1
|
Fajardo JB, Vianna MH, Polo AB, Cordeiro Comitre MR, de Oliveira DA, Ferreira TG, de Oliveira Lemos AS, Souza TDF, Campos LM, de Lima Paula P, Barbosa AF, Geraldo de Carvalho M, Machado Resende Guedes MC, Coimbra ES, da Costa Macedo G, Tavares GD, Barradas TN, Fabri RL. Insights into the bioactive potential of the Amazonian species Acmella oleracea leaves extract: A focus on wound healing applications. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118866. [PMID: 39357584 DOI: 10.1016/j.jep.2024.118866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/26/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acmella oleracea is traditionally used by Amazonian folks to treat skin and mucous wounds, influenza, cough, toothache, bacterial and fungal infections. Its phytoconstituents, such as alkylamides, phenolic compounds, and terpenes, are reported to produce therapeutic effects, which justify the medicinal use of A. oleracea extracts. However, the scientific evidence supporting the application A. oleracea bioactive products for wound treatment of remains unexplored so far. OBJECTIVE This work aimed to characterize the phytochemical composition of methanolic extract of A. oleracea leaves (AOM) and to investigate their antioxidant, anti-inflammatory, antimicrobial and healing potential focusing on its application for wound healing. MATERIAL AND METHODS The dried leaves from A. oleracea submitted to static maceration in methanol for 40 days. The phytochemical constitution of AOM was analyzed based on the total phenolic dosage method and by UFLC-QTOF-MS analysis. Antioxidant activity was assessed by DPPH and NO scavenging activities, as well as MDA formation, evaluation of ROS levels, and phosphomolybdenum assays. In vitro anti-inflammatory activities were assessed by reduction of NO, IL-6, and TNF-α production and accumulation of LDs in peritoneal macrophages cells. Antimicrobial activity was evaluated by determining MIC and MBC/MFC values against P. aeruginosa, E. coli, S. epidermidis, S. aureus and C. albicans, bacterial killing assay, and biofilm adhesion assessment. In vitro wound healing activity was determined by means of the scratch assay with L929 fibroblasts. RESULTS Vanillic acid, quercetin, and seven other alkamides, including spilanthol, were detected in the UFLC-QTOF-MS spectrum of AOM. Regarding the biocompatibility, AOM did not induce cytotoxicity in L929 fibroblasts and murine macrophages. The strong anti-inflammatory activity was evidenced by the fact that AOM reduced the cellular production of inflammatory mediators IL-6, TNF-α, NO, and LDs in macrophages by 100%, 96.66 ± 1.95%, 99.21 ± 3.82%, and 67.51 ± 0.72%, respectively. The antioxidant effects were confirmed, since AOM showed IC50 values of 44.50 ± 4.46 and 127.60 ± 14.42 μg/mL in the DPPH and NO radical inhibition assays, respectively. Additionally, AOM phosphomolybdenium reducing power was 63.56 ± 13.01 (RAA% of quercetin) and 104.01 ± 21.29 (RAA% of rutin). Finally, in the MDA quantification assay, AOM showed 63,69 ± 3.47% of lipid peroxidation inhibition. It was also observed that the production of ROS decreased by 69.03 ± 3.85%. The MIC values of AOM ranged from 1000 to 125 μg/mL. Adhesion of S. aureus, P. Aeruginosa, and mixed biofilms was significantly reduced by 44.71 ± 4.44%, 95.50 ± 6.37 %, and 51.83 ± 1.50%, respectively. AOM also significantly inhibited the growth of S. aureus (77.17 ± 1.50 %) and P. aeruginosa (62.36 ± 1.01%). Furthermore, AOM significantly enhanced the in vitro migration of L929 fibroblasts by 97.86 ± 0.82% compared to the control (P < 0.05). CONCLUSIONS This study is the first to report total antioxidant capacity and intracellular LD reduction by AOM. The results clearly demonstrated that AOM exerts potent anti-inflammatory, antioxidant, antimicrobial, and wound healing effects, encouraging its further investigation and promising application in wound treatment.
Collapse
Affiliation(s)
- Júlia Bertolini Fajardo
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Mariana Hauck Vianna
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Ana Barbara Polo
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Mariane Rocha Cordeiro Comitre
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Débora Almeida de Oliveira
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Thayná Gomes Ferreira
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Ari Sérgio de Oliveira Lemos
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Thalita de Freitas Souza
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Lara Melo Campos
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Priscila de Lima Paula
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Alan Franco Barbosa
- Federal Institute of Education, Science and Technology of Mato Grosso, Sorriso, MG, Brazil
| | - Mário Geraldo de Carvalho
- Department of Chemistry, Institute of Exact Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Maria Clara Machado Resende Guedes
- Department of Parasitology, Microbiology, and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Elaine Soares Coimbra
- Department of Parasitology, Microbiology, and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Gilson da Costa Macedo
- Department of Parasitology, Microbiology, and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | - Rodrigo Luiz Fabri
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Mustafa K, Iqbal N, Ahmad S, Iqbal S, Rezakazemi M, Verpoort F, Kanwal J, Musaddiq S. Highly efficient aramid fiber supported polypropylene membranes modified with reduced graphene oxide based metallic nanocomposites: antimicrobial and antiviral capabilities. RSC Adv 2024; 14:16421-16431. [PMID: 38769958 PMCID: PMC11104733 DOI: 10.1039/d4ra00724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Polypropylene hybrid polymeric membranes with aramid support have been fabricated using Thermally Induced Phase Separation (TIPS). Different modifying materials, such as metallic nanoparticles and reduced graphene oxide (rGO), improve the properties of these membranes. The nanomaterials and the fabricated membranes have been characterized with FTIR spectrometer, SEM and UV-Vis Spectrophotometer. Following that, the disinfection capabilities of the fabricated hybrid membranes were investigated. The antibacterial capability of the membranes is established through the testing of the membranes against bacterial strains S. aureus and E. coli, whereas the antiviral evaluation of the membranes was made against H9N2 and IBV strains. This research aims to develop advanced hybrid membranes that effectively disinfect water by incorporating novel nanomaterials and optimizing fabrication techniques.
Collapse
Affiliation(s)
- Kiran Mustafa
- Department of Chemistry, The Women University Multan 66000 Pakistan
- Govt. Graduate College (W), Higher Education Department Khanewal Punjab Pakistan
| | - Nadeem Iqbal
- Director Microtech Chemicals and Minerals Kasur 55050 Punjab Pakistan
| | - Sajjad Ahmad
- Pakistan Council of Research in Water Resources, Ministry of Water Resources Islamabad Pakistan
| | - Sadia Iqbal
- Department of Chemistry, The Women University Multan 66000 Pakistan
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology Shahrood 9WVR+757 Iran
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
- National Research Tomsk Polytechnic University Lenin Avenue 30 634050 Tomsk the Russian Federation
| | - Javaria Kanwal
- Department of Chemistry, The Women University Multan 66000 Pakistan
| | - Sara Musaddiq
- Department of Chemistry, The Women University Multan 66000 Pakistan
| |
Collapse
|
3
|
Høiby N, Moser C, Ciofu O. The microenvironment in antibiotic susceptibility testing. APMIS 2024. [PMID: 38565324 DOI: 10.1111/apm.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Antibiotic susceptibility testing (AST) by agar diffusion has been repeatedly standardized and, in most cases, gives results which predict clinical success when antibiotic treatment is based on such results. The formation of the inhibition zone is due to a transition from planktonic to biofilm mode of growth. The kinetics of the interaction of antibiotics with bacteria is similar during AST by agar diffusion and during administration of antibiotics to the patients. However, the Mueller-Hinton agar (MHA) recommended for AST agar diffusion test is fundamentally different from the composition of the interstitial fluid in the human body where the infections take place and human cells do not thrive in MH media. Use of RPMI 1640 medium designed for growth of eucaryotic cells for AST of Pseudomonas aeruginosa against azithromycin results in lower minimal inhibitory concentration, compared to results obtained by MHA. The reason is that the RPMI 1640 medium increases uptake and reduces efflux of azithromycin compared to MHA. During treatment of cystic fibrosis patients with azithromycin, mutational resistance occur which is not detected by AST with MHA. Whether this is the case with other antibiotics and bacteria is not known but it is of clinical importance to be studied.
Collapse
Affiliation(s)
- Niels Høiby
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Institute of Immunology and Microbiology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Institute of Immunology and Microbiology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Oana Ciofu
- Institute of Immunology and Microbiology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Davis KP, Morales Y, Ende RJ, Peters R, McCabe AL, Mecsas J, Aldridge BB. Critical role of growth medium for detecting drug interactions in Gram-negative bacteria that model in vivo responses. mBio 2024; 15:e0015924. [PMID: 38364199 PMCID: PMC10936441 DOI: 10.1128/mbio.00159-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
The rise in infections caused by multidrug-resistant (MDR) bacteria has necessitated a variety of clinical approaches, including the use of antibiotic combinations. Here, we tested the hypothesis that drug-drug interactions vary in different media, and determined which in vitro models best predict drug interactions in the lungs. We systematically studied pair-wise antibiotic interactions in three different media, CAMHB, (a rich lab medium standard for antibiotic susceptibility testing), a urine mimetic medium (UMM), and a minimal medium of M9 salts supplemented with glucose and iron (M9Glu) with three Gram-negative ESKAPE pathogens, Acinetobacter baumannii (Ab), Klebsiella pneumoniae (Kp), and Pseudomonas aeruginosa (Pa). There were pronounced differences in responses to antibiotic combinations between the three bacterial species grown in the same medium. However, within species, PaO1 responded to drug combinations similarly when grown in all three different media, whereas Ab17978 and other Ab clinical isolates responded similarly when grown in CAMHB and M9Glu medium. By contrast, drug interactions in Kp43816, and other Kp clinical isolates poorly correlated across different media. To assess whether any of these media were predictive of antibiotic interactions against Kp in the lungs of mice, we tested three antibiotic combination pairs. In vitro measurements in M9Glu, but not rich medium or UMM, predicted in vivo outcomes. This work demonstrates that antibiotic interactions are highly variable across three Gram-negative pathogens and highlights the importance of growth medium by showing a superior correlation between in vitro interactions in a minimal growth medium and in vivo outcomes. IMPORTANCE Drug-resistant bacterial infections are a growing concern and have only continued to increase during the SARS-CoV-2 pandemic. Though not routinely used for Gram-negative bacteria, drug combinations are sometimes used for serious infections and may become more widely used as the prevalence of extremely drug-resistant organisms increases. To date, reliable methods are not available for identifying beneficial drug combinations for a particular infection. Our study shows variability across strains in how drug interactions are impacted by growth conditions. It also demonstrates that testing drug combinations in tissue-relevant growth conditions for some strains better models what happens during infection and may better inform combination therapy selection.
Collapse
Affiliation(s)
- Kathleen P. Davis
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
| | - Yoelkys Morales
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Rachel J. Ende
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
| | - Ryan Peters
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
| | - Anne L. McCabe
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, Massachusetts, USA
| |
Collapse
|
5
|
Yu MSC, Chiang DM, Reithmair M, Meidert A, Brandes F, Schelling G, Ludwig C, Meng C, Kirchner B, Zenner C, Muller L, Pfaffl MW. The proteome of bacterial membrane vesicles in Escherichia coli-a time course comparison study in two different media. Front Microbiol 2024; 15:1361270. [PMID: 38510998 PMCID: PMC10954253 DOI: 10.3389/fmicb.2024.1361270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Bacteria inhabit the in- and outside of the human body, such as skin, gut or the oral cavity where they play an innoxious, beneficial or even pathogenic role. It is well known that bacteria can secrete membrane vesicles (MVs) like eukaryotic cells with extracellular vesicles (EVs). Several studies indicate that bacterial membrane vesicles (bMVs) play a crucial role in microbiome-host interactions. However, the composition of such bMVs and their functionality under different culture conditions are still largely unknown. Methods To gain a better insight into bMVs, we investigated the composition and functionality of E. coli (DSM 105380) bMVs from the culture media Lysogeny broth (LB) and RPMI 1640 throughout the different phases of growth (lag-, log- and stationary-phase). bMVs from three time points (8 h, 54 h, and 168 h) and two media (LB and RPMI 1640) were isolated by ultracentrifugation and analyzed using nanoparticle tracking analysis (NTA), cryogenic electron microscopy (Cryo-EM), conventional transmission electron microscopy (TEM) and mass spectrometry-based proteomics (LC-MS/MS). Furthermore, we examined pro-inflammatory cytokines IL-1β and IL-8 in the human monocyte cell line THP-1 upon bMV treatment. Results Particle numbers increased with inoculation periods. The bMV morphologies in Cryo-EM/TEM were similar at each time point and condition. Using proteomics, we identified 140 proteins, such as the common bMV markers OmpA and GroEL, present in bMVs isolated from both media and at all time points. Additionally, we were able to detect growth-condition-specific proteins. Treatment of THP-1 cells with bMVs of all six groups lead to significantly high IL-1β and IL-8 expressions. Conclusion Our study showed that the choice of medium and the duration of culturing significantly influence both E. coli bMV numbers and protein composition. Our TEM/Cryo-EM results demonstrated the presence of intact E. coli bMVs. Common E. coli proteins, including OmpA, GroEL, and ribosome proteins, can consistently be identified across all six tested growth conditions. Furthermore, our functional assays imply that bMVs isolated from the six groups retain their function and result in comparable cytokine induction.
Collapse
Affiliation(s)
- Mia S. C. Yu
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Dapi Menglin Chiang
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
- Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany
| | - Agnes Meidert
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Florian Brandes
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Gustav Schelling
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
- Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany
| | - Christian Zenner
- Intestinal Microbiome, ZIEL – Institute for Food & Health, School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Laurent Muller
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Basel, Basel, Switzerland
| | - Michael W. Pfaffl
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|
6
|
Zhang X, Hou X, Feng W. Trace detection of canine distemper virus based on Michelson-interferometer sensing probe. JOURNAL OF BIOPHOTONICS 2024; 17:e202300329. [PMID: 37703422 DOI: 10.1002/jbio.202300329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
A single-mode-fiber (SMF)-multimode-fiber (MMF)-tri-core-fiber (TCF) Michelson probe structure is proposed for trace detection of canine distemper virus (CDV). One end of the TCF is cut flat and fused with the multimode fiber, and the other end is coated with a silver film to enhance the reflection, and an optic-fiber sensing probe with SMF-MMF-TCF structure is obtained. The (PDDA/PSS)3 multilayer film is modified on the surface of the fiber by layer-by-layer self-assembly method as a polyelectrolyte binder to immobilize CDV antibodies to form a (PDDA/PSS)3 /CDV antibody composite membrane for specific detection of CDV antigens. The response-recovery test of the sensor is performed to verify its repeatability. The detection limit, the sensitivity, and the linear fitting degree for CDV antigen are 0.1236 pg/mL, 1.1776 dB/(pg/mL), and 0.9899, respectively. At the same time, the stability, selectivity, and clinical samples of the sensors were also verified.
Collapse
Affiliation(s)
- Xinyu Zhang
- School of Science, Chongqing University of Technology, Chongqing, China
| | - Xiangyu Hou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Wenlin Feng
- School of Science, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing, China
| |
Collapse
|
7
|
Ibrahim ES, Ohlsen K. The Old Yellow Enzyme OfrA Fosters Staphylococcus aureus Survival via Affecting Thiol-Dependent Redox Homeostasis. Front Microbiol 2022; 13:888140. [PMID: 35656003 PMCID: PMC9152700 DOI: 10.3389/fmicb.2022.888140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Old yellow enzymes (OYEs) are widely found in the bacterial, fungal, and plant kingdoms but absent in humans and have been used as biocatalysts for decades. However, OYEs’ physiological function in bacterial stress response and infection situations remained enigmatic. As a pathogen, the Gram-positive bacterium Staphylococcus aureus adapts to numerous stress conditions during pathogenesis. Here, we show that in S. aureus genome, two paralogous genes (ofrA and ofrB) encode for two OYEs. We conducted a bioinformatic analysis and found that ofrA is conserved among all publicly available representative staphylococcal genomes and some Firmicutes. Expression of ofrA is induced by electrophilic, oxidative, and hypochlorite stress in S. aureus. Furthermore, ofrA contributes to S. aureus survival against reactive electrophilic, oxygen, and chlorine species (RES, ROS, and RCS) via thiol-dependent redox homeostasis. At the host–pathogen interface, S. aureusΔofrA has defective survival in macrophages and whole human blood and decreased staphyloxanthin production. Overall, our results shed the light onto a novel stress response strategy in the important human pathogen S. aureus.
Collapse
Affiliation(s)
- Eslam S Ibrahim
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Knut Ohlsen
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Mapipa Q, Digban TO, Nwodo UU. Antibiogram and detection of virulence genes among Klebsiella pneumoniae isolates from rustic hospital drains. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Davis K, Greenstein T, Viau Colindres R, Aldridge BB. Leveraging laboratory and clinical studies to design effective antibiotic combination therapy. Curr Opin Microbiol 2021; 64:68-75. [PMID: 34628295 PMCID: PMC8671129 DOI: 10.1016/j.mib.2021.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 01/21/2023]
Abstract
Interest in antibiotic combination therapy is increasing due to antimicrobial resistance and a slowing antibiotic pipeline. However, aside from specific indications, combination therapy in the clinic is often not administered systematically; instead, it is used at the physician's discretion as a bet-hedging mechanism to increase the chances of appropriately targeting a pathogen(s) with an unknown antibiotic resistance profile. Some recent clinical trials have been unable to demonstrate superior efficacy of combination therapy over monotherapy. Other trials have shown a benefit of combination therapy in defined circumstances consistent with recent studies indicating that factors including species, strain, resistance profile, and microenvironment affect drug combination efficacy and drug interactions. In this review, we discuss how a careful study design that takes these factors into account, along with the different drug interaction and potency metrics for assessing combination performance, may provide the necessary insight to understand the best clinical use-cases for combination therapy.
Collapse
Affiliation(s)
- Kathleen Davis
- Department of Molecular Biology & Microbiology, Tufts University School of Medicine, United States; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, United States
| | - Talia Greenstein
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, United States; Graduate School of Biomedical Sciences, Tufts University School of Medicine, United States
| | - Roberto Viau Colindres
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, United States; Department of Geographic Medicine and Infectious Diseases, Tufts Medical Center, United States
| | - Bree B Aldridge
- Department of Molecular Biology & Microbiology, Tufts University School of Medicine, United States; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, United States; Graduate School of Biomedical Sciences, Tufts University School of Medicine, United States
| |
Collapse
|
10
|
Mekengo BM, Hussein S, Ali MM. Distribution and antimicrobial resistance profile of bacteria recovered from sewage system of health institutions found in Hawassa, Sidama Regional State, Ethiopia: A descriptive study. SAGE Open Med 2021; 9:20503121211039097. [PMID: 34422269 PMCID: PMC8371727 DOI: 10.1177/20503121211039097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/23/2021] [Indexed: 11/15/2022] Open
Abstract
Objectives The aim of the study was to determine the distribution and antimicrobial susceptibility profile of bacteria recovered from the sewage systems of health institutions found in Hawassa, Sidama Regional State, Ethiopia. Methods A cross-sectional study was conducted from 20 October 2020 to 1 December 2020. A total of 27 sewage samples were collected at two points, namely, before entering the septic tank and from the septic tank of seven health institutions. Samples were inoculated onto Mannitol salt agar, Blood agar, and MacConkey agar, and incubated for 24 h at 37°C. Bacteria were identified using colony morphology, Gram staining, and biochemical tests. An antimicrobial susceptibility test was performed using the Kirby-Bauer disk diffusion method. Data were analyzed by SPSS, version 25, and results were presented in text and tables. Results All sewage samples (n = 27) examined in the current study contained potential pathogenic bacteria. Overall, 129 different types of bacteria were identified. Of isolated bacteria, 14 (10.8%) were Gram positive, while 115 (89.2%) were Gram negative. The most prevalent bacteria were Escherichia coli (n = 27, 20.9%) followed by Shigella species (n = 26, 20.2%), Pseudomonas species (n = 25, 19.4%), Salmonella species (n = 25, 19.4%), Staphylococcus aureus (n = 14, 10.9%), and Klebsiella species (n = 12, 9.3%). All bacteria were susceptible to azithromycin. About 80% of bacteria were resistant to ampicillin, whereas greater than 80% of bacteria were susceptible to norfloxacin, ciprofloxacin, and gentamicin. Conclusion All sewage systems of health institutions included in the current study contained different types of pathogenic bacteria, which are resistant to commonly prescribed antibiotics.
Collapse
Affiliation(s)
| | - Siraj Hussein
- School of Medical Laboratory Science, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Musa Mohammed Ali
- School of Medical Laboratory Science, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| |
Collapse
|
11
|
Owais HM, Baddour MM, El-Metwally HAER, Barakat HS, Ammar NS, Meheissen MA. Assessment of the in vitro activity of azithromycin niosomes alone and in combination with levofloxacin on extensively drug-resistant Klebsiella pneumoniae clinical isolates. Braz J Microbiol 2021; 52:597-606. [PMID: 33483896 PMCID: PMC8105464 DOI: 10.1007/s42770-021-00433-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/11/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND AIM Extensively drug-resistant (XDR) Klebsiella pneumoniae represent a major threat in intensive care units. The aim of the current study was to formulate a niosomal form of azithromycin (AZM) and to evaluate its in vitro effect on XDR K. pneumoniae as a single agent or in combination with levofloxacin. MATERIAL AND METHODS Forty XDR K. pneumoniae isolates (23 colistin-sensitive and 17 colistin-resistant) were included in the study. Formulation and characterization of AZM niosomes were performed. The in vitro effect of AZM solution/niosomes alone and in combination (with levofloxacin) was investigated using the checkerboard assay, confirmed with time-kill assay and post-antibiotic effect (PAE). RESULTS The AZM niosome mean minimal inhibitory concentration (MIC) (187.4 ± 209.1 μg/mL) was significantly lower than that of the AZM solution (342.5 ± 343.4 μg/mL). AZM niosomes/levofloxacin revealed a 40% synergistic effect compared to 20% with AZM solution/levofloxacin. No antagonistic effect was detected. The mean MIC values of both AZM niosomes and AZM solution were lower in the colistin-resistant group than in the colistin-sensitive group. The mean PAE time of AZM niosomes (2.3 ± 1.09 h) was statistically significantly longer than that of the AZM solution (1.37 ± 0.5 h) (p = 0.023). CONCLUSION AZM niosomes were proved to be more effective than AZM solution against XDR K. pneumoniae, even colistin-resistant isolates.
Collapse
Affiliation(s)
- Hoda Mohamed Owais
- Medical Microbiology and Immunology Department, Faculty of Medicine, Alexandria University, Khartoum Square, Azarita, Alexandria, 21512, Egypt
| | - Manal Mohammad Baddour
- Medical Microbiology and Immunology Department, Faculty of Medicine, Alexandria University, Khartoum Square, Azarita, Alexandria, 21512, Egypt
| | - Hala Abd El-Raouf El-Metwally
- Medical Microbiology and Immunology Department, Faculty of Medicine, Alexandria University, Khartoum Square, Azarita, Alexandria, 21512, Egypt
| | - Heba Soliman Barakat
- Pharmaceutics Department, Faculty of Pharmacy, Alexandria University, Alexandria, 21512, Egypt
| | - Nour Sherif Ammar
- Alexandria University Hospitals, Alexandria University, Alexandria, 21512, Egypt
| | - Marwa Ahmed Meheissen
- Medical Microbiology and Immunology Department, Faculty of Medicine, Alexandria University, Khartoum Square, Azarita, Alexandria, 21512, Egypt.
| |
Collapse
|
12
|
Leroy AG, Caillon J, Caroff N, Broquet A, Corvec S, Asehnoune K, Roquilly A, Crémet L. Could Azithromycin Be Part of Pseudomonas aeruginosa Acute Pneumonia Treatment? Front Microbiol 2021; 12:642541. [PMID: 33796090 PMCID: PMC8008145 DOI: 10.3389/fmicb.2021.642541] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/29/2022] Open
Abstract
Azithromycin (AZM) is a 15-membered-ring macrolide that presents a broad-spectrum antimicrobial activity against Gram-positive bacteria and atypical microorganisms but suffers from a poor diffusion across the outer-membrane of Gram-negative bacilli, including Pseudomonas aeruginosa (PA). However, AZM has demonstrated clinical benefits in patients suffering from chronic PA respiratory infections, especially cystic fibrosis patients. Since the rise of multidrug-resistant PA has led to a growing need for new therapeutic options, this macrolide has been proposed as an adjunctive therapy. Clinical trials assessing AZM in PA acute pneumonia are scarce. However, a careful examination of the available literature provides good rationales for its use in that context. In fact, 14- and 15-membered-ring macrolides have demonstrated immunomodulatory and immunosuppressive effects that could be of major interest in the management of acute illness. Furthermore, growing evidence supports a downregulation of PA virulence dependent on direct interaction with the ribosomes, and based on the modulation of several key regulators from the Quorum Sensing network. First highlighted in vitro, these interesting properties of AZM have subsequently been confirmed in the animal models. In this review, we systematically analyzed the literature regarding AZM immunomodulatory and anti-PA effects. In vitro and in vivo studies, as well as clinical trials were reviewed, looking for rationales for AZM use in PA acute pneumonia.
Collapse
Affiliation(s)
- Anne-Gaëlle Leroy
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France.,CHU de Nantes, Service de Bactériologie-Hygiène hospitalière, Nantes Université, Nantes, France
| | - Jocelyne Caillon
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France.,CHU de Nantes, Service de Bactériologie-Hygiène hospitalière, Nantes Université, Nantes, France
| | - Nathalie Caroff
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France
| | - Alexis Broquet
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France
| | - Stéphane Corvec
- CHU de Nantes, Service de Bactériologie-Hygiène hospitalière, Nantes Université, Nantes, France.,CRCINA, U1232, CHU Nantes, Nantes, France
| | - Karim Asehnoune
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France.,CHU de Nantes, Service Anesthésie Réanimation Chirurgicale, Nantes Université, Nantes, France
| | - Antoine Roquilly
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France.,CHU de Nantes, Service Anesthésie Réanimation Chirurgicale, Nantes Université, Nantes, France
| | - Lise Crémet
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France.,CHU de Nantes, Service de Bactériologie-Hygiène hospitalière, Nantes Université, Nantes, France
| |
Collapse
|
13
|
Rajput A, Poudel S, Tsunemoto H, Meehan M, Szubin R, Olson CA, Seif Y, Lamsa A, Dillon N, Vrbanac A, Sugie J, Dahesh S, Monk JM, Dorrestein PC, Knight R, Pogliano J, Nizet V, Feist AM, Palsson BO. Identifying the effect of vancomycin on health care-associated methicillin-resistant Staphylococcus aureus strains using bacteriological and physiological media. Gigascience 2021; 10:6072295. [PMID: 33420779 PMCID: PMC7794652 DOI: 10.1093/gigascience/giaa156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The evolving antibiotic-resistant behavior of health care-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) USA100 strains are of major concern. They are resistant to a broad class of antibiotics such as macrolides, aminoglycosides, fluoroquinolones, and many more. FINDINGS The selection of appropriate antibiotic susceptibility examination media is very important. Thus, we use bacteriological (cation-adjusted Mueller-Hinton broth) as well as physiological (R10LB) media to determine the effect of vancomycin on USA100 strains. The study includes the profiling behavior of HA-MRSA USA100 D592 and D712 strains in the presence of vancomycin through various high-throughput assays. The US100 D592 and D712 strains were characterized at sub-inhibitory concentrations through growth curves, RNA sequencing, bacterial cytological profiling, and exo-metabolomics high throughput experiments. CONCLUSIONS The study reveals the vancomycin resistance behavior of HA-MRSA USA100 strains in dual media conditions using wide-ranging experiments.
Collapse
Affiliation(s)
- Akanksha Rajput
- Department of Bioengineering, University of California, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Saugat Poudel
- Department of Bioengineering, University of California, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Hannah Tsunemoto
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Michael Meehan
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Connor A Olson
- Department of Bioengineering, University of California, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Yara Seif
- Department of Bioengineering, University of California, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Anne Lamsa
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Nicholas Dillon
- Department of Pediatrics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92023, USA.,Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), Department of Pediatrics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Alison Vrbanac
- Department of Pediatrics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92023, USA.,Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), Department of Pediatrics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Joseph Sugie
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Samira Dahesh
- Department of Pediatrics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92023, USA.,Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), Department of Pediatrics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Jonathan M Monk
- Department of Bioengineering, University of California, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Center for Microbiome Innovation, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Rob Knight
- Department of Bioengineering, University of California, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Department of Pediatrics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92023, USA.,Center for Microbiome Innovation, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Department of Computer Science and Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Victor Nizet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Department of Pediatrics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92023, USA.,Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), Department of Pediatrics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Center for Microbiome Innovation, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Adam M Feist
- Department of Bioengineering, University of California, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Department of Pediatrics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92023, USA.,Center for Microbiome Innovation, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| |
Collapse
|
14
|
Isler M, Wissmann R, Morach M, Zurfluh K, Stephan R, Nüesch-Inderbinen M. Animal petting zoos as sources of Shiga toxin-producing Escherichia coli, Salmonella and extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. Zoonoses Public Health 2020; 68:79-87. [PMID: 33382208 DOI: 10.1111/zph.12798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/04/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023]
Abstract
Animal petting zoos and farm fairs provide the opportunity for children and adults to interact with animals, but contact with animals carries a risk of exposure to zoonotic pathogens and antimicrobial-resistant bacteria. The aim of this study was to assess the occurrence of Shiga toxin-producing Escherichia coli (STEC), Salmonella, extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae and methicillin-resistant Staphylococcus aureus (MRSA) in animal faeces from six animal petting zoos and one farm fair in Switzerland. Furthermore, hygiene facilities on the venues were evaluated. Of 163 faecal samples, 75 contained stx1, stx2 or stx1/stx2 genes, indicating the presence of STEC. Samples included faeces from sika deer (100%), sheep (92%), goats (88%), mouflons (80%), camels (62%), llamas (50%), yaks (50%), pigs (29%) and donkeys (6%), whereas no stx genes were isolated from faeces of calves, guinea pigs, hens, ostriches, ponies, zebras or zebus. Salmonella enterica subsp. enterica serovar Stourbridge (S. Stourbridge) was detected in faecal samples from camels. A total of four ESBL-producing E. coli strains were isolated from faeces of goats, camels and pigs. PCR and sequencing identified the presence of blaCTX-M-15 in three and blaCTX-M-65 in one E. coli. Antimicrobial resistance profiling using the disk diffusion method revealed two multidrug-resistant (MDR) E. coli with resistance to ciprofloxacin, gentamicin and azithromycin, all of which are critically important drugs for human medicine. Multilocus sequence typing identified E. coli ST162, E. coli ST2179, extraintestinal high-risk E. coli ST410 and E. coli ST4553, which belongs to the emerging extraintestinal clonal complex (CC) 648. No MRSA was detected. On all animal petting venues, there were inadequacies with regard to access to hygiene information and handwashing hygiene facilities. This study provides data that underscore the importance of hygiene measures to minimize the risk of transmission of zoonotic pathogens and MDR, ESBL-producing E. coli to visitors of animal petting venues.
Collapse
Affiliation(s)
- Meret Isler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Ramona Wissmann
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marina Morach
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Katrin Zurfluh
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|