1
|
Yao S, Yu J, Zhang T, Xie J, Yan C, Ni X, Guo B, Cui C. Comprehensive analysis of distribution characteristics and horizontal gene transfer elements of bla NDM-1-carrying bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173907. [PMID: 38906294 DOI: 10.1016/j.scitotenv.2024.173907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/23/2024]
Abstract
The worldwide dissemination of New Delhi metallo-β-lactamase-1 (NDM-1), which mediates resistance to almost all clinical β-lactam antibiotics, is a major public health problem. The global distribution, species, sources, and potential transfer risk of blaNDM-1-carrying bacteria are unclear. Results of a comprehensive analysis of literature in 2010-2022 showed that a total of 6002 blaNDM-1 carrying bacteria were widely distributed around 62 countries with a high trend in the coastal areas. Opportunistic pathogens or pathogens like Klebsiella sp., Escherichia sp., Acinetobacter sp. and Pseudomonas sp. were the four main species indicating the potential microbial risk. Source analysis showed that 86.45 % of target bacteria were isolated from the source of hospital (e.g., Hospital patients and wastewater) and little from surface water (5.07 %) and farms (3.98 %). A plasmid-encoded blaNDM-1Acinetobacter sp. with the resistance mechanisms of antibiotic efflux pump, antibiotic target change and antibiotic degradation was isolated from the wastewater of a typical tertiary hospital. Insertion sequences (IS3 and IS30) located in the adjacent 5 kbp of blaNDM-1-bleMBL gene cluster indicating the transposon-mediated horizontal gene transfer risk. These results showed that the worldwide spread of blaNDM-1-carrying bacteria and its potential horizontal gene transfer risk deserve good control.
Collapse
Affiliation(s)
- Shijie Yao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaqin Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianhao Xie
- Children's Hospital of Fudan University, Shanghai 200233, China
| | - Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Ni
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bingbing Guo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai environmental protection key laboratory on environmental standard and risk management of chemical pollutants, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Duran-Bedolla J, Téllez-Sosa J, Bocanegra-Ibarias P, Schilmann A, Bravo-Romero S, Reyna-Flores F, Villa-Reyes T, Barrios-Camacho H. Citrobacter spp. and Enterobacter spp. as reservoirs of carbapenemase blaNDM and blaKPC resistance genes in hospital wastewater. Appl Environ Microbiol 2024; 90:e0116524. [PMID: 39012101 PMCID: PMC11337798 DOI: 10.1128/aem.01165-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Antibiotic resistance has emerged as a global threat to public health, generating a growing interest in investigating the presence of antibiotic-resistant bacteria in environments influenced by anthropogenic activities. Wastewater treatment plants in hospital serve as significant reservoirs of antimicrobial-resistant bacteria, where a favorable environment is established, promoting the proliferation and transfer of resistance genes among different bacterial species. In our study, we isolated a total of 243 strains from 5 hospital wastewater sites in Mexico, belonging to 21 distinct Gram-negative bacterial species. The presence of β-lactamase was detected in 46.9% (114/243) of the isolates, which belonging to the Enterobacteriaceae family. We identified a total of 169 β-lactamase genes; blaTEM in 33.1%, blaCTX-M in 25.4%, blaKPC in 25.4%, blaNDM 8.8%, blaSHV in 5.3%, and blaOXA-48 in 1.1% distributed in 12 different bacteria species. Among the 114 of the isolates, 50.8% were found to harbor at least one carbapenemase and were discharged into the environment. The carbapenemase blaKPC was found in six Citrobacter spp. and E. coli, while blaNDM was detected in two distinct Enterobacter spp. and E. coli. Notably, blaNDM-1 was identified in a 110 Kb IncFII conjugative plasmid in E. cloacae, E. xiangfangensis, and E. coli within the same hospital wastewater. In conclusion, hospital wastewater showed the presence of Enterobacteriaceae carrying a high frequency of carbapenemase blaKPC and blaNDM. We propose that hospital wastewater serves as reservoirs for resistance mechanism within bacterial communities and creates an optimal environment for the exchange of this resistance mechanism among different bacterial strains. IMPORTANCE The significance of this study lies in its findings regarding the prevalence and diversity of antibiotic-resistant bacteria and genes identified in hospital wastewater in Mexico. The research underscores the urgent need for enhanced surveillance and prevention strategies to tackle the escalating challenge of antibiotic resistance, particularly evident through the elevated frequencies of carbapenemase genes such as blaKPC and blaNDM within the Enterobacteriaceae family. Moreover, the identification of these resistance genes on conjugative plasmids highlights the potential for widespread transmission via horizontal gene transfer. Understanding the mechanisms of antibiotic resistance in hospital wastewater is crucial for developing targeted interventions aimed at reducing transmission, thereby safeguarding public health and preserving the efficacy of antimicrobial therapies.
Collapse
Affiliation(s)
- Josefina Duran-Bedolla
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca, Morelos, Mexico
| | - Juan Téllez-Sosa
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca, Morelos, Mexico
| | - Paola Bocanegra-Ibarias
- Facultad de Medicina, Hospital Universitario "Dr. José Eleuterio González", Departamento de Enfermedades Infecciosas, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Astrid Schilmann
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación en Salud Poblacional, Cuernavaca, Morelos, Mexico
| | - Sugey Bravo-Romero
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca, Morelos, Mexico
| | - Fernando Reyna-Flores
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca, Morelos, Mexico
| | - Tania Villa-Reyes
- Coordinación Nacional de la Red Hospitalaria de Vigilancia Epidemiológica, Dirección General de Epidemiología, Ciudad de México, Mexico
| | - Humberto Barrios-Camacho
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca, Morelos, Mexico
| |
Collapse
|
3
|
Liu X, Wong MKL, Zhang D, Chan DCL, Chan OSK, Chan GPL, Shum MHH, Peng Y, Lai CKC, Cowling BJ, Zhang T, Fukuda K, Lam TTY, Tun HM. Longitudinal monitoring reveals the emergence and spread of bla GES-5-harboring carbapenem-resistant Klebsiella quasipneumoniae in a Hong Kong hospital wastewater discharge line. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166255. [PMID: 37574056 DOI: 10.1016/j.scitotenv.2023.166255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Testing hospital wastewater (HWW) is potentially an effective, long-term approach for monitoring trends in antimicrobial resistance (AMR) patterns in health care institutions. Over a year, we collected wastewater samples from the clinical and non-clinical sites of a tertiary hospital and from a downstream wastewater treatment plant (WWTP). We focused on the extent of carbapenem resistance among Enterobacteriaceae isolates given their clinical importance. Escherichia coli and Klebsiella spp. were the most frequently isolated Enterobacteriaceae species at all sampling sites. Additionally, a small number of isolates belonging to ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), except K. pneumoniae, were detected. Of the 232 Klebsiella spp. isolates, 100 (43.1 %) were multi-drug resistant (MDR), with 46 being carbapenem-resistant. Most of these carbapenem-resistant isolates were K. quasipneumoniae (CRKQ) (n = 44). All CRKQ isolates were isolated from the wastewater of a clinical site that includes intensive care units, which also yielded significantly more multi-drug resistant isolates compared to all other sampling sites. Among the CRKQ isolates, blaGES-5 genes (n = 42) were the primary genetic determinant of carbapenem resistance. Notably, three different CRKQ isolates, collected within the same month in HWW and the influent and effluent flow of the WWTP, shared >99 % sequence similarity between their blaGES-5 genes and between their flanking regions and upstream integron-integrase region. The influent isolate was phylogenetically close to K. quasipnuemoniae isolates from wastewater collected in Japan. Its blaGES-5 gene and surrounding sequences were > 99 % identical to blaGES-24 genes found in the Japanese isolates. Our results suggest that testing samples from sites located closer to hospitals could support antibiotic stewardship programs compared to samples collected further downstream. Moreover, testing samples collected regularly from WWTPs may reflect the local and global spread of pathogens and their resistances.
Collapse
Affiliation(s)
- Xin Liu
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Microbiota-I Center (MagIC), Hong Kong, China; System Microbiology and Antimicrobial Resistance (SMART) Lab, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew K L Wong
- Microbiota-I Center (MagIC), Hong Kong, China; System Microbiology and Antimicrobial Resistance (SMART) Lab, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Dengwei Zhang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Darren C L Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Olivia S K Chan
- System Microbiology and Antimicrobial Resistance (SMART) Lab, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Gary P L Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Marcus Ho-Hin Shum
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong, China
| | - Ye Peng
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Microbiota-I Center (MagIC), Hong Kong, China; System Microbiology and Antimicrobial Resistance (SMART) Lab, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Christopher K C Lai
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Benjamin J Cowling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Keiji Fukuda
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tommy Tsam-Yuk Lam
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong, China
| | - Hein M Tun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Microbiota-I Center (MagIC), Hong Kong, China; System Microbiology and Antimicrobial Resistance (SMART) Lab, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Okafor JU, Nwodo UU. Molecular Characterization of Antibiotic Resistance Determinants in Klebsiella pneumoniae Isolates Recovered from Hospital Effluents in the Eastern Cape Province, South Africa. Antibiotics (Basel) 2023; 12:1139. [PMID: 37508235 PMCID: PMC10376002 DOI: 10.3390/antibiotics12071139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is an opportunistic bacteria responsible for many nosocomial and community-acquired infections. The emergence and spread of antibiotic resistances have resulted in widespread epidemics and endemic dissemination of multidrug-resistant pathogens. A total of 145 K. pneumoniae isolates were recovered from hospital wastewater effluents and subjected to antibiogram profiling. Furthermore, the antibiotic resistance determinants were assessed among phenotypic resistant isolates using polymerase chain reaction (PCR). The isolates showed a wide range of antibiotic resistance against 21 selected antibiotics under 11 classes, with the most susceptible shown against imipenem (94.5%) and the most resistant shown against ampicillin (86.2%). The isolates also showed susceptibility to piperacillin/tazobactam (89.0%), ertapenem (87.6%), norfloxacin (86.2%), cefoxitin (86.2%), meropenem (76.6%), doripenem (76.6%), gentamicin (76.6%), chloramphenicol (73.1%), nitrofurantoin (71.7%), ciprofloxacin (79.3%), amikacin (60.7%), and amoxicillin/clavulanic acid (70.4%). Conversely, resistance was also recorded against tetracycline (69%), doxycycline (56.6%), cefuroxime (46.2%), cefotaxime (48.3%), ceftazidime (41.4%). Out of the 32 resistance genes tested, 28 were confirmed, with [tetA (58.8%), tetD (47.89%), tetM (25.2%), tetB (5.9%)], [sul1 (68.4%), sul1I (66.6%)], and [aadA (62.3%), strA (26%), aac(3)-IIa(aacC2)a (14.4%)] genes having the highest occurrence. Strong significant associations exist among the resistance determinants screened. About 82.7% of the K. pneumoniae isolates were multidrug-resistant (MDR) with a multiple antibiotics resistance index (MARI) range of 0.24 to 1.0. A dual presence of the resistant genes among K. pneumoniae was also observed to occur more frequently than multiple presences. This study reveals a worrisome presence of multidrug-resistant K. pneumoniae isolates and resistance genes in hospital waste effluent, resulting in higher public health risks using untreated surface water for human consumption. As a result, adequate water treatment and monitoring initiatives designed to monitor antimicrobial resistance patterns in the aquatic ecosystem are required.
Collapse
Affiliation(s)
- Joan U Okafor
- Patho-Biocatalysis Group (PBG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Uchechukwu U Nwodo
- Patho-Biocatalysis Group (PBG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
5
|
Stephen J, Salam F, Lekshmi M, Kumar SH, Varela MF. The Major Facilitator Superfamily and Antimicrobial Resistance Efflux Pumps of the ESKAPEE Pathogen Staphylococcus aureus. Antibiotics (Basel) 2023; 12:343. [PMID: 36830254 PMCID: PMC9952236 DOI: 10.3390/antibiotics12020343] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The ESKAPEE bacterial pathogen Staphylococcus aureus has posed a serious public health concern for centuries. Throughout its evolutionary course, S. aureus has developed strains with resistance to antimicrobial agents. The bacterial pathogen has acquired multidrug resistance, causing, in many cases, untreatable infectious diseases and raising serious public safety and healthcare concerns. Amongst the various mechanisms for antimicrobial resistance, integral membrane proteins that serve as secondary active transporters from the major facilitator superfamily constitute a chief system of multidrug resistance. These MFS transporters actively export structurally different antimicrobial agents from the cells of S. aureus. This review article discusses the S. aureus-specific MFS multidrug efflux pump systems from a molecular mechanistic perspective, paying particular attention to structure-function relationships, modulation of antimicrobial resistance mediated by MFS drug efflux pumps, and direction for future investigation.
Collapse
Affiliation(s)
- Jerusha Stephen
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Fathima Salam
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Manjusha Lekshmi
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Sanath H. Kumar
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
| |
Collapse
|
6
|
Girijan SK, Pillai D. Genetic diversity and prevalence of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in aquatic environments receiving untreated hospital effluents. JOURNAL OF WATER AND HEALTH 2023; 21:66-80. [PMID: 36705498 DOI: 10.2166/wh.2022.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The spread of extended-spectrum beta-lactamase (ESBL)-producing bacteria in the environment has been recognized as a challenge to public health. The aim of the present study was to assess the occurrence of ESBL-producing Escherichia coli and Klebsiella pneumoniae from selected water bodies receiving hospital effluents in Kerala, India. Nearly 69.8% of Enterobacteriaceae isolates were multi-drug resistant by the Kirby-Bauer disc diffusion method. The double disc synergy test was used to detect the ESBL production and the genes responsible for imparting resistance were detected by PCR. Conjugation experiments confirmed the mechanism of plasmid-mediated transfer of resistance. The prevalence of ESBL production in E. coli and K. pneumoniae was 49.2 and 46.8%, respectively. Among the ESBL-encoding genes, blaCTX-M was the most prevalent group followed by blaTEM, blaOXA, blaCMY, and blaSHV. The results suggest that healthcare settings are one of the key contributors to the spread of ESBL-producing bacteria, not only through cross-transmission and ingestion of antibiotics but also through the discharge of waste without a proper treatment, leading to harmful effects on the aquatic environment. The high prevalence of ESBL-producing Enterobacteriaceae with resistance genes in public water bodies even post-treatment poses a serious threat.
Collapse
Affiliation(s)
- Sneha Kalasseril Girijan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India E-mail:
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India E-mail:
| |
Collapse
|
7
|
Waśko I, Kozińska A, Kotlarska E, Baraniak A. Clinically Relevant β-Lactam Resistance Genes in Wastewater Treatment Plants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113829. [PMID: 36360709 PMCID: PMC9657204 DOI: 10.3390/ijerph192113829] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 05/17/2023]
Abstract
Antimicrobial resistance (AMR) is one of the largest global concerns due to its influence in multiple areas, which is consistent with One Health's concept of close interconnections between people, animals, plants, and their shared environments. Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) circulate constantly in various niches, sediments, water sources, soil, and wastes of the animal and plant sectors, and is linked to human activities. Sewage of different origins gets to the wastewater treatment plants (WWTPs), where ARB and ARG removal efficiency is still insufficient, leading to their transmission to discharge points and further dissemination. Thus, WWTPs are believed to be reservoirs of ARGs and the source of spreading AMR. According to a World Health Organization report, the most critical pathogens for public health include Gram-negative bacteria resistant to third-generation cephalosporins and carbapenems (last-choice drugs), which represent β-lactams, the most widely used antibiotics. Therefore, this paper aimed to present the available research data for ARGs in WWTPs that confer resistance to β-lactam antibiotics, with a particular emphasis on clinically important life-threatening mechanisms of resistance, including extended-spectrum β-lactamases (ESBLs) and carbapenemases (KPC, NDM).
Collapse
Affiliation(s)
- Izabela Waśko
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
- Correspondence: ; Tel.: +48-228-410-623
| | - Aleksandra Kozińska
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
| | - Ewa Kotlarska
- Genetics and Marine Biotechnology Department, Institute of Oceanology of the Polish Academy of Sciences, Powstancow Warszawy 55, 81-712 Sopot, Poland
| | - Anna Baraniak
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
| |
Collapse
|
8
|
Prevalence of Waterborne blaNDM-1 Gene Producing Carbapenem-resistant Klebsiella pneumoniae from Al-Hillah River Water, Babylon Province, Iraq. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current work suggested the occurrence of blaNDM-1 gene among Klebsiella pneumoniae recovered from surface waters of the Al-Hillah River. Between January and April 2015, water samples (101) were taken from seven different area of the Al-Hillah River, Babylon province, Iraq. K.pneumoniae was reported in percentage of 35 (34.6%). The antibiotics susceptibility profile of K.pneumoniae was determined with disk diffusion assay. The most common resistance was detected for penicillins agents (ampicillin and cloxacillin) with 20(57.14%) and 17(48.57%) resistance rate, respectively. Two isolates of K.pneumoniae were carbapenem-resistant. Phenotypic screening of metallo β-lactamase detection was carried out using imipenem–EDTA double disk synergy test for carbapenem resistant isolates, 2(100%) isolates with positive result. Conventional Polymerase Chain Reaction (PCR) test was used for detection NDM-1 beta-lactamase, 1 (50%) K.pneumoniae isolate harboring this gene.
Collapse
|
9
|
OXA-48-Like β-Lactamases: Global Epidemiology, Treatment Options, and Development Pipeline. Antimicrob Agents Chemother 2022; 66:e0021622. [PMID: 35856662 PMCID: PMC9380527 DOI: 10.1128/aac.00216-22] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Modern medicine is threatened by the rising tide of antimicrobial resistance, especially among Gram-negative bacteria, where resistance to β-lactams is most often mediated by β-lactamases. The penicillin and cephalosporin ascendancies were, in their turn, ended by the proliferation of TEM penicillinases and CTX-M extended-spectrum β-lactamases. These class A β-lactamases have long been considered the most important. For carbapenems, however, the threat is increasingly from the insidious rise of a class D carbapenemase, OXA-48, and its close relatives. Over the past 20 years, OXA-48 and "OXA-48-like" enzymes have proliferated to become the most prevalent enterobacterial carbapenemases across much of Europe, Northern Africa, and the Middle East. OXA-48-like enzymes are notoriously difficult to detect because they often cause only low-level in vitro resistance to carbapenems, meaning that the true burden is likely underestimated. Despite this, they are associated with carbapenem treatment failures. A highly conserved incompatibility complex IncL plasmid scaffold often carries blaOXA-48 and may carry other antimicrobial resistance genes, leaving limited treatment options. High conjugation efficiency means that this plasmid is sometimes carried by multiple Enterobacterales in a single patient. Producers evade most β-lactam-β-lactamase inhibitor combinations, though promising agents have recently been licensed, notably ceftazidime-avibactam and cefiderocol. The molecular machinery enabling global spread, current treatment options, and the development pipeline of potential new therapies for Enterobacterales that produce OXA-48-like β-lactamases form the focus of this review.
Collapse
|
10
|
Hope O, Bright IE, Alagbonsi AI. GC-MS biocomponents characterization and antibacterial potency of ethanolic crude extracts of Camellia sinensis. SAGE Open Med 2022; 10:20503121221116859. [PMID: 35966211 PMCID: PMC9373190 DOI: 10.1177/20503121221116859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/13/2022] [Indexed: 11/15/2022] Open
Abstract
Objective: The menace of antibacterial resistance among enteropathogenic bacteria
continues to raise therapeutic management concerns within public health
system. As a strategy toward alternative control of resistant pathogen
proliferation, a folkloric plant (green tea leaves: Camellia
sinensis) was collected from Ishaka municipality and
characterized for biomolecular components and antibacterial potency. Methods: The bioactive and biomolecular components of the plant’s ethanol extract were
characterized using gas chromatography–mass spectrometry. A preliminary in
vitro susceptibility test of the extract against characterized multiple
antibiotic-resistant potential diarrheagenic bacterial strains was done. Results: The result revealed an exponential increase in susceptibility with a
distinctive unit component of the C. sinensis extract at
concentrations of 60 and 80 μg/ml. The extract also possessed antibacterial
and antioxidant activities while having phytochemical constituents
(flavonoids, alkaloids, phenolics, saponin, cardiac glycosides, etc.). The
gas chromatography–mass spectrometry analysis further affirmed the potential
of the extract by revealing 52 bioactive components/compounds as shown in
the chromatogram. Conclusion: The C. sinensis has antimicrobial and antioxidant
potentials, and the constituents of the plant might be of therapeutic
importance in the management of various diseases, especially those related
to Escherichia coli and Salmonella.
Collapse
Affiliation(s)
- Onohuean Hope
- Biomolecules, Metagenomics, Endocrine and Tropical Disease Research Group (BMETDREG), Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda.,Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Ishaka-Bushenyi, Uganda
| | - Igere E Bright
- Department of Microbiology and Biotechnology, Western Delta University Oghara, Delta State, Nigeria
| | - Abdullateef I Alagbonsi
- Physiology Unit, Department of Clinical Biology, School of Medicine and Pharmacy, University of Rwanda College of Medicine and Health Sciences, Huye, Republic of Rwanda
| |
Collapse
|
11
|
Denissen J, Reyneke B, Waso-Reyneke M, Havenga B, Barnard T, Khan S, Khan W. Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. Int J Hyg Environ Health 2022; 244:114006. [PMID: 35841823 DOI: 10.1016/j.ijheh.2022.114006] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 01/10/2023]
Abstract
The ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens are characterised by increased levels of resistance towards multiple classes of first line and last-resort antibiotics. Although these pathogens are frequently isolated from clinical environments and are implicated in a variety of life-threatening, hospital-associated infections; antibiotic resistant ESKAPE strains have been isolated from environmental reservoirs such as surface water, wastewater, food, and soil. Literature on the persistence and subsequent health risks posed by the ESKAPE isolates in extra-hospital settings is however, limited and the current review aims to elucidate the primary reservoirs of these pathogens in the environment, their antibiotic resistance profiles, and the link to community-acquired infections. Additionally, information on the current state of research regarding health-risk assessments linked to exposure of the ESKAPE pathogens in the natural environment, is outlined.
Collapse
Affiliation(s)
- Julia Denissen
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Monique Waso-Reyneke
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Benjamin Havenga
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Tobias Barnard
- Water and Health Research Centre, University of Johannesburg, PO Box 17011, Doornfontein, 7305, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
12
|
Teban-Man A, Szekeres E, Fang P, Klümper U, Hegedus A, Baricz A, Berendonk TU, Pârvu M, Coman C. Municipal Wastewaters Carry Important Carbapenemase Genes Independent of Hospital Input and Can Mirror Clinical Resistance Patterns. Microbiol Spectr 2022; 10:e0271121. [PMID: 35234513 PMCID: PMC8941857 DOI: 10.1128/spectrum.02711-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/01/2022] [Indexed: 12/31/2022] Open
Abstract
The spatiotemporal variation of several carbapenemase-encoding genes (CRGs) was investigated in the influent and effluent of municipal WWTPs, with or without hospital sewage input. Correlations among gene abundances, bacterial community composition, and wastewater quality parameters were tested to identify possible predictors of CRGs presence. Also, the possible role of wastewaters in mirroring clinical resistance is discussed. The taxonomic groups and gene abundances showed an even distribution among wastewater types, meaning that hospital sewage does not influence the microbial diversity and the CRG pool. The bacterial community was composed mainly of Proteobacteria, Firmicutes, Actinobacteria, Patescibacteria, and Bacteroidetes. Acinetobacter spp. was the most abundant group and had the majority of operational taxonomic units (OTUs) positively correlated with CRGs. This agrees with recent reports on clinical data. The influent samples were dominated by blaKPC, as opposed to effluent, where blaIMP was dominant. Also, blaIMP was the most frequent CRG family observed to correlate with bacterial taxa, especially with the Mycobacterium genus in effluent samples. Bacterial load, blaNDM, blaKPC, and blaOXA-48 abundances were positively correlated with BOD5, TSS, HEM, Cr, Cu, and Fe concentrations in wastewaters. When influent gene abundance values were converted into population equivalent (PE) data, the highest copies/1 PE were identified for blaKPC and blaOXA-48, agreeing with previous studies regarding clinical isolates. Both hospital and non-hospital-type samples followed a similar temporal trend of CRG incidence, but with differences among gene groups. Colder seasons favored the presence of blaNDM, blaKPC and blaOXA-48, whereas warmer temperatures show increased PE values for blaVIM and blaIMP. IMPORTANCE Wastewater-based epidemiology has recently been recognized as a valuable, cost-effective tool for antimicrobial resistance surveillance. It can help gain insights into the characteristics and distribution of antibiotic resistance elements at a local, national, and even global scale. In this study, we investigated the possible use of municipal wastewaters in the surveillance of clinically relevant carbapenemase-encoding genes (CRGs), seen as critical antibiotic resistance determinants. In this matter, our results highlight positive correlations among CRGs, microbial diversity, and wastewater physical and chemical parameters. Identified predictors can provide valuable data regarding the level of raw and treated wastewater contamination with these important antibiotic resistance genes. Also, wastewater-based gene abundances were used for the first time to observe possible spatiotemporal trends of CRGs incidence in the general population. Therefore, possible hot spots of carbapenem resistance could be easily identified at the community level, surpassing the limitations of health care-associated settings.
Collapse
Affiliation(s)
- Adela Teban-Man
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
- Department of Taxonomy and Ecology, Institute of Biological Research, Branch of NIRDBS, Cluj-Napoca, Romania
| | - Edina Szekeres
- Department of Taxonomy and Ecology, Institute of Biological Research, Branch of NIRDBS, Cluj-Napoca, Romania
| | - Peiju Fang
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - Uli Klümper
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - Adriana Hegedus
- Department of Taxonomy and Ecology, Institute of Biological Research, Branch of NIRDBS, Cluj-Napoca, Romania
| | - Andreea Baricz
- Department of Taxonomy and Ecology, Institute of Biological Research, Branch of NIRDBS, Cluj-Napoca, Romania
| | | | - Marcel Pârvu
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Cristian Coman
- Department of Taxonomy and Ecology, Institute of Biological Research, Branch of NIRDBS, Cluj-Napoca, Romania
| |
Collapse
|
13
|
Onohuean H, Igere BE. Occurrence, Antibiotic Susceptibility and Genes Encoding Antibacterial Resistance of Salmonella spp. and Escherichia coli From Milk and Meat Sold in Markets of Bushenyi District, Uganda. Microbiol Insights 2022; 15:11786361221088992. [PMID: 35431556 PMCID: PMC9008818 DOI: 10.1177/11786361221088992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
The bacteriological safety of food/food products and the menace of antimicrobial
resistance amongst enteropathogenic bacteria raise therapeutic management
concerns within the public health system. Recently consumers of food/food
products purchased from the public market of Bushenyi District presents with
Enterobacteriaceae infection-associated symptoms and clinical conditions. We
determine the molecular characterization and antibiotic signatures of some
enteric bacterial recovered from foods/food products in markets of Bushenyi
District, Uganda. Standard molecular biology techniques (Polymerase chain
reaction PCR) and microbiological procedures were applied. Meat (MT) and milk
(MK) samples were collected from 4 communities/town markets (Kizinda, Ishaka,
Bushenyi, kashenyi) between April and September 2020 and analyzed. Our result
reveals high differential counts of Salmonella species
(175.33 ± 59.71 Log 10 CFU/100 ml) and Escherichia coli
(53.33 ± 26.03 Log 10 CFU/100 ml) within the 4 markets with the count of
Salmonella species higher than that of E.
coli in each sampled market. The PCR further confirmed the detected
strains (22.72% of E. coli and 54.29% of
Salmonella species) and diverse multiple
antibiotic-resistant determinants {TEM: (12 (23.1%) blaTEM-2
gene, 3 (5.8%) blaTEM gene}, 5 (9.6%) blaSHV
gene, 3 (5.8%) bla-CTX-M-2, 1 (1.9%)
bla-CTX-M-9 }. Other resistance genes detected were {10 (21.7%)
strA gene} and 8 (17.4%) aadA gene}
indicating a potential antibiotic failure. The need for alternative medicine and
therapeutic measure is suggestive. Astute and routine surveillance/monitoring of
potential pathogens and food products in the public market remains a core for
maintaining future consumer safety.
Collapse
Affiliation(s)
- Hope Onohuean
- Biomolecules, Metagenomics, Endocrine and Tropical Disease Research Group (BMETDREG), Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Biopharmaceutics unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University Uganda, Ishaka, Uganda
| | - Bright E Igere
- Department of Microbiology and Biotechnology, Western Delta University Oghara, Delta State, Nigeria
| |
Collapse
|
14
|
Samir A, Abdel-Moein KA, Zaher HM. The Public Health Burden of Virulent Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae Strains Isolated from Diseased Horses. Vector Borne Zoonotic Dis 2022; 22:217-224. [PMID: 35394385 DOI: 10.1089/vbz.2022.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Klebsiella pneumoniae has been associated with both nosocomial and community-acquired infections with mounting public health concern throughout the world. The purpose of this study was to investigate the burden of virulent extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae among diarrheic horses or those with respiratory illness to underscore the public health implication of such strains. Materials and Methods: Rectal and nasal swabs were gathered from 100 diseased horses (50 diarrheic and 50 with respiratory illness). The collected swabs were processed for isolation of ESBL-producing K. pneumoniae using a selective medium followed by phenotypic and molecular identification of the isolates. All ESBL-producing K. pneumoniae strains were investigated for six virulence genes (type 3 fimbrial adhesin [mrkD], enterobactin [entB], regulator of mucoid phenotype A [rmpA], Klebsiella ferric iron uptake [kfu], mucoviscosity-associated gene A [magA], and type 2 capsular polysaccharide [K2]). Results: Of the 100 examined animals, ESBL-producing K. pneumoniae was recovered from 13 (13%), with isolation rates in horses suffering from diarrhea and respiratory illness being 20% and 6%, respectively. Among the obtained isolates, bla TEM and bla SHV were found in all strains (100%) followed by bla CTX-M in 92.3%, while none of the isolates had bla OXA. In addition, 13 ESBL-producing K. pneumoniae strains exhibited a multidrug resistance (MDR) pattern. Regarding the occurrence of virulence genes among the isolates, mrkD (100%) and entB (100%) were the most predominant virulence genes followed by rmpA (76.9%) and kfu (46.2%). On the contrary, magA and K2 were negative in all ESBL-producing strains. Furthermore, this work provides four K. pneumoniae mrkD partial sequences that displayed high genetic relatedness with those obtained from human to clarify the public health burden of such isolates. Conclusion: The occurrence of virulent ESBL-producing K. pneumoniae among diseased horses highlights the potential role of this animal in the epidemiology of such virulent and antimicrobial-resistant strains, which may have great public health threat.
Collapse
Affiliation(s)
- Ahmed Samir
- Department of Microbiology and Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Khaled A Abdel-Moein
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Hala M Zaher
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
15
|
Surveillance of Antimicrobial Resistance in Hospital Wastewater: Identification of Carbapenemase-Producing Klebsiella spp. Antibiotics (Basel) 2022; 11:antibiotics11030288. [PMID: 35326752 PMCID: PMC8944648 DOI: 10.3390/antibiotics11030288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to investigate the presence and persistence of carbapenemase-producing Klebsiella spp. isolated from wastewater and treated wastewater from two tertiary hospitals in Mexico. We conducted a descriptive cross-sectional study in two hospital wastewater treatment plants, which were sampled in February 2020. We obtained 30 Klebsiella spp. isolates. Bacterial identification was carried out by the Matrix-Assisted Laser Desorption/Ionization-Time of Flight mass spectrometry (MALDI-TOF MS®) and antimicrobial susceptibility profiles were performed using the VITEK2® automated system. The presence of carbapenem resistance genes (CRGs) in Klebsiella spp. isolates was confirmed by PCR. Molecular typing was determined by pulsed-field gel electrophoresis (PFGE). High rates of Klebsiella spp. resistance to cephalosporins and carbapenems (80%) were observed in isolates from treated wastewater from both hospitals. The molecular screening by PCR showed the presence of blaKPC and blaOXA-48-like genes. The PFGE pattern separated the Klebsiella isolates into 19 patterns (A–R) with three subtypes (C1, D1, and I1). Microbiological surveillance and identification of resistance genes of clinically important pathogens in hospital wastewater can be a general screening method for early determination of under-detected antimicrobial resistance profiles in hospitals and early warning of outbreaks and difficult-to-treat infections.
Collapse
|
16
|
Hosny RA, Fadel MA. Detection of Quorum Sensing N-Acyl-Homoserine Lactone Molecules Produced by Different Resistant Klebsiella pneumoniae Isolates Recovered from Poultry and Different Environmental Niches. Appl Biochem Biotechnol 2021; 193:3351-3370. [PMID: 34196919 DOI: 10.1007/s12010-021-03605-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to detect and identify the N-acyl-homoserine lactones molecules (AHLs) produced by different resistant Klebsiella pneumoniae isolates recovered from poultry and environmental samples using a modified validated high-performance liquid chromatography method. A total of 56 K. pneumoniae isolates were recovered, investigated for their antibiotic susceptibility, and screened for AHLs production using the Agrobacterium tumefaciens NTL4 biosensor system and a validated high-performance liquid chromatography method. The results revealed the detection of different short- and long-chain AHLs molecules among 39 K. pneumoniae isolates recovered from poultry and environmental samples. All environmental isolates produced nine peaks with retention times for C4-HSL, C6-HSL, C12-HSL, C8-HSL, C14-HSL, C8-oxo-HSL, C10-HSL, C6-oxo-HSL, and C7-HSL. The most quantifiable AHL signal molecules in poultry isolates were C4-HSL, C6-HSL, and C12-HSL. No statistical correlation between the AHL-producing ability of K. pneumoniae isolates and antibiotic resistance was reported. To the best of our knowledge, this study provides the first detailed report on the detection and identification of AHLs in K. pneumoniae isolates recovered from poultry and environmental samples. Furthermore, it provides a new insight available tool other than LC-MS/MS for detection and identification of AHL molecules.
Collapse
Affiliation(s)
- Reham A Hosny
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt.
| | - Mai A Fadel
- Pharmacology and Pyrogen Unit, Department of Chemistry, Toxicology and Feed Deficiency, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| |
Collapse
|
17
|
Ranjan R, Thatikonda S. β-Lactam Resistance Gene NDM-1 in the Aquatic Environment: A Review. Curr Microbiol 2021; 78:3634-3643. [PMID: 34410464 DOI: 10.1007/s00284-021-02630-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 08/05/2021] [Indexed: 11/29/2022]
Abstract
New Delhi Metallo-β-lactamase-1 (NDM-1) offers carbapenem antibiotics resistance that creates an evolving challenge in treating bacterial infections. NDM-1-bearing strains were observed in surface waters around New Delhi in 2010 and after then identified globally. The usage of antibiotics may hasten the growth of the NDM-1-producing bacteria, which pose severe hazards to human and animal health. The emergence of the NDM-1 in the aquatic environment is turning out to be a growing concern worldwide. NDM-1 gene conferring resistance to a widespread class of antibiotics has been observed in bacteria disseminated in animal production wastewaters, hospital sewage, domestic sewage, industrial effluents, wastewater treatment plants, drinking water, surface water, and even in groundwater. This review recapitulates the currently published research studies on the prevalence and geographical distribution of the NDM-1 gene in the aquatic environment, its habitats, and healthcare risk associated with NDM-1-producing bacteria, in addition to molecular techniques employed to reveal the occurrence of the NDM-1 in the aquatic environment, including conventional polymerase chain reaction, real-time qPCR, DNA hybridization, and microarray-based methods.
Collapse
Affiliation(s)
- Rajeev Ranjan
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
| | - Shashidhar Thatikonda
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India.
| |
Collapse
|
18
|
Wastewaters, with or without Hospital Contribution, Harbour MDR, Carbapenemase-Producing, but Not Hypervirulent Klebsiella pneumoniae. Antibiotics (Basel) 2021; 10:antibiotics10040361. [PMID: 33805405 PMCID: PMC8065489 DOI: 10.3390/antibiotics10040361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Carbapenemase-producing Klebsiella pneumoniae (CPKP) isolated from influent (I) and effluent (E) of two wastewater treatment plants, with (S1) or without (S2) hospital contribution, were investigated. The strains belonged to the Kp1 phylogroup, their highest frequency being observed in S1, followed by S2. The phenotypic and genotypic hypervirulence tests were negative for all the strains tested. At least one carbapenemase gene (CRG), belonging to the blaKPC, blaOXA-48, blaNDM and blaVIM families, was observed in 63% of CPKP, and more than half co-harboured two to four CRGs, in different combinations. Only five CRG variants were observed, regardless of wastewater type: blaKPC-2, blaNDM-1, blaNDM-6, blaVIM-2, and blaOXA-48. Sequence types ST258, ST101 and ST744 were common for both S1 and S2, while ST147, ST525 and ST2502 were found only in S1 and ST418 only in S2. The strains tested were multi-drug resistant (MDR), all being resistant to beta-lactams, cephalosporins, carbapenems, monobactams and fluoroquinolones, followed by various resistance profiles to aminoglycosides, trimethoprim-sulphamethoxazole, tigecycline, chloramphenicol and tetracycline. After principal component analysis, the isolates in S1 and S2 groups did not cluster independently, confirming that the antibiotic susceptibility patterns and gene-type profiles were both similar in the K. pneumoniae investigated, regardless of hospital contribution to the wastewater type.
Collapse
|