptomyces spp. from the in-house CS collection. These recombinant plasmids were also inserted into streptomycin and rifampicin resistant Streptomyces strains (mutations known to enhance secondary metabolism in Streptomyces). Different media with diverse carbon and nitrogen sources were selected to assess the strains' metabolite production. Cultures were then extracted with different organic solvents and analysed to search for changes in their production profiles. An overproduction of metabolites already known to be produced by the biosynthesis wild-type strains was observed such as germicidin by CS113, collismycins by CS149 and CS014, or colibrimycins by CS147. Additionally, the activation of some compounds such as alteramides in CS090a pSETxkBMRRH and CS065a pSETxkDCABA or inhibition of the biosynthesis of chromomycins in CS065a in pSETxkDCABA when grown in SM10 was demonstrated. Therefore, these genetic constructs are a relatively simple tool to manipulate Streptomyces metabolism and explore their wide secondary metabolites production potential.
Collapse
Affiliation(s)
- Lorena Cuervo
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A.), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Mónica G Malmierca
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A.), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Raúl García-Salcedo
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A.), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Carmen Méndez
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A.), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - José A Salas
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A.), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Carlos Olano
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A.), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Ana Ceniceros
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A.), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
8
|
Gasparek M, Steel H, Papachristodoulou A. Deciphering mechanisms of production of natural compounds using inducer-producer microbial consortia. Biotechnol Adv 2023; 64:108117. [PMID: 36813010 DOI: 10.1016/j.biotechadv.2023.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023]
Abstract
Living organisms produce a wide range of metabolites. Because of their potential antibacterial, antifungal, antiviral, or cytostatic properties, such natural molecules are of high interest to the pharmaceutical industry. In nature, these metabolites are often synthesized via secondary metabolic biosynthetic gene clusters that are silent under the typical culturing conditions. Among different techniques used to activate these silent gene clusters, co-culturing of "producer" species with specific "inducer" microbes is a particularly appealing approach due to its simplicity. Although several "inducer-producer" microbial consortia have been reported in the literature and hundreds of different secondary metabolites with attractive biopharmaceutical properties have been described as a result of co-cultivating inducer-producer consortia, less attention has been devoted to the understanding of the mechanisms and possible means of induction for production of secondary metabolites in co-cultures. This lack of understanding of fundamental biological functions and inter-species interactions significantly limits the diversity and yield of valuable compounds using biological engineering tools. In this review, we summarize and categorize the known physiological mechanisms of production of secondary metabolites in inducer-producer consortia, and then discuss approaches that could be exploited to optimize the discovery and production of secondary metabolites.
Collapse
Affiliation(s)
- Miroslav Gasparek
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom.
| | - Harrison Steel
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | | |
Collapse
|
9
|
Dolya B, Hryhorieva O, Sorochynska K, Lopatniuk M, Ostash I, Tseduliak VM, Sterndorff EB, Jørgensen TS, Gren T, Dacyuk Y, Weber T, Luzhetskyy A, Fedorenko V, Ostash B. Properties of Multidrug-Resistant Mutants Derived from Heterologous Expression Chassis Strain Streptomyces albidoflavus J1074. Microorganisms 2023; 11:1176. [PMID: 37317150 DOI: 10.3390/microorganisms11051176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/30/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
Streptomyces albidoflavus J1074 is a popular platform to discover novel natural products via the expression of heterologous biosynthetic gene clusters (BGCs). There is keen interest in improving the ability of this platform to overexpress BGCs and, consequently, enable the purification of specialized metabolites. Mutations within gene rpoB for the β-subunit of RNA polymerase are known to increase rifampicin resistance and augment the metabolic capabilities of streptomycetes. Yet, the effects of rpoB mutations on J1074 remained unstudied, and we decided to address this issue. A target collection of strains that we studied carried spontaneous rpoB mutations introduced in the background of the other drug resistance mutations. The antibiotic resistance spectra, growth, and specialized metabolism of the resulting mutants were interrogated using a set of microbiological and analytical approaches. We isolated 14 different rpoB mutants showing various degrees of rifampicin resistance; one of them (S433W) was isolated for the first time in actinomycetes. The rpoB mutations had a major effect on antibiotic production by J1074, as evident from bioassays and LC-MS data. Our data support the idea that rpoB mutations are useful tools to enhance the ability of J1074 to produce specialized metabolites.
Collapse
Affiliation(s)
- Borys Dolya
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Olena Hryhorieva
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Khrystyna Sorochynska
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Maria Lopatniuk
- Department of Pharmacy, Saarland University, 66123 Saarbrucken, Germany
| | - Iryna Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Vasylyna-Marta Tseduliak
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Eva Baggesgaard Sterndorff
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Tue Sparholt Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Tetiana Gren
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Yuriy Dacyuk
- Department of Mineral Geology and Geophysics, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Andriy Luzhetskyy
- Department of Pharmacy, Saarland University, 66123 Saarbrucken, Germany
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| |
Collapse
|
10
|
Baranova AA, Alferova VA, Korshun VA, Tyurin AP. Modern Trends in Natural Antibiotic Discovery. Life (Basel) 2023; 13:1073. [PMID: 37240718 PMCID: PMC10221674 DOI: 10.3390/life13051073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Natural scaffolds remain an important basis for drug development. Therefore, approaches to natural bioactive compound discovery attract significant attention. In this account, we summarize modern and emerging trends in the screening and identification of natural antibiotics. The methods are divided into three large groups: approaches based on microbiology, chemistry, and molecular biology. The scientific potential of the methods is illustrated with the most prominent and recent results.
Collapse
Affiliation(s)
- Anna A. Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (V.A.A.)
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya 11, 119021 Moscow, Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (V.A.A.)
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya 11, 119021 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (V.A.A.)
| | - Anton P. Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (V.A.A.)
| |
Collapse
|
11
|
Feng NX, Zhang F, Xie Y, Bin H, Xiang L, Li YW, Zhang F, Huang Y, Zhao HM, Cai QY, Mo CH, Li QX. Genome mining-guided activation of two silenced tandem genes in Raoultella ornithinolytica XF201 for complete biodegradation of phthalate acid esters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161013. [PMID: 36549521 DOI: 10.1016/j.scitotenv.2022.161013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Phthalates (PAEs) are ubiquitous in soils and food products and thus pose a high risk to human health. Herein, genome mining revealed a great diversity of bacteria with PAEs-degrading potential. Mining of the genome of Raoultella ornithinolytica XF201, a novel strain isolated from Dongxiang wild rice rhizosphere, revealed the presence of two silenced tandem genes pcdGH (encoding protocatechuate 3,4-dioxygenase, 3,4-PCD), key aromatic ring-cleaving genes in PAEs biodegradation. Ribosome engineering was successfully utilized to activate the expression of pcdGH genes to produce 3,4-PCD in the mutant XF201-G2U5. The mutant XF201-G2U5 showed high 3,4-PCD activity and could remove 94.5 % of di-n butyl phthalate (DBP) in 72 h. The degradation kinetics obeyed the first-order kinetic model. Strain XF201-G2U5 could also degrade the other PAEs and the main intermediate metabolites, ultimately leading to tricarboxylic acid cycle. Therefore, this strategy facilitates novel bacterial resources discovery for bioremediation of PAEs and other emerging contaminants.
Collapse
Affiliation(s)
- Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fei Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yunchang Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Hui Bin
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yunhong Huang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
12
|
Paulus C, Myronovskyi M, Zapp J, Rodríguez Estévez M, Lopatniuk M, Rosenkränzer B, Palusczak A, Luzhetskyy A. Miramides A–D: Identification of Detoxin-like Depsipeptides after Heterologous Expression of a Hybrid NRPS-PKS Gene Cluster from Streptomyces mirabilis Lu17588. Microorganisms 2022; 10:microorganisms10091752. [PMID: 36144353 PMCID: PMC9503745 DOI: 10.3390/microorganisms10091752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022] Open
Abstract
Natural products derived from plants, fungi or bacteria have been used for years in the medicine, agriculture and food industries as they exhibit a variety of beneficial properties, such as antibiotic, antifungal, anticancer, herbicidal and immunosuppressive activities. Compared to synthetic compounds, natural products possess a greater chemical diversity, which is a reason why they are profitable templates for developing pharmaceutical drug candidates and ongoing research on them is inevitable. Performing heterologous expression with unknown gene clusters is the preferred method to activate gene clusters that are not expressed in the wild-type strain under laboratory conditions; thus, this method offers a way to discover new interesting metabolites. Here, we report the gene cluster assembly of a hybrid NRPS-PKS gene cluster from Streptomyces mirabilis Lu17588, which was heterologously expressed in Streptomyces albus Del14. Four new compounds were produced by the obtained strain, which were named miramides A–D. Isolation and structure elucidation revealed similarity of the isolated compounds to the known depsipeptides rimosamides/detoxins.
Collapse
Affiliation(s)
- Constanze Paulus
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Maksym Myronovskyi
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Josef Zapp
- Department of Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Marta Rodríguez Estévez
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Maria Lopatniuk
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Birgit Rosenkränzer
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Anja Palusczak
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Andriy Luzhetskyy
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
- AMEG Department, Helmholtz Institute for Pharmaceutical Research Saarland, 66123 Saarbruecken, Germany
- Correspondence: ; Tel.: +49-681-302-70200
| |
Collapse
|
13
|
Sánchez-Suárez J, Villamil L, Coy-Barrera E, Díaz L. Cliona varians-Derived Actinomycetes as Bioresources of Photoprotection-Related Bioactive End-Products. Mar Drugs 2021; 19:674. [PMID: 34940673 PMCID: PMC8707384 DOI: 10.3390/md19120674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Sunscreen and sunblock are crucial skincare products to prevent photoaging and photocarcinogenesis through the addition of chemical filters to absorb or block ultraviolet (UV) radiation. However, several sunscreen and sunblock ingredients, mostly UV filters, have been associated with human and environmental safety concerns. Therefore, the exploration and discovery of promising novel sources of efficient and safer compounds with photoprotection-related activities are currently required. Marine invertebrates, particularly their associated microbiota, are promising providers of specialized metabolites with valuable biotechnological applications. Nevertheless, despite Actinobacteria members being a well-known source of bioactive metabolites, their photoprotective potential has been poorly explored so far. Hence, a set of methanolic extracts obtained from Cliona varians-derived actinomycetes was screened regarding their antioxidant and UV-absorbing capacities (i.e., photoprotection-related activities). The active extract-producing strains were identified and classified within genera Streptomyces, Micrococcus, Gordonia, and Promicromonospora. This is the first report of the isolation of these microorganisms from C. varians (an ecologically important Caribbean coral reef-boring sponge). The in vitro cytotoxicity on dermal fibroblasts of oxybenzone and the selected active extracts revealed that oxybenzone exerted a cytotoxic effect, whereas no cytotoxic effect of test extracts was observed. Accordingly, the most active (SPFi > 5, radical scavenging > 50%) and nontoxic (cell viability > 75%) extracts were obtained from Streptomyces strains. Finally, LC-MS-based characterization suggested a broad chemical space within the test strains and agreed with the reported streptomycetes' chemodiversity. The respective metabolite profiling exposed a strain-specific metabolite occurrence, leading to the recognition of potential hits. These findings suggest that marine Streptomyces produce photoprotectants ought to be further explored in skincare applications.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- Doctorate in Biosciences, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
| | - Luisa Villamil
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
| | - Luis Díaz
- Doctorate in Biosciences, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
| |
Collapse
|
14
|
Mutations in the regulatory regions result in increased streptomycin resistance and keratinase synthesis in Bacillus thuringiensis. Arch Microbiol 2021; 203:5387-5396. [PMID: 34390357 DOI: 10.1007/s00203-021-02525-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/29/2022]
Abstract
Keratinases are a group of proteases of great industrial significance. To take full advantage of Bacillus species as an inherent superior microbial producer of proteases, we performed the ribosome engineering to improve the keratinase synthesis capacity of the wild-type Bacillus thuringiensis by inducing streptomycin resistance. Mutant Bt(Str-O) was identified as a stable keratinase overproducer. Comparative characterization of the two strains revealed that, although the resistance to Streptomycin increased by eight-fold in MIC, the mutant's resistance to other commonly used antibiotics was not affected. Furthermore, the mutant exhibited an enhanced keratinase synthesis (1.5-fold) when cultured in a liquid LB medium. In the whole feather degradation experiment, the mutant could secret twofold keratinase into the medium, reaching 640 U/mL per 107 CFU. By contrast, no significant differences were found in the scanning electron microscopic analysis and spore formation experiment. To understand the genetic factors causing these phenotypic changes, we cloned and analyzed the rpsL gene. No mutation was observed. We subsequently determined the genome sequences of the two strains. Comparing the rpsL gene revealed that the emergence of streptomycin resistance was not necessarily dependent on the mutation(s) in the generally recognized "hotspot." Genome-wide analysis showed that the phenotypic changes of the mutant were the collective consequence of the genetic variations occurring in the regulatory regions and the non-coding RNA genes. This study demonstrated the importance of genetic changes in regulatory regions and the effectiveness of irrational ribosome engineering in creating prokaryotic microbial mutants without sufficient genetic information.
Collapse
|
15
|
Wang Z, Sun R, Li M, Liu L, Duan Y, Huang Y. Yield improvement of enediyne yangpumicins in Micromonospora yangpuensis through ribosome engineering and fermentation optimization. Biotechnol J 2021; 16:e2100250. [PMID: 34473904 DOI: 10.1002/biot.202100250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022]
Abstract
Yangpumicins (YPMs), for example, YPM A, F, and G, are newly discovered enediynes from Micromonospora yangpuensis DSM 45577, which could be exploited as promising payloads of antibody-drug conjugates. However, the low yield of YPMs in the wild-type strain (∼1 mg L-1 ) significantly hampers their further drug development. In this study, a combined ribosome engineering and fermentation optimization strategy has been used for yield improvement of YPMs. One gentamicin-resistant M. yangpuensis DSM 45577 strain (MY-G-1) showed higher YPMs production (7.4 ± 1.0 mg L-1 ), while it exhibits delayed sporulation and slender mycelium under scanning electron microscopy. Whole genome re-sequencing of MY-G-1 reveals several deletion and single nucleotide polymorphism mutations, which were confirmed by PCR and DNA sequencing. Further Box-Behnken experiment and regression analysis determined that the optimal medium concentrations of soluble starch, D-mannitol, and pharmamedia for YPMs production in shaking flasks (10.0 ± 0.8 mg L-1 ). Finally, the total titer of YPM A/F/G in MY-G-1 reached to 15.0 ± 2.5 mg L-1 in 3 L fermenters, which was about 11-fold higher than the original titer of 1.3 ± 0.3 mg L-1 in wild-type strain. Our study may be instrumental to develop YPMs into a clinical anticancer drug, and inspire the use of these multifaceted strategies for yield improvement in Micromonospora species. GRAPHICAL ABSTRACT LAY SUMMARY: ???
Collapse
Affiliation(s)
- Zilong Wang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, China
| | - Runze Sun
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, China
| | - Miao Li
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, China
| | - Ling Liu
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, China
| |
Collapse
|
16
|
Scherlach K, Hertweck C. Mining and unearthing hidden biosynthetic potential. Nat Commun 2021; 12:3864. [PMID: 34162873 PMCID: PMC8222398 DOI: 10.1038/s41467-021-24133-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Genetically encoded small molecules (secondary metabolites) play eminent roles in ecological interactions, as pathogenicity factors and as drug leads. Yet, these chemical mediators often evade detection, and the discovery of novel entities is hampered by low production and high rediscovery rates. These limitations may be addressed by genome mining for biosynthetic gene clusters, thereby unveiling cryptic metabolic potential. The development of sophisticated data mining methods and genetic and analytical tools has enabled the discovery of an impressive array of previously overlooked natural products. This review shows the newest developments in the field, highlighting compound discovery from unconventional sources and microbiomes. Natural products are an important source of bioactive compounds and have versatile applications in different fields, but their discovery is challenging. Here, the authors review the recent developments in genome mining for discovery of natural products, focusing on compounds from unconventional microorganisms and microbiomes.
Collapse
Affiliation(s)
- Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany. .,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
17
|
Campbell EP, Hussein WE, Huang E, Yousef AE. Enhancing titre and production stability of paenibacillin from Paenibacillus polymyxa by sequential drug resistance screening. J Appl Microbiol 2021; 131:2876-2885. [PMID: 34048127 DOI: 10.1111/jam.15165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/08/2021] [Accepted: 05/23/2021] [Indexed: 11/29/2022]
Abstract
AIMS Paenibacillin is a naturally biosynthesized antimicrobial lantibiotic peptide which is produced by wild-type Paenibacillus polymyxa OSY-DF in low but detectable levels. The aim was to increase paenibacillin titre and production consistency through sequential drug resistance screening. METHODS AND RESULTS Spontaneous mutants of P. polymyxa OSY-DF were isolated by subjecting the bacterium to two rounds of screening for resistance to rifampicin, which targets RNA polymerase, and gentamicin, which targets ribosomes. Changes in antimicrobial production of the mutants were monitored using a bioassay method. A spontaneous mutant, P. polymyxa OSY-EC, capable of producing high paenibacillin titre, was selected and compared phenotypically to the wild-type strain. The mutant was found to produce paenibacillin at five-fold higher titre than the wild type. The mutant constantly produced paenibacillin while the wild type produced the antimicrobial agent variably. Fourier transformation mid-infrared spectroscopy revealed an interclass distance of 6·4 between the wild type and the mutant strain, suggesting significant phenotypic change during the mutation. CONCLUSIONS P. polymyxa OSY-EC, a spontaneous mutant capable of consistent production of high paenibacillin titre, was isolated from the wild type after sequential screening on rationally selected antibiotics. SIGNIFICANCE AND IMPACT OF THE STUDY The study will help make paenibacillin available for large-scale testing by interested researchers and industries seeking applications that improve food safety and quality.
Collapse
Affiliation(s)
- E P Campbell
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - W E Hussein
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - E Huang
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - A E Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA.,Department of Microbiology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
18
|
Specialized Metabolites from Ribosome Engineered Strains of Streptomyces clavuligerus. Metabolites 2021; 11:metabo11040239. [PMID: 33924621 PMCID: PMC8069389 DOI: 10.3390/metabo11040239] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/27/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial specialized metabolites are of immense importance because of their medicinal, industrial, and agricultural applications. Streptomyces clavuligerus is a known producer of such compounds; however, much of its metabolic potential remains unknown, as many associated biosynthetic gene clusters are silent or expressed at low levels. The overexpression of ribosome recycling factor (frr) and ribosome engineering (induced rpsL mutations) in other Streptomyces spp. has been reported to increase the production of known specialized metabolites. Therefore, we used an overexpression strategy in combination with untargeted metabolomics, molecular networking, and in silico analysis to annotate 28 metabolites in the current study, which have not been reported previously in S. clavuligerus. Many of the newly described metabolites are commonly found in plants, further alluding to the ability of S. clavuligerus to produce such compounds under specific conditions. In addition, the manipulation of frr and rpsL led to different metabolite production profiles in most cases. Known and putative gene clusters associated with the production of the observed compounds are also discussed. This work suggests that the combination of traditional strain engineering and recently developed metabolomics technologies together can provide rapid and cost-effective strategies to further speed up the discovery of novel natural products.
Collapse
|
19
|
Kurt-Kızıldoğan A, Akarsu N, Otur Ç, Kivrak A, Aslan-Ertas N, Arslan S, Mutlu D, Konus M, Yılmaz C, Cetin D, Topal T, Şahin N. A Novel 4H-Chromen-4-One Derivative from Marine Streptomyces ovatisporus S4702T as Potential Antibacterial and Anti-Cancer Agent. Anticancer Agents Med Chem 2021; 22:362-370. [PMID: 33719978 DOI: 10.2174/1871520621666210311085748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Marine actinomycetes are among indispensable sources of natural bioactive compounds with unique antimicrobial and anti-cancer activities. OBJECTIVE Herein, it was aimed to elucidate bioactive potential of a marine-derived Streptomyces ovatisporus S4702T, isolated previously. METHODS Streptomyces ovatisporus S4702T was cultured in N-Z Amine broth and extraction was carried out using different organic solvents. Bioassay guided purification was followed by chemical characterization using NMR and LC-MS/MS. The compound was then evaluated for its antibacterial, antioxidant and cytotoxic activities. RESULTS Etyl acetate extracts gave the highest antibacterial activity and chemical characterization of this extract indicated the formula as C15H29O5N3 and the corresponding possible molecular structure as 4H-chromen-4-one derivative. It was found highly potent against Bacillus subtilis ATCC 6633 (MIC: 0.25 µg ml-1) and Micrococcus luteus ATCC 9341 (MBC: 0.5 µg ml-1). It has no remarkable antioxidant activity, but higher EC50 value and less cytotoxicity against normal cells. The EC50 values of this chromen derivative were found as 9.68 µg ml-1 for human colon carcinoma, 9.93 µg ml-1 for human prostate adenocarcinoma and 25.5 µg ml-1 for human embryonic kidney cells. CONCLUSION Overall, the presented 4H-chromen-4-one derivative is a remarkable bioactive compound with potent antibacterial and cytotoxic activity. With its high bioactive potential, it is proposed as a good candidate in medicine.
Collapse
Affiliation(s)
| | - Neslihan Akarsu
- Department of Agricultural Biotechnology, Ondokuz Mayıs University, 55139, Samsun. Turkey
| | - Çiğdem Otur
- Department of Agricultural Biotechnology, Ondokuz Mayıs University, 55139, Samsun. Turkey
| | - Arif Kivrak
- Department of Chemistry, Van Yuzuncu Yil University, 65080, Van. Turkey
| | | | - Sevki Arslan
- Department of Biology, Pamukkale University, 20100, Denizli. Turkey
| | - Dogukan Mutlu
- Department of Biology, Pamukkale University, 20100, Denizli. Turkey
| | - Metin Konus
- Department of Molecular Biology and Genetics, Van Yuzuncu Yil University, 65080, Van. Turkey
| | - Can Yılmaz
- Department of Molecular Biology and Genetics, Van Yuzuncu Yil University, 65080, Van. Turkey
| | - Dogan Cetin
- Department of Molecular Biology and Genetics, Van Yuzuncu Yil University, 65080, Van. Turkey
| | - Tufan Topal
- High Technology Application and Research Center, Pamukkale University, 20020, Denizli. Turkey
| | - Nevzat Şahin
- Department of Molecular Biology and Genetics, Ondokuz Mayıs University, 55139, Samsun. Turkey
| |
Collapse
|
20
|
Liu Z, Zhao Y, Huang C, Luo Y. Recent Advances in Silent Gene Cluster Activation in Streptomyces. Front Bioeng Biotechnol 2021; 9:632230. [PMID: 33681170 PMCID: PMC7930741 DOI: 10.3389/fbioe.2021.632230] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Natural products (NPs) are critical sources of drug molecules for decades. About two-thirds of natural antibiotics are produced by Streptomyces. Streptomyces have a large number of secondary metabolite biosynthetic gene clusters (SM-BGCs) that may encode NPs. However, most of these BGCs are silent under standard laboratory conditions. Hence, activation of these silent BGCs is essential to current natural products discovery research. In this review, we described the commonly used strategies for silent BGC activation in Streptomyces from two aspects. One focused on the strategies applied in heterologous host, including methods to clone and reconstruct BGCs along with advances in chassis engineering; the other focused on methods applied in native host which includes engineering of promoters, regulatory factors, and ribosomes. With the metabolic network being elucidated more comprehensively and methods optimized more high-thoroughly, the discovery of NPs will be greatly accelerated.
Collapse
Affiliation(s)
- Zhenyu Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yatong Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Chaoqun Huang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yunzi Luo
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| |
Collapse
|
21
|
Cardoso P, Glossop H, Meikle TG, Aburto-Medina A, Conn CE, Sarojini V, Valery C. Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities. Biophys Rev 2021; 13:35-69. [PMID: 33495702 PMCID: PMC7817352 DOI: 10.1007/s12551-021-00784-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
The global public health threat of antimicrobial resistance has led the scientific community to highly engage into research on alternative strategies to the traditional small molecule therapeutics. Here, we review one of the most popular alternatives amongst basic and applied research scientists, synthetic antimicrobial peptides. The ease of peptide chemical synthesis combined with emerging engineering principles and potent broad-spectrum activity, including against multidrug-resistant strains, has motivated intense scientific focus on these compounds for the past decade. This global effort has resulted in significant advances in our understanding of peptide antimicrobial activity at the molecular scale. Recent evidence of molecular targets other than the microbial lipid membrane, and efforts towards consensus antimicrobial peptide motifs, have supported the rise of molecular engineering approaches and design tools, including machine learning. Beyond molecular concepts, supramolecular chemistry has been lately added to the debate; and helped unravel the impact of peptide self-assembly on activity, including on biofilms and secondary targets, while providing new directions in pharmaceutical formulation through taking advantage of peptide self-assembled nanostructures. We argue that these basic research advances constitute a solid basis for promising industry translation of rationally designed synthetic peptide antimicrobials, not only as novel drugs against multidrug-resistant strains but also as components of emerging antimicrobial biomaterials. This perspective is supported by recent developments of innovative peptide-based and peptide-carrier nanobiomaterials that we also review.
Collapse
Affiliation(s)
- Priscila Cardoso
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- School of Science, RMIT University, Melbourne, Australia
| | - Hugh Glossop
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | - Celine Valery
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| |
Collapse
|
22
|
Muhammad A, Feng X, Rasool A, Sun W, Li C. Production of plant natural products through engineered Yarrowia lipolytica. Biotechnol Adv 2020; 43:107555. [DOI: 10.1016/j.biotechadv.2020.107555] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
|
23
|
Zhang Q, Ren JW, Wang W, Zhai J, Yang J, Liu N, Huang Y, Chen Y, Pan G, Fan K. A Versatile Transcription-Translation in One Approach for Activation of Cryptic Biosynthetic Gene Clusters. ACS Chem Biol 2020; 15:2551-2557. [PMID: 32786260 DOI: 10.1021/acschembio.0c00581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ever-growing drug resistance problem worldwide highlights the urgency to discover and develop new drugs. Microbial natural products are a prolific source of drugs. Genome sequencing has revealed a tremendous amount of uncharacterized natural product biosynthetic gene clusters (BGCs) encoded within microbial genomes, most of which are cryptic or express at very low levels under standard culture conditions. Therefore, developing effective strategies to awaken these cryptic BGCs is of great interest for natural product discovery. In this study, we designed and validated a Transcription-Translation in One (TTO) approach for activation of cryptic BGCs. This approach aims to alter the metabolite profiles of target strains by directly overexpressing exogenous rpsL (encoding ribosomal protein S12) and rpoB (encoding RNA polymerase β subunit) genes containing beneficial mutations for natural product production using a plug-and-play plasmid system. As a result, this approach bypasses the tedious screening work and overcomes the false positive problem in the traditional ribosome engineering approach. In this work, the TTO approach was successfully applied to activating cryptic BGCs in three Streptomyces strains, leading to the discovery of two aromatic polyketide antibiotics, piloquinone and homopiloquinone. We further identified a single BGC responsible for the biosynthesis of both piloquinone and homopiloquinone, which features an unusual starter unit incorporation step. This powerful strategy can be further exploited for BGC activation in strains even beyond streptomycetes, thus facilitating natural product discovery research in the future.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Wei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji’an Zhai
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Jing Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guohui Pan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
24
|
Wang R, Kong F, Wu H, Hou B, Kang Y, Cao Y, Duan S, Ye J, Zhang H. Complete genome sequence of high-yield strain S. lincolnensis B48 and identification of crucial mutations contributing to lincomycin overproduction. Synth Syst Biotechnol 2020; 5:37-48. [DOI: doi.org/10.1016/j.synbio.2020.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023] Open
|
25
|
Zhou Q, Ning S, Luo Y. Coordinated regulation for nature products discovery and overproduction in Streptomyces. Synth Syst Biotechnol 2020; 5:49-58. [PMID: 32346621 PMCID: PMC7176746 DOI: 10.1016/j.synbio.2020.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
Streptomyces is an important treasure trove for natural products discovery. In recent years, many scientists focused on the genetic modification and metabolic regulation of Streptomyces to obtain diverse bioactive compounds with high yields. This review summarized the commonly used regulatory strategies for natural products discovery and overproduction in Streptomyces from three main aspects, including regulator-related strategies, promoter engineering, as well as other strategies employing transposons, signal factors, or feedback regulations. It is expected that the metabolic regulation network of Streptomyces will be elucidated more comprehensively to shed light on natural products research in the future.
Collapse
Affiliation(s)
- Qun Zhou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shuqing Ning
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yunzi Luo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
26
|
Liu L, Li S, Sun R, Qin X, Ju J, Zhang C, Duan Y, Huang Y. Activation and Characterization of Bohemamine Biosynthetic Gene Cluster from Streptomyces sp. CB02009. Org Lett 2020; 22:4614-4619. [PMID: 32463693 DOI: 10.1021/acs.orglett.0c01224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bohemamines (BHMs) are bacterial alkaloids containing a pyrrolizidine core with two unusual methyl groups. Herein we report the activation of BHMs biosynthesis using a ribosome engineering approach. Characterization of the bhm gene cluster reveals that nonribosomal peptide synthetase BhmJ and Baeyer-Villiger monooxygenase BhmK are responsible for the formation of the pyrrolizidine core, which is further methylated on C-7 by methyltransferase BhmG. The 9-methyl group of BHMs is instead originated from a nonproteinogenic amino acid (2S,5S)-5-methylproline.
Collapse
Affiliation(s)
- Ling Liu
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, 410013, Hunan, China
| | - Sainan Li
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, 410013, Hunan, China
| | - Runze Sun
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, 410013, Hunan, China
| | - Xiangjing Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jianhua Ju
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, 410013, Hunan, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, 410011, Hunan, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410011, Hunan, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, 410013, Hunan, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410011, Hunan, China
| |
Collapse
|
27
|
Fan JX, Song Y, Tang G, Ochi K, Shentu XP, Yu XP. Substantial improvement of tetraene macrolide production in Streptomyces diastatochromogenes by cumulative drug resistance mutations. PLoS One 2020; 15:e0232927. [PMID: 32396566 PMCID: PMC7217443 DOI: 10.1371/journal.pone.0232927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/25/2020] [Indexed: 11/19/2022] Open
Abstract
Tetraene macrolides remain one of the most reliable fungicidal agents as resistance of fungal pathogens to these antibiotics is relatively rare. The modes of action and biosynthesis of polyene macrolides had been the focus of research over the past few years. However, few studies have been carried out on the overproduction of polyene macrolides. In the present study, cumulative drug-resistance mutation was used to obtain a quintuple mutant G5-59 with huge tetraene macrolide overproduction from the starting strain Streptomyces diastatochromogenes 1628. Through DNA sequence analysis, the mutation points in the genes of rsmG, rpsL and rpoB were identified. Additionally, the growth characteristic and expression level of tetrRI gene (belonging to the large ATP binding regulator of LuxR family) involved in the biosynthesis of tetraene macrolides were analyzed. As examined with 5L fermentor, the quintuple mutant G5-59 grew very well and the maximum productivity of tetramycin A, tetramycin P and tetrin B was as high as 1735, 2811 and 1500 mg/L, which was 8.7-, 16- and 25-fold higher than that of the wild-type strain 1628, respectively. The quintuple mutant G5-59 could be useful for further improvement of tetraene macrolides production at industrial level.
Collapse
Affiliation(s)
- Jing-Xuan Fan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yang Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Gu Tang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Kozo Ochi
- Department of Life Science, Hiroshima Institute of Technology, Hiroshima, Japan
| | - Xu-Ping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
- * E-mail: (XPS); (XPY)
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
- * E-mail: (XPS); (XPY)
| |
Collapse
|
28
|
Complete genome sequence of high-yield strain S. lincolnensis B48 and identification of crucial mutations contributing to lincomycin overproduction. Synth Syst Biotechnol 2020; 5:37-48. [PMID: 32322696 PMCID: PMC7160387 DOI: 10.1016/j.synbio.2020.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 02/08/2023] Open
Abstract
The lincosamide family antibiotic lincomycin is a widely used antibacterial pharmaceutical generated by Streptomyces lincolnensis, and the high-yield strain B48 produces 2.5 g/L lincomycin, approximately 30-fold as the wild-type strain NRRL 2936. Here, the genome of S. lincolnensis B48 was completely sequenced, revealing a ~10.0 Mb single chromosome with 71.03% G + C content. Based on the genomic information, lincomycin-related primary metabolism network was constructed and the secondary metabolic potential was analyzed. In order to dissect the overproduction mechanism, a comparative genomic analysis with NRRL 2936 was performed. Three large deletions (LDI-III), one large inverted duplication (LID), one long inversion and 80 small variations (including 50 single nucleotide variations, 13 insertions and 17 deletions) were found in B48 genome. Then several crucial mutants contributing to higher production phenotype were validated. Deleting of a MarR-type regulator-encoding gene slinc377 from LDI, and the whole 24.7 kb LDII in NRRL 2936 enhanced lincomycin titer by 244% and 284%, respectively. Besides, lincomycin production of NRRL 2936 was increased to 7.7-fold when a 71 kb supercluster BGC33 from LDIII was eliminated. As for the duplication region, overexpression of the cluster situated genes lmbB2 and lmbU, as well as two novel transcriptional regulator-encoding genes (slinc191 and slinc348) elevated lincomycin titer by 77%, 75%, 114% and 702%, respectively. Furthermore, three negative correlation genes (slinc6156, slinc4481 and slinc6011) on lincomycin biosynthesis, participating in regulation were found out. And surprisingly, inactivation of RNase J-encoding gene slinc6156 and TPR (tetratricopeptide repeat) domain-containing protein-encoding gene slinc4481 achieved lincomycin titer equivalent to 83% and 68% of B48, respectively, to 22.4 and 18.4-fold compared to NRRL 2936. Therefore, the comparative genomics approach combined with confirmatory experiments identified that large fragment deletion, long sequence duplication, along with several mutations of genes, especially regulator genes, are crucial for lincomycin overproduction.
Collapse
|
29
|
Genome shuffling based on different types of ribosome engineering mutants for enhanced production of 10-membered enediyne tiancimycin-A. Appl Microbiol Biotechnol 2020; 104:4359-4369. [PMID: 32236679 DOI: 10.1007/s00253-020-10583-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/15/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022]
Abstract
Tiancimycin-A (TNM-A) is an anthraquinone-fused ten-membered enediyne produced by Streptomyces sp. CB03234, which is very promising for the development of anticancer antibody-drug conjugates (ADCs). To improve the titer of TNM-A, we have generated high-producing mutants CB03234-S and CB03234-R through ribosome engineering, but still not sufficient for pilot production of TNM-A. As the follow-up work, gentamycin-induced ribosome engineering was further adopted here to generate the mutant CB03234-G, which produced similar level of TNM-A as in CB03234-S and CB03234-R. Benefiting from the distinct antibiotic resistances of three ribosome engineering mutants, genome shuffling between any two of them was respectively carried out, and finally obtained the recombinant CB03234-GS26. Under optimal conditions, CB03234-GS26 produced 40.6 ± 1.0 mg/L TNM-A in shaking flasks and 20.8 ± 0.4 mg/L in a scaled-up 30-L fermentor. Comparing with the parental high-producing mutants, the over 1.6-fold titer improvement of CB03234-GS26 in fermentor was more promising for pilot production of TNM-A. Besides the distinctive morphological features, genetic characterization revealed that CB03234-GS26 possessed 1.8 kb rsmG related deletion just the same as CB03234-S, but no mutation was found in rpsL. Subsequent knockouts proved that rsmG was unrelated to titer improvement of TNM-A, which implied other genomic variations and mechanisms rather than ribosome engineering to enhance the biosynthesis of TNM-A. Therefore, CB03234-GS26 provided a basis to locate potential novel genetic targets, and explore the interactions between complex metabolic network and TNM biosynthetic pathway, which shall promote future construction of high-yielding systems for TNM-A and other anthraquinone-fused enediynes.Key Points •United genome shuffling and ribosome engineering help further strain improvement. •CB03234-GS26 with improved titer is practical for the pilot production of TNM-A. •Enhanced TNM-A production should attribute to novel genetic features/mechanisms.
Collapse
|
30
|
Xia H, Li X, Li Z, Zhan X, Mao X, Li Y. The Application of Regulatory Cascades in Streptomyces: Yield Enhancement and Metabolite Mining. Front Microbiol 2020; 11:406. [PMID: 32265866 PMCID: PMC7105598 DOI: 10.3389/fmicb.2020.00406] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Streptomyces is taken as an important resource for producing the most abundant antibiotics and other bio-active natural products, which have been widely used in pharmaceutical and agricultural areas. Usually they are biosynthesized through secondary metabolic pathways encoded by cluster situated genes. And these gene clusters are stringently regulated by interweaved transcriptional regulatory cascades. In the past decades, great advances have been made to elucidate the regulatory mechanisms involved in antibiotic production in Streptomyces. In this review, we summarized the recent advances on the regulatory cascades of antibiotic production in Streptomyces from the following four levels: the signals triggering the biosynthesis, the global regulators, the pathway-specific regulators and the feedback regulation. The production of antibiotic can be largely enhanced by rewiring the regulatory networks, such as overexpression of positive regulators, inactivation of repressors, fine-tuning of the feedback and ribosomal engineering in Streptomyces. The enormous amount of genomic sequencing data implies that the Streptomyces has potential to produce much more antibiotics for the great diversities and wide distributions of biosynthetic gene clusters in Streptomyces genomes. Most of these gene clusters are defined cryptic for unknown or undetectable natural products. In the synthetic biology era, activation of the cryptic gene clusters has been successfully achieved by manipulation of the regulatory genes. Chemical elicitors, rewiring regulatory gene and ribosomal engineering have been employed to crack the potential of cryptic gene clusters. These have been proposed as the most promising strategy to discover new antibiotics. For the complex of regulatory network in Streptomyces, we proposed that the discovery of new antibiotics and the optimization of industrial strains would be greatly promoted by further understanding the regulatory mechanism of antibiotic production.
Collapse
Affiliation(s)
- Haiyang Xia
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Xiaofang Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Zhangqun Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Xinqiao Zhan
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Xuming Mao
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China.,Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongquan Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China.,Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
|
32
|
Yang Z, He J, Wei X, Ju J, Ma J. Exploration and genome mining of natural products from marine Streptomyces. Appl Microbiol Biotechnol 2019; 104:67-76. [PMID: 31773207 DOI: 10.1007/s00253-019-10227-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/22/2022]
Abstract
Marine Streptomyces sp. are an important source of bioactive compounds owing to their unique habitats and metabolic pathways. Whole-genome sequencing and bioinformatics analyses have shown that the potential of synthesizing secondary metabolites from marine-derived Streptomyces has been substantially underestimated. Genome mining is an integrated strategy used to discover natural products based on gene cluster sequences and biosynthetic pathways. Its emergence has greatly enhanced the discovery of natural compounds from marine Streptomyces, thereby yielding a large number of bioactive molecules with novel structures and potent activities. In this review, we briefly summarize the current applications of genome mining in marine Streptomyces, such as bioinformatics-based optimization of culture conditions, ribosome engineering, control of regulatory networks, heterologous expression of biosynthetic gene cluster, and combinatorial biosynthesis of natural compounds. Furthermore, we discuss the factors hindering the utilization of marine-derived natural products and conclude with the prospects for this technique.
Collapse
Affiliation(s)
- Zhijie Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqiao He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Wei
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
33
|
Djinni I, Defant A, Kecha M, Mancini I. Actinobacteria Derived from Algerian Ecosystems as a Prominent Source of Antimicrobial Molecules. Antibiotics (Basel) 2019; 8:E172. [PMID: 31581466 PMCID: PMC6963827 DOI: 10.3390/antibiotics8040172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 01/19/2023] Open
Abstract
Actinobacteria, in particular "rare actinobacteria" isolated from extreme ecosystems, remain the most inexhaustible source of novel antimicrobials, offering a chance to discover new bioactive metabolites. This is the first overview on actinobacteria isolated in Algeria since 2002 to date with the aim to present their potential in producing bioactive secondary metabolites. Twenty-nine new species and one novel genus have been isolated, mainly from the Saharan soil and palm groves, where 37.93% of the most abundant genera belong to Saccharothrix and Actinopolyspora. Several of these strains were found to produce antibiotics and antifungal metabolites, including 17 new molecules among the 50 structures reported, and some of these antibacterial metabolites have shown interesting antitumor activities. A series of approaches used to enhance the production of bioactive compounds is also presented as the manipulation of culture media by both classical methods and modeling designs through statistical strategies and the associations with diverse organisms and strains. Focusing on the Algerian natural sources of antimicrobial metabolites, this work is a representative example of the potential of a closely combined study on biology and chemistry of natural products.
Collapse
Affiliation(s)
- Ibtissem Djinni
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia 06000, Algeria.
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento 38123, Italy.
| | - Andrea Defant
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento 38123, Italy.
| | - Mouloud Kecha
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia 06000, Algeria.
| | - Ines Mancini
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento 38123, Italy.
| |
Collapse
|