1
|
Hong HW, Jang J, Kim YD, Jeong TH, Lee D, Park K, Kim MS, Yoon IS, Song M, Seo MD, Yoon H, Lim D, Myung H. In vitro and in vivo efficacy studies of an engineered endolysin targeting Gram-negative pathogens. Int J Biol Macromol 2025; 302:140463. [PMID: 39884635 DOI: 10.1016/j.ijbiomac.2025.140463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Endolysins have drawn considerable attention as viable modalities for antibiotic use. The most significant obstacle for Gram-negative targeting endolysins is the presence of the outer membrane barrier. A heterologously expressed endolysin encoded by bacteriophage PBPA90 infecting Pseudomonas aeruginosa exhibited intrinsic antibacterial activity against P. aeruginosa. The antibacterial efficacy was improved by substituting 15 amino acids and by fusing cecropin A to the N-terminus. The resulting engineered endolysin, LNT103, demonstrated strong antibacterial activity, with minimum inhibitory concentrations as low as 4 μg/ml, against various Gram-negative pathogens in addition to P. aeruginosa, including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Klebsiella aerogenes, and Enterobacter cloacae. The engineered endolysin rendered both the outer and the inner bacterial membranes permeable. It exhibited a synergistic effect with colistin, and additive effects with carbapenem antibiotics. Bacterial resistance development to LNT103 was none to minimal in vitro. Its in vivo efficacy was verified in bacteremia models of mice infected with A. baumannii. The endolysin led to a resensitization of resistant bacteria to meropenem when used in combination in vivo.
Collapse
Affiliation(s)
- Hye-Won Hong
- LyseNTech Co., Ltd., Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea
| | - Jaeyeon Jang
- LyseNTech Co., Ltd., Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea
| | - Young Deuk Kim
- LyseNTech Co., Ltd., Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea
| | - Tae-Hwan Jeong
- LyseNTech Co., Ltd., Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea
| | - Dogeun Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Kyungah Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi-Do 16499, Republic of Korea
| | - Min Soo Kim
- LyseNTech Co., Ltd., Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea
| | - In-Soo Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Miryoung Song
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, Gyeonggi-Do 17035, Republic of Korea
| | - Min-Duk Seo
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi-Do 16499, Republic of Korea; College of Pharmacy, Ajou University, Suwon, Gyeonggi-Do 16499, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi-Do 16499, Republic of Korea; Advanced College of Bio-convergence Engineering, Ajou University, Suwon, Gyeonggi-Do 16499, South Korea
| | - Daejin Lim
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Heejoon Myung
- LyseNTech Co., Ltd., Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea; Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, Gyeonggi-Do 17035, Republic of Korea; The Bacteriophage Bank of Korea, Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea.
| |
Collapse
|
2
|
Alwazzeh MJ, Algazaq J, Al-Salem FA, Alabkari F, Alwarthan SM, Alhajri M, AlShehail BM, Alnimr A, Alrefaai AW, Alsaihati FH, Almuhanna FA. Mortality and clinical outcomes of colistin versus colistin-based combination therapy for infections caused by Multidrug-resistant Acinetobacter baumannii in critically ill patients. BMC Infect Dis 2025; 25:416. [PMID: 40140752 PMCID: PMC11948640 DOI: 10.1186/s12879-025-10781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Multidrug-resistant Acinetobacter baumannii emerged as a threatening "superbug" with significant morbidity and mortality and limited antimicrobial therapy options. The results of different antibiotic combination studies are heterogeneous and controversial. Further comparative studies are crucial to overcome such difficult-to-treat infections and to improve patient outcomes. This study investigates the mortality and outcomes of colistin versus colistin-based combination therapy for infections caused by Multidrug-resistant Acinetobacter baumannii in critically ill patients. METHODS A retrospective observational study was conducted at an academic tertiary hospital in Khobar City, Eastern Province, Saudi Arabia. Patients who fulfilled the inclusion criteria and were admitted from January 1, 2017, to December 31, 2022, were included. The investigated primary outcome was 30-day mortality, while secondary outcomes were one-year all-cause mortality, clinical cure, microbiologic eradication, and recurrence of Acinetobacter infections. Statistical comparisons were employed, and a P-value of ≤ .05 was considered significant. RESULTS Of the 178 patients who fulfilled the inclusion criteria, 47 received colistin only, and 131 received colistin in combinations (55 with carbapenems, 53 with tigecycline, and 23 with both). The estimated 30-day mortality rate of the study population was 22.5%, with statistically insignificant differences in 30-day mortality rates when the colistin group compared to cumulative colistin-based combination (23.4% vs. 22.1%; difference, 1.3 percentage points; 95% confidence interval [CI], 0.487-2.371; P = 0.858) or subgroups. However, colistin-based combination groups showed better secondary outcomes, with significantly less all-cause mortality and better clinical cure in colistin combination with carbapenems or tigecycline and less Acinetobacter infection recurrence in combination with carbapenems. CONCLUSIONS The study findings demonstrate the benefits of investigated colistin combination options that result in less one-year all-cause mortality, better clinical cure, higher microbiologic response, and less infection recurrence. However, no significant differences were observed regarding 30-day mortality. In addition, the study highlights the limitations of the available antimicrobial options and the crucial need for new effective antimicrobials and more successful combinations.
Collapse
Affiliation(s)
- Marwan J Alwazzeh
- Infectious Disease Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, & King Fahad Hospital of the University, Al Khobar, Saudi Arabia.
| | - Jumanah Algazaq
- Infectious Disease Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, & King Fahad Hospital of the University, Al Khobar, Saudi Arabia
| | - Fatimah Ali Al-Salem
- Infectious Disease Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, & King Fahad Hospital of the University, Al Khobar, Saudi Arabia
| | - Fatimah Alabkari
- Infectious Disease Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, & King Fahad Hospital of the University, Al Khobar, Saudi Arabia
| | - Sara M Alwarthan
- Infectious Disease Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, & King Fahad Hospital of the University, Al Khobar, Saudi Arabia
| | - Mashael Alhajri
- Infectious Disease Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, & King Fahad Hospital of the University, Al Khobar, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amani Alnimr
- Department of Microbiology, College of Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahmad Wajeeh Alrefaai
- Department of Microbiology, College of Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Fahad Hospital of the University, Dammam & King, Al Khobar, Saudi Arabia
| | - Faten Hussain Alsaihati
- Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Fahad Hospital of the University, Dammam & King, Al Khobar, Saudi Arabia
| | - Fahd Abdulaziz Almuhanna
- Nephrology Division, Department of Internal Medicine, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Fahad Hospital of the University, Dammam & King, Al-Khobar, Saudi Arabia
| |
Collapse
|
3
|
Zhao C, Mao W, Ye F, Cai K, Gong S, Ye C, Yu Y. Relationship between plasma polymyxin B concentrations and acute kidney injury in critically ill elderly patients: Findings from a prospective study. J Int Med Res 2025; 53:3000605251320733. [PMID: 39956623 PMCID: PMC11831629 DOI: 10.1177/03000605251320733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/30/2025] [Indexed: 02/18/2025] Open
Abstract
OBJECTIVE The objective of this study was to determine the relationship between the plasma polymyxin B concentration and renal function in elderly patients. METHODS This prospective, case-control, observational study included elderly patients who received polymyxin B therapy and were divided into an acute kidney injury (AKI) group and a non-AKI group based on their renal function. We monitored the pharmacokinetics and pharmacodynamics of polymyxin B, including the minimum plasma concentration (Cmin), mean blood drug concentration at steady state (Css,avg), and area under the concentration-time curve across 24 h at steady state (AUCss,24h) in both study groups. The plasma polymyxin concentration was determined using high-performance liquid chromatography-tandem mass spectrometry. RESULTS The loading doses, Cmin, Css,avg, and AUCss,24h were significantly higher in the AKI group than in the non-AKI group (p < 0.05). Receiver-operating characteristic curve analysis showed that the optimal cutoff values for predicting AKI were 2.94 mg/L for Cmin, 4.14 mg/L for Css,avg, and 99.35 mg·h/L for AUCss,24h, with corresponding sensitivities and specificities ranging from 78.57% to 82.14%. CONCLUSION Monitoring plasma polymyxin B concentrations is essential in elderly patients. Keeping the Cmin below 2.94 mg/L, the Css,avg below 4.14 mg/L, and the AUCss,24h below 99.35 mg h/L may help prevent AKI in this population.
Collapse
Affiliation(s)
- Changyun Zhao
- Department of Critical Care Medicine, Zhejiang Hospital, Zhejiang, China
| | - Wenchao Mao
- Department of Critical Care Medicine, Zhejiang Hospital, Zhejiang, China
| | - Feifei Ye
- Department of Critical Care Medicine, Zhejiang Hospital, Zhejiang, China
| | - Kailun Cai
- Department of Critical Care Medicine, Zhejiang Hospital, Zhejiang, China
| | - Shijin Gong
- Department of Critical Care Medicine, Zhejiang Hospital, Zhejiang, China
| | - Cong Ye
- Department of Critical Care Medicine, Zhejiang Hospital, Zhejiang, China
| | - Yihua Yu
- Department of Integrated Ward, Zhejiang Hospital, Zhejiang, China
| |
Collapse
|
4
|
Lai C, Ma Z, Zhang J, Wang J, Wang J, Wu Z, Luo Y. Efficiency of combination therapy versus monotherapy for the treatment of infections due to carbapenem-resistant Gram-negative bacteria: a systematic review and meta-analysis. Syst Rev 2024; 13:309. [PMID: 39702227 DOI: 10.1186/s13643-024-02695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/27/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND For resistant Gram-positive bacteria, evidence suggests that combination therapy is more effective. However, for resistant Gram-negative bacteria, no consensus has been reached. This study aims to comprehensively summarize the evidence and evaluate the impact of combination versus monotherapy on infections caused by carbapenem-resistant Gram-negative bacteria (CRGNB). METHODS A systematic search was conducted in PubMed, Cochrane library, Web of Science, and Embase up to June 15, 2024, to identify relevant studies. This study included comparisons of monotherapy and combination therapy for treating infections caused by CRGNB. Topical antibiotics (i.e., inhalational or intratracheal administration) and monotherapy with sulbactam/relebactam was excluded. The primary outcome was mortality, and the secondary outcomes were clinical success and microbiological eradication. Pooled odds ratios (OR) and 95% confidence intervals (CI) were calculated in order to systematically assess effect of treatment on mortality, clinical success and microbiological eradication. Subgroup analyses, publication bias tests, and sensitivity analyses were also performed. RESULTS A total of 62 studies, including 8342 participants, were analyzed, comprising 7 randomized controlled trials and 55 non-randomized studies. Monotherapy was associated with higher mortality (OR = 1.29, 95%CI: 1.11-1.51), lower clinical success (OR = 0.74, 95%CI: 0.56-0.98), and lower microbiological eradication (OR = 0.71, 95%CI: 0.55-0.91) compared to combination therapy for CRGNB infections. Specifically, patients with carbapenem-resistant Enterobacteriaceae (CRE) infections receiving monotherapy had higher mortality (OR = 1.50, 95%CI: 1.15-1.95), comparable clinical success (OR = 0.57,95%CI: 0.28-1.16), and lower microbiological eradication (OR = 0.48,95%CI:0.25-0.91) than those receiving combination therapy. For carbapenem-resistant Acinetobacter baumannii (CRAB) infections, no significant differences were observed in mortality (OR = 1.15.95%CI: 0.90-1.47), clinical success (OR = 0.95,95%CI: 0.74-1.24) and microbiological eradication (OR = 0.78,95%CI: 0.54-1.12). CONCLUSIONS Monotherapy or combination therapy is controversial. The systematic review and meta-analysis suggested that monotherapy is associated with higher mortality, lower clinical success, and lower microbiological eradication for treating infection caused by CRGNB. The available evidence suggests that treatment should be selected based on the specific bacteria and antibiotic used. Monotherapy for CRE infections may lead to adverse outcomes. For CRAB infections, no significant differences were found between combination therapy and monotherapy. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42022331861.
Collapse
Affiliation(s)
- Chengcheng Lai
- Department of General Practice, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zijun Ma
- Department of General Practice, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junjun Wang
- Department of General Practice, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinghui Wang
- Department of General Practice, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuanghao Wu
- Department of Neurosurgical Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yonggang Luo
- Department of Neurosurgical Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Zhang H, Wang Y, Zhang X, Xu C, Xu D, Shen H, Jin H, Yang J, Zhang X. Carbapenem-resistant Enterobacterales sepsis following endoscopic retrograde cholangiopancreatography: risk factors for 30-day all-cause mortality and the development of a nomogram based on a retrospective cohort. Antimicrob Resist Infect Control 2024; 13:84. [PMID: 39113089 PMCID: PMC11304701 DOI: 10.1186/s13756-024-01441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Endoscopic retrograde cholangiopancreatography (ERCP) has become a routine endoscopic procedure that is essential for diagnosing and managing various conditions, including gallstone extraction and the treatment of bile duct and pancreatic tumors. Despite its efficacy, post-ERCP infections - particularly those caused by carbapenem-resistant Enterobacterales (CRE) - present significant risks. These risks highlight the need for accurate predictive models to enhance postprocedural care, reduce the mortality risk associated with post-ERCP CRE sepsis, and improve patient outcomes in the context of increasing antibiotic resistance. OBJECTIVE This study aimed to examine the risk factors for 30-day mortality in patients with CRE sepsis following ERCP and to develop a nomogram for accurately predicting 30-day mortality risk. METHODS Data from 195 patients who experienced post-ERCP CRE sepsis between January 2010 and December 2022 were analyzed. Variable selection was optimized via the least absolute shrinkage and selection operator (LASSO) regression model. Multivariate logistic regression analysis was then employed to develop a predictive model, which was evaluated in terms of discrimination, calibration, and clinical utility. Internal validation was achieved through bootstrapping. RESULTS The nomogram included the following predictors: age > 80 years (hazard ratio [HR] 2.61), intensive care unit (ICU) admission within 90 days prior to ERCP (HR 2.64), hypoproteinemia (HR 4.55), quick Pitt bacteremia score ≥ 2 (HR 2.61), post-ERCP pancreatitis (HR 2.52), inappropriate empirical therapy (HR 3.48), delayed definitive therapy (HR 2.64), and short treatment duration (< 10 days) (HR 5.03). The model demonstrated strong discrimination and calibration. CONCLUSIONS This study identified significant risk factors associated with 30-day mortality in patients with post-ERCP CRE sepsis and developed a nomogram to accurately predict this risk. This tool enables healthcare practitioners to provide personalized risk assessments and promptly administer appropriate therapies against CRE, thereby reducing mortality rates.
Collapse
Affiliation(s)
- Hongchen Zhang
- The Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261 HuanSha Road, Zhejiang, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, 310003, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Zhejiang, China
- Hangzhou Institute of Digestive Disease, Zhejiang, China
| | - Yue Wang
- The Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261 HuanSha Road, Zhejiang, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Zhejiang, China
- Hangzhou Institute of Digestive Disease, Zhejiang, China
| | - Xiaochen Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, 310003, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Zhejiang, China
- Hangzhou Institute of Digestive Disease, Zhejiang, China
| | - Chenshan Xu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, 310003, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Zhejiang, China
- Hangzhou Institute of Digestive Disease, Zhejiang, China
| | - Dongchao Xu
- The Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261 HuanSha Road, Zhejiang, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, 310003, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Zhejiang, China
- Hangzhou Institute of Digestive Disease, Zhejiang, China
| | - Hongzhang Shen
- The Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261 HuanSha Road, Zhejiang, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, 310003, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Zhejiang, China
- Hangzhou Institute of Digestive Disease, Zhejiang, China
| | - Hangbin Jin
- The Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261 HuanSha Road, Zhejiang, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, 310003, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Zhejiang, China
- Hangzhou Institute of Digestive Disease, Zhejiang, China
| | - Jianfeng Yang
- The Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261 HuanSha Road, Zhejiang, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, 310003, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Zhejiang, China
- Hangzhou Institute of Digestive Disease, Zhejiang, China
| | - Xiaofeng Zhang
- The Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261 HuanSha Road, Zhejiang, China.
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, 310003, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Zhejiang, China.
- Hangzhou Institute of Digestive Disease, Zhejiang, China.
| |
Collapse
|
6
|
Müderris T, Dursun Manyaslı G, Sezak N, Kaya S, Demirdal T, Gül Yurtsever S. In-vitro evaluation of different antimicrobial combinations with and without colistin against carbapenem-resistant Acinetobacter baumannii clinical isolates. Eur J Med Res 2024; 29:331. [PMID: 38880888 PMCID: PMC11180387 DOI: 10.1186/s40001-024-01885-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter baumannii (CRAB) infections are one of the most common causes of nosocomial infections and have high mortality rates due to difficulties in treatment. In this study, the in vitro synergistic interactions of the colistin (CT)-meropenem (MEM) combination and patient clinical outcomes were compared in CRAB-infected patients that receive CT-MEM antimicrobial combination therapy. In addition, in vitro synergistic interactions of MEM-ertapenem (ETP), MEM-fosfomycin (FF) and CT-FF antimicrobial combinations were investigated. Finally, the epsilometer (E) test and checkerboard test results were compared and the compatibility of these two tests was evaluated. METHODS Twenty-one patients were included in the study. Bacterial identification was performed with MALDI-TOF, and antimicrobial susceptibility was assessed with an automated system. Synergy studies were performed using the E test and checkerboard method. RESULTS For the checkerboard method, the synergy rates for CT-MEM, MEM-FF, MEM-ETP and CT-FF were 100%, 52.3%, 23.8% and 28.5%, respectively. In the E test synergy tests, synergistic effects were detected for two isolates each in the CT-MEM and CT-FF combinations. Microbial eradication was achieved in nine (52.9%) of the 17 patients that received CT-MEM combination therapy. The agreement between the E test and the checkerboard test was 6.5%. CONCLUSIONS A synergistic effect was found with the checkerboard method for the CT-MEM combination in all isolates in our study, and approximately 70% of the patients benefited from treatment with this combination. In addition, more than half of the isolates showed a synergistic effect for the MEM-FF combination. Combinations of CT-MEM and MEM-FF may be options for the treatment of CRAB infections. However, a comprehensive understanding of the potential of the microorganism to develop resistant mutants under applied exposures, as well as factors that directly affect antimicrobial activity, such as pharmacokinetics/pharmacodynamics, is essential for providing treatment advice. We found a low rate of agreement between the E test method and the checkerboard test method in our study, in contrast to the literature. Comprehensive studies that compare clinical results with methods are needed to determine the ideal synergy test and interpretation method.
Collapse
Affiliation(s)
- Tuba Müderris
- Faculty of Medicine, Department of Medical Microbiology, İzmir Katip Çelebi University, İzmir, Türkiye.
| | - Gülden Dursun Manyaslı
- Cizre Dr. Selahattin Cizrelioğlu Public Hospital, Department of Medical Microbiology, Şırnak, Türkiye
| | - Nurbanu Sezak
- Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, İzmir Demokrasi University, İzmir, Türkiye
| | - Selçuk Kaya
- Faculty of Medicine, Department of Medical Microbiology, İzmir Katip Çelebi University, İzmir, Türkiye
| | - Tuna Demirdal
- Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, İzmir Katip Çelebi University, İzmir, Türkiye
| | - Süreyya Gül Yurtsever
- Faculty of Medicine, Department of Medical Microbiology, İzmir Katip Çelebi University, İzmir, Türkiye
| |
Collapse
|
7
|
Pitsikakis K, Skandalakis M, Fragkiadakis K, Baliou S, Ioannou P. Infective endocarditis by carbapenem-resistant Gram-negative bacteria - a systematic review. Germs 2024; 14:149-161. [PMID: 39493737 PMCID: PMC11527486 DOI: 10.18683/germs.2024.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/18/2024] [Accepted: 06/09/2024] [Indexed: 11/05/2024]
Abstract
Introduction Infective endocarditis (IE) is a disease that may frequently lead to significant morbidity and is associated with high mortality rates. Even though IE is classically caused by Gram-positive bacteria, Gram-negative bacteria may seldom cause IE. Antimicrobial resistance (AMR) may pose significant problems in treating IE, especially for carbapenem-resistant pathogens. This study aimed to review all cases of IE by carbapenem-resistant Gram-negative bacteria in a systematic way and present information on epidemiology, clinical findings, treatment, and outcomes. Methods A systematic review of PubMed, Cochrane Library, and Scopus (all published studies up to 6 August 2023) for published studies providing information on epidemiology, clinical findings, treatment, and outcomes of IE by carbapenem-resistant Gram-negative bacteria was performed. Results A total of 24 studies containing data from 26 patients were included. Among all patients, 53.9% were male, and the median age was 66 years. Among all patients, 38.5% had a history of a prosthetic valve. The most commonly affected valve was the aortic, followed by the mitral valve. Fever, sepsis, emboli, and shock were the most frequent clinical findings. The most commonly isolated pathogens were Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. Aminoglycosides, colistin, cephalosporins, and carbapenems were the most commonly used antimicrobials. Surgery was performed in 53.8% of patients. Mortality was 38.5%. Conclusions The development of infection control measures and antimicrobial stewardship interventions is needed to reduce the spread of AMR and the likelihood of this fatal infection.
Collapse
Affiliation(s)
| | | | | | - Stella Baliou
- BSc, MSc, PhD, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Petros Ioannou
- MD, MSc, PhD, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
8
|
Jeon CH, Kim SH, Kim HT, Park KJ, Wi YM. Ineffectiveness of colistin monotherapy in treating carbapenem-resistant Acinetobacter baumannii Pneumonia: A retrospective single-center cohort study. J Infect Public Health 2024; 17:774-779. [PMID: 38518683 DOI: 10.1016/j.jiph.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Acinetobacter baumannii, a common carbapenem-resistant gram-negative bacillus, usually causes nosocomial infections. Colistin has been used for carbapenem-resistant A. baumannii (CRAB) infections; however, only a few studies have evaluated colistin as a treatment option compared to appropriate controls. We investigated the effectiveness of colistin monotherapy in treating CRAB pneumonia compared to those treated without an active drug. METHODS Adult patients (≥ 18 years) with CRAB isolated from respiratory specimens were screened from September 2017 to August 2022. Only patients with pneumonia treated with colistin monotherapy (colistin group) were included and compared to those without any active antibiotics (no active antibiotics [NAA] group). The primary and secondary outcomes were 30-day all-cause mortality and acute kidney injury within 30 days. The inverse probability of the treatment-weighted Cox proportional hazard model was used to compare mortality between groups. RESULTS Among the 826 adult patients with CRAB in their respiratory specimens, 45 and 123 patients were included in the colistin and NAA groups, respectively. Most of the CRAB pneumonia (91.1%) cases were hospital-acquired pneumonia. The 30-day all-cause mortality rates in the colistin and NAA groups were 58.3% and 56.1%, respectively, and no difference was observed after adjustments (adjusted hazard ratio, 0.74; 95% CI, 0.47-1.17). The incidence of acute kidney injury was higher in the colistin group (65.3%) compared to the NAA group (39.0%) (P = 0.143). CONCLUSIONS Colistin monotherapy did not significantly improve treatment outcomes for CRAB pneumonia. The development and evaluation of new antimicrobials for CRAB pneumonia should be advocated in clinical practice.
Collapse
Affiliation(s)
- Cheon-Hoo Jeon
- Department of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Si-Ho Kim
- Department of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Republic of Korea.
| | - Hyoung-Tae Kim
- Department of Laboratory Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Kyoung-Jin Park
- Department of Laboratory Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Yu Mi Wi
- Department of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Republic of Korea
| |
Collapse
|
9
|
Son JY, Kim S, Porsuk T, Shin S, Choi YJ. Clinical outcomes of colistin methanesulfonate sodium in correlation with pharmacokinetic parameters in critically ill patients with multi-drug resistant bacteria-mediated infection: A systematic review and meta-analysis. J Infect Public Health 2024; 17:843-853. [PMID: 38554590 DOI: 10.1016/j.jiph.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Colistin is a viable option for multidrug resistant gram-negative bacteria emerged from inappropriate antibiotic use. Nonetheless, suboptimal colistin concentrations and nephrotoxicity risks hinder its clinical use. Thus, the aim of this study is to investigate clinical outcomes in correlation with pharmacokinetic differences and infection types in critically ill patients on intravenous colistin methanesulfornate sodium (CMS). METHODS A systematic literature search of Embase, Google Scholars, and PubMed was performed to identify clinical trials evaluating pharmacokinetic parameters along with clinical outcomes of CMS treatment from inception to July 2023. The pooled analyses of clinical impact of CMS on nephrotoxicity, mortality, clinical cure, and colistin concentration at steady state (Css,avg) were performed. This study was registered in the PROSPERO (CRD 42023456120). RESULTS Total of 695 critically ill patients from 17 studies were included. The mortality was substantially lower in clinically cured patients (OR 0.05; 95% CI 0.02 - 0.14), whereas the mortality rate was statistically insignificant between nephrotoxic and non-nephrotoxic patients. Inter-patient variability of pharmacokinetic parameters of CMS and colistin was observed in critically ill patients. The standard mean differences of Css,avg were statistically insignificant between clinically cure and clinically failure groups (standard mean difference (SMD) -0.25; 95% CI -0.69 - 0.19) and between nephrotoxic and non-nephrotoxic groups (SMD 0.67; 95% CI -0.27-1.61). The clinical cure rate is substantially lower in pneumonia patients (OR 0.09; 95% CI 0.01 - 0.56), and pharmacokinetic parameters pertaining to microbiological cure were different among strains. CONCLUSION The mortality rate was substantially lower in clinically cured patients with CMS. However, no significant differences in Css,avg of colistin were examined to determine the impact of pharmacokinetic differences on clinical outcomes including mortality rate and nephrotoxicity risk. Nevertheless, the clinical cure rate is substantially lower in patients with respiratory infection than patients with urinary tract infection.
Collapse
Affiliation(s)
- Ji-Young Son
- Korean-National Institute for Bioprocessing Research and Training (K-NIBRT), Yonsei University, Incheon 21983, the Republic of Korea
| | - Semi Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Tuğçe Porsuk
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Sooyoung Shin
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, the Republic of Korea; Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, the Republic of Korea.
| | - Yeo Jin Choi
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, the Republic of Korea; Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, the Republic of Korea; Institute of Regulatory Innovation through Science (IRIS), Kyung Hee University, Seoul 02447, the Republic of Korea.
| |
Collapse
|
10
|
Morales-Durán N, León-Buitimea A, Morones-Ramírez JR. Unraveling resistance mechanisms in combination therapy: A comprehensive review of recent advances and future directions. Heliyon 2024; 10:e27984. [PMID: 38510041 PMCID: PMC10950705 DOI: 10.1016/j.heliyon.2024.e27984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Antimicrobial resistance is a global health threat. Misuse and overuse of antimicrobials are the main drivers in developing drug-resistant bacteria. The emergence of the rapid global spread of multi-resistant bacteria requires urgent multisectoral action to generate novel treatment alternatives. Combination therapy offers the potential to exploit synergistic effects for enhanced antibacterial efficacy of drugs. Understanding the complex dynamics and kinetics of drug interactions in combination therapy is crucial. Therefore, this review outlines the current advances in antibiotic resistance's evolutionary and genetic dynamics in combination therapies-exposed bacteria. Moreover, we also discussed four pivotal future research areas to comprehend better the development of antibiotic resistance in bacteria treated with combination strategies.
Collapse
Affiliation(s)
- Nami Morales-Durán
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, 66628, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, 66628, Mexico
| | - José R. Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, 66628, Mexico
| |
Collapse
|
11
|
Chen J, Lin J, Weng J, Ju Y, Li Y. Clinical success of anti-infective combination therapy compare to monotherapy in patients with carbapenem-resistant Pseudomonas aeruginosa infection: a 10-years retrospective study. BMC Infect Dis 2024; 24:248. [PMID: 38395760 PMCID: PMC10885531 DOI: 10.1186/s12879-024-09060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Pseudomonas aeruginosa (CRPA) infection has become a major public health concern. The recommendations for monotherapy and combination therapy in the current guidelines lack sufficient evidence to support them. The primary objective of this study is to determine the effectiveness of anti-Infective combination therapy compared to monotherapy in achieving clinical success in patients with CRPA infection and risk factors of clinical failure of monotherapy. METHODS A retrospective study from Medical Information Mart for Intensive Care IV (MIMIC-IV) was conducted. We included adults with infections caused by CRPA. The outcomes of this study were clinical success, complete clinical success, and 28-day all-cause mortality. RESULTS A total of 279 subjects were finally enrolled. The rate of clinical success for combination therapy was higher than that for monotherapy (73.1% versus 60.4%, p=0.028). Compared to clinical failure patients, patients in the clinical success group were more likely to die within 28 days after CRPA was found (48.3% versus 3.6%, p<0.001). In a multivariate logistic regression analysis, monotherapy was found to be significantly correlated with clinical success (OR, 0.559, 95% CI, 0.321-0.976; p = 0.041). CONCLUSION Combination therapy is more effective for CRPA infection patients, especially those whose SOFA score is ≥ 2 or whose Charlson comorbidity index is ≥ 6.
Collapse
Affiliation(s)
- Jialong Chen
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital,National Center of Gerontology, the Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Lin
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Infectious Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jianzhen Weng
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital,National Center of Gerontology, the Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yang Ju
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital,National Center of Gerontology, the Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yanming Li
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital,National Center of Gerontology, the Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
12
|
Zeng J, Leng B, Guan X, Jiang S, Xie M, Zhu W, Tang Y, Zhang L, Sha J, Wang T, Ding M, Guo N, Jiang J. Comparative pharmacokinetics of polymyxin B in critically ill elderly patients with extensively drug-resistant gram-negative bacteria infections. Front Pharmacol 2024; 15:1347130. [PMID: 38362145 PMCID: PMC10867212 DOI: 10.3389/fphar.2024.1347130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction: Elderly patients are more prone to develop acute kidney injury during infections and polymyxin B (PMB)-associated nephrotoxicity than young patients. The differential response to PMB between the elderly and young critically ill patients is unknown. We aimed to assess PMB exposure in elderly patients compared with young critically ill patients, and to determine the covariates of PMB pharmacokinetics in critically ill patients. Methods: Seventeen elderly patients (age ≥ 65 years) and six young critically ill patients (age < 65 years) were enrolled. Six to eight blood samples were collected during the 12 h intervals after at least six doses of intravenous PMB in each patient. PMB plasma concentrations were quantified by high-performance liquid chromatography-tandem mass spectrometry. The primary outcome was PMB exposure as assessed by the area under the concentration-time curve over 24 h at steady state (AUCss, 0-24 h). Results and Discussion: The elderly group had lower total body weight (TBW) and higher Charlson comorbidity scores than young group. Neither AUCss, 0-24 h nor normalized AUCss, 0-24 h (adjusting AUC for the daily dose in mg/kg of TBW) was significantly different between the elderly group and young group. The half-life time was longer in the elderly patients than in young patients (11.21 vs 6.56 h respectively, p = 0.003). Age and TBW were the covariates of half-life time (r = 0.415, p = 0.049 and r = -0.489, p = 0.018, respectively). TBW was the covariate of clearance (r = 0.527, p = 0.010) and AUCss, 0-24 h (r = -0.414, p = 0.049). Patients with AUCss, 0-24 h ≥ 100 mg·h/L had higher baseline serum creatinine levels and lower TBW than patients with AUCss, 0-24 h < 50 mg·h/L or patients with AUCss, 0-24 h 50-100 mg·h/L. The PMB exposures were comparable in elderly and young critically ill patients. High baseline serum creatinine levels and low TBW was associated with PMB overdose. Trial registration: ChiCTR2300073896 retrospectively registered on 25 July 2023.
Collapse
Affiliation(s)
- Juan Zeng
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bing Leng
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoyan Guan
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuangyan Jiang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Maoyu Xie
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenying Zhu
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yue Tang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lin Zhang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jing Sha
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tengfei Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Min Ding
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Nan Guo
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jinjiao Jiang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
13
|
Itani R, Khojah HMJ, Karout S, Rahme D, Hammoud L, Awad R, Abu-Farha R, Mukattash TL, Raychouni H, El-Lakany A. Acinetobacter baumannii: assessing susceptibility patterns, management practices, and mortality predictors in a tertiary teaching hospital in Lebanon. Antimicrob Resist Infect Control 2023; 12:136. [PMID: 38031181 PMCID: PMC10685635 DOI: 10.1186/s13756-023-01343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Acinetobacter baumannii is a major nosocomial pathogen capable of causing life-threatening infections. This bacterium is highly resistant to antibiotics and associated with high mortality rates. Therefore, this study aimed to evaluate A. baumannii's susceptibility patterns to antimicrobials, assess the appropriateness of the initiated antimicrobial therapy, determine the mortality rate, and identify predictors associated with mortality. METHODS A retrospective observational study was conducted among patients infected with A. baumannii at a university hospital in Lebanon through the revision of medical records. Kaplan-Meier survival analysis and log-rank tests were used to analyze time-to-mortality. Binary logistic regression was performed to identify predictors of mortality. RESULTS The records of 188 patients were screened, and 111 patients with A. baumannii infection were enrolled. Almost all isolates were resistant to carbapenem, and 43% of the isolates were extensively-drug resistant. Almost half of the patients received initial inappropriate antimicrobial therapy (n = 50, 45.1%). The 30-day mortality rate associated with A. baumannii infection was 71.2% (79/111). The time to mortality in patients who received inappropriate antimicrobial therapy (5.70 ± 1.07 days) was significantly shorter than in those who received appropriate antimicrobial therapy (12.43 ± 1.01 days, P < 0.01). Binary logistic regression revealed that inappropriate antimicrobial therapy (adjusted odds ratio [AOR] = 16.22, 95% CI 2.68-9.97, P = 0.002), mechanical ventilation (AOR = 14.72, 95% CI 3.27-6.61, P < 0.001), and thrombocytopenia (AOR = 8.82, 95% CI 1.12-9.75, P = 0.003) were more likely associated with mortality. CONCLUSIONS A. baumannii exhibits an alarming mortality rate among infected patients. Thrombocytopenia, mechanical ventilation, and inappropriate antibiotic administration are associated with mortality in patients infected with A. baumannii. The prompt initiation of appropriate antimicrobial therapy, infection control measures, and effective stewardship program are crucial to reduce the incidence of A. baumannii and improve the treatment outcomes.
Collapse
Affiliation(s)
- Rania Itani
- Pharmacy Practice Department, Faculty of Pharmacy, Beirut Arab University, Riad El Solh, 1107 2809, P.O. Box: 11-5020, Beirut, Lebanon
| | - Hani M J Khojah
- Department of Pharmacy Practice, College of Pharmacy, Taibah University, P.O. Box: 30051, 41477, Madinah, Kingdom of Saudi Arabia
| | - Samar Karout
- Pharmacy Practice Department, Faculty of Pharmacy, Beirut Arab University, Riad El Solh, 1107 2809, P.O. Box: 11-5020, Beirut, Lebanon.
| | - Deema Rahme
- Pharmacy Practice Department, Faculty of Pharmacy, Beirut Arab University, Riad El Solh, 1107 2809, P.O. Box: 11-5020, Beirut, Lebanon
- INSPECT-LB (Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban), Beirut, Lebanon
| | - Lara Hammoud
- Pharmacy Department, Hammoud Hospital University Medical Center, Sidon, Lebanon
| | - Reem Awad
- Pharmacy Practice Department, Faculty of Pharmacy, Beirut Arab University, Riad El Solh, 1107 2809, P.O. Box: 11-5020, Beirut, Lebanon
| | - Rana Abu-Farha
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, P.O. Box: 11931, Amman, Jordan
| | - Tareq L Mukattash
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box: 3030, Irbid, 22110, Jordan
| | - Hamza Raychouni
- Intensive Care Unit, Central Military Hospital, Military Healthcare, Lebanese Army, Beirut, Lebanon
- Intensive Care Unit, American University of Beirut Medical Center, Beirut, Lebanon
| | - Abdalla El-Lakany
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Riad El Solh, 1107 2809, P.O. Box: 11-5020, Beirut, Lebanon
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
14
|
Nartey YA, Donkor AB, Siaw ADJ, Ekor OE, Jimah BB. Carbapenem-Resistant Acinetobacter baumannii Bloodstream Infection in a Ghanaian Patient with Unilateral Diaphragmatic Eventration and HIV Type 1 Infection. Case Rep Infect Dis 2023; 2023:9930291. [PMID: 37867582 PMCID: PMC10586909 DOI: 10.1155/2023/9930291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/03/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii infection is a critically prioritized pathogen by the World Health Organization and a cause for growing concern due to increased mortality among hospitalised patients. Phrenic nerve palsy is a rare complication of herpes zoster infection of the C3, C4, and C5 nerve roots. We present a case of bloodstream carbapenem-resistant A. baumannii infection in a Ghanaian patient with HIV type 1 infection and multiple risk factors, including unilateral diaphragmatic eventration with compression atelectasis likely secondary to phrenic nerve palsy due to herpes zoster infection, consequently leading to recurrent hospital and ICU admission. In this case, we emphasize the need for clinicians in LMICs to be aware of CRAB, in order to advocate for the availability of evidence-based medicines in resource-limited settings for appropriate treatment. In addition, we illustrate the importance of a high index of suspicion for infection with carbapenem-resistant organisms such as A. baumannii and highlight a rare and severe complication of herpes zoster infection in the form of phrenic nerve palsy and consequent diaphragmatic eventration.
Collapse
Affiliation(s)
- Yvonne Ayerki Nartey
- Department of Medicine, Cape Coast Teaching Hospital, Cape Coast, Ghana
- Department of Internal Medicine, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | | | | | - Oluwayemisi Esther Ekor
- Department of Anaesthesia and Pain Management, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Bashiru Babatunde Jimah
- Department of Medical Imaging, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
15
|
Jiang H, Pu H, Huang N. Risk predict model using multi-drug resistant organism infection from Neuro-ICU patients: a retrospective cohort study. Sci Rep 2023; 13:15282. [PMID: 37714922 PMCID: PMC10504308 DOI: 10.1038/s41598-023-42522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023] Open
Abstract
The aim of this study was to analyze the current situation and risk factors of multi-drug-resistant organism (MDRO) infection in Neuro-intensive care unit (ICU) patients, and to develop the risk predict model. The data was collected from the patients discharged from Neuro-ICU of grade-A tertiary hospital at Guizhou province from January 2018 to April 2020. Binary Logistics regression was used to analyze the data. The model was examined by receiver operating characteristic curve (ROC). The grouped data was used to verify the sensitivity and specificity of the model. A total of 297 patients were included, 131 patients infected with MDRO. The infection rate was 44.11%. The results of binary Logistics regression showed that tracheal intubation, artery blood pressure monitoring, fever, antibiotics, pneumonia were independent risk factors for MDRO infection in Neuro-ICU (P < 0.05), AUC = 0.887. The sensitivity and specificity of ROC curve was 86.3% and 76.9%. The risk prediction model had a good predictive effect on the risk of MDRO infection in Neuro ICU, which can evaluate the risk and provide reference for preventive treatment and nursing intervention.
Collapse
Affiliation(s)
- Hu Jiang
- Nursing Department, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
| | - Hengping Pu
- Nursing Department, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
| | - Nanqu Huang
- Drug Clinical Trial Institution, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China.
| |
Collapse
|
16
|
Jalali Y, Liptáková A, Jalali M, Payer J. Moving toward Extensively Drug-Resistant: Four-Year Antimicrobial Resistance Trends of Acinetobacter baumannii from the Largest Department of Internal Medicine in Slovakia. Antibiotics (Basel) 2023; 12:1200. [PMID: 37508296 PMCID: PMC10376473 DOI: 10.3390/antibiotics12071200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
A. baumannii imposes a great burden on medical systems worldwide. Surveillance of trends of antibiotic resistance provides a great deal of information needed for antimicrobial stewardship programmes nationwide. Clinical data from long-term, continuous surveillance on trends of antibiotic resistance of A. baumannii in Slovakia is missing. One hundred and forty-nine samples of A. baumannii were isolated over a period of four years. A panel of 19 antibiotics from seven antibiotic categories were tested for the bacterium's susceptibility. Resistance results were evaluated, and the significance of patterns was estimated using simple linear regression analysis. All isolates were more than 85% resistant to at least 13 out of the 19 tested antibiotics. A significant rise in resistance was recorded for aminoglycosides and imipenem from 2019 to 2022. Colistin and ampicillin-sulbactam have been the only antibiotics maintaining more than 80% efficacy on the bacterium to date. A significant rise in extensively drug-resistant (XDR) strains among carbapenem-resistant (CR) isolates has been recorded. Multidrug-resistance (MDR) among all A. baumannii isolates and XDR among CR strains of the bacterium have risen significantly in the last four years.
Collapse
Affiliation(s)
- Yashar Jalali
- Faculty of Medicine, Comenius University in Bratislava, 5th Department of Internal Medicine, University Hospital Bratislava, Ružinov, Špitálska 24, 813 72, and Ružinovská 4810/6, 821 01 Bratislava, Slovakia
| | - Adriána Liptáková
- Institute of Microbiology, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia
| | - Monika Jalali
- Faculty of Medicine, Comenius University in Bratislava, 5th Department of Internal Medicine, University Hospital Bratislava, Ružinov, Špitálska 24, 813 72, and Ružinovská 4810/6, 821 01 Bratislava, Slovakia
| | - Juraj Payer
- Faculty of Medicine, Comenius University in Bratislava, 5th Department of Internal Medicine, University Hospital Bratislava, Ružinov, Špitálska 24, 813 72, and Ružinovská 4810/6, 821 01 Bratislava, Slovakia
| |
Collapse
|
17
|
Al-Zubairy SA. Microbiologic Cure with a Simplified Dosage of Intravenous Colistin in Adults: A Retrospective Cohort Study. Infect Drug Resist 2023; 16:4237-4249. [PMID: 37404254 PMCID: PMC10317528 DOI: 10.2147/idr.s411381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/10/2023] [Indexed: 07/06/2023] Open
Abstract
Purpose Colistin's FDA weight-based dosing (WBD) and frequency are both expressed in a broad range. Therefore, a simplified fixed-dose regimen (SFDR) of intravenous colistin based on three body-weight segments has been established for adults. The SFDR falls within the WBD range of each body-weight segment and accounts for the pharmacokinetic features. This study compared microbiologic cure with colistin SFDR to WBD in critically ill adults. Patients and Methods A retrospective cohort study was conducted for colistin orders from January 2014 to February 2022. The study included ICU patients who received intravenous colistin for carbapenem-non-susceptible, colistin-intermediate Gram-negative bacilli infections. Patients received the SFDR after the protocol was implemented, as the WBD was previously used. The primary endpoint was microbiologic cure. Secondary endpoints were 30-day infection recurrence and acute kidney injury (AKI). Results Of the 228 screened patients, 84 fulfilled the inclusion and matching criteria (42 in each group). The microbiologic cure rate was 69% with the SFDR and 36% with the WBD [p=0.002]. Infection recurred in four of the 29 patients who had a microbiologic cure with the SFDR (14%), and in six of the 15 patients with WBD (40%); [p=0.049]. AKI occurred in seven of the 36 SFDR patients who were not on hemodialysis (19%) and 15 of the 33 WBD patients (46%); [p=0.021]. Conclusion In this study, colistin SFDR was associated with a higher microbiologic cure in carbapenem-non-susceptible, colistin-intermediate Gram-negative bacilli infections and with a lower incidence of AKI in critically ill adults compared to WBD.
Collapse
|
18
|
Cavallo I, Oliva A, Pages R, Sivori F, Truglio M, Fabrizio G, Pasqua M, Pimpinelli F, Di Domenico EG. Acinetobacter baumannii in the critically ill: complex infections get complicated. Front Microbiol 2023; 14:1196774. [PMID: 37425994 PMCID: PMC10325864 DOI: 10.3389/fmicb.2023.1196774] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Acinetobacter baumannii is increasingly associated with various epidemics, representing a serious concern due to the broad level of antimicrobial resistance and clinical manifestations. During the last decades, A. baumannii has emerged as a major pathogen in vulnerable and critically ill patients. Bacteremia, pneumonia, urinary tract, and skin and soft tissue infections are the most common presentations of A. baumannii, with attributable mortality rates approaching 35%. Carbapenems have been considered the first choice to treat A. baumannii infections. However, due to the widespread prevalence of carbapenem-resistant A. baumannii (CRAB), colistin represents the main therapeutic option, while the role of the new siderophore cephalosporin cefiderocol still needs to be ascertained. Furthermore, high clinical failure rates have been reported for colistin monotherapy when used to treat CRAB infections. Thus, the most effective antibiotic combination remains disputed. In addition to its ability to develop antibiotic resistance, A. baumannii is also known to form biofilm on medical devices, including central venous catheters or endotracheal tubes. Thus, the worrisome spread of biofilm-producing strains in multidrug-resistant populations of A. baumannii poses a significant treatment challenge. This review provides an updated account of antimicrobial resistance patterns and biofilm-mediated tolerance in A. baumannii infections with a special focus on fragile and critically ill patients.
Collapse
Affiliation(s)
- Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Rebecca Pages
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Truglio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Giorgia Fabrizio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Martina Pasqua
- Department of Biology and Biotechnology "C. Darwin" Sapienza University of Rome, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enea Gino Di Domenico
- Department of Biology and Biotechnology "C. Darwin" Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Gan Y, Meng X, Lei N, Yu H, Zeng Q, Huang Q. Meropenem Pharmacokinetics and Target Attainment in Critically Ill Patients. Infect Drug Resist 2023; 16:3989-3997. [PMID: 37366501 PMCID: PMC10290838 DOI: 10.2147/idr.s408572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Purpose This study aimed to investigate the pharmacokinetics and target attainment of meropenem and compare the effect of meropenem dosing regimens in critically ill patients. Patients and Methods Thirty-seven critically ill patients who were administered meropenem in intensive care units were analyzed. Patients were classified according to their renal function. Pharmacokinetic parameters were assessed based on Bayesian estimation. The target attainment of 40%fT > MIC (fraction time that the free concentration exceeds the minimum inhibitory concentration) and 100%fT > MIC with the pathogen MIC of 2 mg/L and 8 mg/L were specially focused. Furthermore, the effects of standard dosing (1g meropenem, 30 min intravenous infusion every 8h) and non-standard dosing (dosage regimens except standard dosing) were compared. Results The results showed that the values of meropenem clearance (CL), central volume of distribution (V1), intercompartmental clearance (Q), and peripheral volume of distribution (V2) were 3.3 L/h, 9.2 L, 20.1 L/h and 12.8 L, respectively. The CL of the patients among renal function groups was significantly different (p < 0.001). The tow targets attainment for the pathogen MIC of 2 mg/L and 8 mg/L were 89%, 73%, 49% and 27%, respectively. The severe renal impairment group has higher fraction of target attainment than the other group. The standard dosing achieved the target of 40%fT > 2/8 mg/L (85.7% and 81%, respectively) and patients with severe renal impairment achieved the target fraction of 100% for 40%fT > MIC. Additionally, there was no significant difference between standard and non-standard dosing group in target attainment. Conclusion Our findings indicate that renal function is an important covariate for both meropenem pharmacokinetics parameters and target attainment. The target attainment between standard and non-standard dosing group was not comparable. Therefore, therapeutic drug monitoring is indispensable in the dosing adjustment for critically ill patients if it is available.
Collapse
Affiliation(s)
- Yuhong Gan
- Department of Clinical Pharmacy, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Xiaobin Meng
- Department of Clinical Pharmacy, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Nanfeng Lei
- Department of Clinical Pharmacy, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Hong Yu
- Department of Clinical Pharmacy, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Qingkao Zeng
- Department of Intensive Care Unit, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Qingyan Huang
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
20
|
Li X, Song Y, Chen X, Yin J, Wang P, Huang H, Yin H. Single-cell microfluidics enabled dynamic evaluation of drug combinations on antibiotic resistance bacteria. Talanta 2023; 265:124814. [PMID: 37343360 DOI: 10.1016/j.talanta.2023.124814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023]
Abstract
The rapid spread of antibiotic resistance has become a significant threat to global health, yet the development of new antibiotics is outpaced by emerging new resistance. To treat multidrug-resistant bacteria and prolong the lifetime of existing antibiotics, a productive strategy is to use combinations of antibiotics and/or adjuvants. However, evaluating drug combinations is primarily based on end-point checkerboard measurements, which provide limited information to study the mechanism of action and the discrepancies in the clinical outcomes. Here, single-cell microfluidics is used for rapid evaluation of the efficacy and mode of action of antibiotic combinations within 3 h. Focusing on multidrug-resistant Acinetobacter baumannii, the combination between berberine hydrochloride (BBH, as an adjuvant) and carbapenems (meropenem, MEM) or β-lactam antibiotic is evaluated. Real-time tracking of individual cells to programmable delivered antibiotics reveals multiple phenotypes (i.e., susceptible, resistant, and persistent cells) with fidelity. Our study discovers that BBH facilitates the accumulation of antibiotics within cells, indicating synergistic effects (FICI = 0.5). For example, the combination of 256 mg/L BBH and 16 mg/L MEM has a similar killing effect (i.e., the inhibition rates >90%) as the MIC of MEM (64 mg/L). Importantly, the synergistic effect of a combination can diminish if the bacteria are pre-stressed with any single drug. Such information is vital for understanding the underlying mechanisms of combinational treatments. Overall, our platform provides a promising approach to evaluate the dynamic and heterogenous response of a bacterial population to antibiotics, which will facilitate new drug discovery and reduce emerging antibiotic resistance.
Collapse
Affiliation(s)
- Xiaobo Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, 300072, China; James Watt School of Engineering, University of Glasgow, G12 8LT, UK
| | - Yanqing Song
- James Watt School of Engineering, University of Glasgow, G12 8LT, UK
| | - Xiuzhao Chen
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Jianan Yin
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Ping Wang
- Tianjin Modern Innovative TCM Technology Co. Ltd., 300392, China
| | - He Huang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| | - Huabing Yin
- James Watt School of Engineering, University of Glasgow, G12 8LT, UK.
| |
Collapse
|
21
|
Passerotto RA, Lamanna F, Farinacci D, Dusina A, Di Giambenedetto S, Ciccullo A, Borghetti A. Ventilator-associated pneumonia (VAP) and pleural empyema caused by multidrug-resistant Acinetobacter baumannii in HIV and COVID 19 infected patient: A case report. INFECTIOUS MEDICINE 2023; 2:143-147. [PMID: 38013739 PMCID: PMC9984230 DOI: 10.1016/j.imj.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
We analyzed the case of a 49-year-old woman with HIV infection off-therapy with poor viro-immunological compensation, not vaccinated for SARS-COV-2, hospitalized for lobar pneumonia and severe COVID19-related respiratory failure in intensive care unit (ICU). The hospitalization was complicated by bacteraemic ventilator-associated pneumonia (VAP) caused by multidrug-resistant Acinetobacter baumannii (MDR-AB) isolated on pleural fluid culture, treated with colistin and cefiderocol for about 3 weeks. The molecular research of MDR-AB on transtracheal aspirate was negative following this therapy. The aim is to show the safety, efficacy and tolerability of colistin-based combination therapy with cefiderocol for Acinetobacter baumannii infection in HIV-infected patient.
Collapse
Affiliation(s)
- Rosa Anna Passerotto
- Dipartimento di Sicurezza e Bioetica - Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Lamanna
- Dipartimento di Sicurezza e Bioetica - Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Damiano Farinacci
- Dipartimento di Sicurezza e Bioetica - Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alex Dusina
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Simona Di Giambenedetto
- Dipartimento di Sicurezza e Bioetica - Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Arturo Ciccullo
- Infectious Diseases Unit, San Salvatore Hospital, 67100 L'Aquila, Italy
| | - Alberto Borghetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
22
|
Rabi R, Enaya A, Sweileh MW, Aiesh BM, Namrouti A, Hamdan ZI, Abugaber D, Nazzal Z. Comprehensive Assessment of Colistin Induced Nephrotoxicity: Incidence, Risk Factors and Time Course. Infect Drug Resist 2023; 16:3007-3017. [PMID: 37215302 PMCID: PMC10198178 DOI: 10.2147/idr.s409964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Purpose In recent years, the emergence of multidrug-resistant (MDR) microorganisms had caused the resurgence of colistin use after it was previously abandoned due to its side effects, nephrotoxicity in particular. However, the specific incidence of colistin-induced nephrotoxicity varies in reports with different populations. This study aims to assess the incidence of colistin-associated nephrotoxicity and the associated risk factors. Patients and Methods This study was on 178 patients who received colistin for more than 48 hours during the years 2019-2022, who were followed up for 14 days after the initiation of colistin, and demographic and clinical data were gained from medical reports. Logistic regression was used to assess the relationship between nephrotoxicity and study variables. Results The incidence of nephrotoxicity was 44.9% (95% confidence interval (CI); 37% to 53%), and the overall mortality was 33%, with a significantly higher level among patients with nephrotoxicity. The significant risk factors for nephrotoxicity after adjustment were; higher weights (OR = 1.1, 95% CI; 0.03-1.2), P-value: 0.006, and the combination with carbapenem showed a significant protective effect (OR = 0.09, 95% CI; 0.01-0.8), P-value: 0.03. The severity, according to KDIGO classification, was stage 1 (47%), stage 2 (21%), and stage 3 (31%). Higher stages had earlier onset acute kidney injury, a lower percentage of returning to baseline, and exposure to a higher colistin dose. Conclusion Colistin-induced nephrotoxicity was a frequent issue associated with higher weights, mitigated by the combination with carbapenems. While higher colistin dosages, and earlier onset AKI, were linked to the progression to higher AKI stages and the need for dialysis.
Collapse
Affiliation(s)
- Razan Rabi
- Department of Internal Medicine, An-Najah National University Hospital, Nablus, Palestine
| | - Ahmad Enaya
- Department of Internal Medicine, An-Najah National University Hospital, Nablus, Palestine
| | - Mamoun W Sweileh
- Department of Internal Medicine, An-Najah National University Hospital, Nablus, Palestine
| | - Banan M Aiesh
- Infection Control Department, An-Najah National University Hospital, Nablus, Palestine
| | - Ashraqat Namrouti
- Department of Internal Medicine, An-Najah National University Hospital, Nablus, Palestine
| | - Zakaria I Hamdan
- Department of Internal Medicine, An-Najah National University Hospital, Nablus, Palestine
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Dina Abugaber
- Department of Internal Medicine, An-Najah National University Hospital, Nablus, Palestine
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Zaher Nazzal
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
23
|
Luo H, Hang Y, Zhu H, Zhong Q, Peng S, Gu S, Fang X, Hu L. Rapid Identification of Carbapenemase-Producing Klebsiella pneumoniae Using Headspace Solid-Phase Microextraction Combined with Gas Chromatography-Mass Spectrometry. Infect Drug Resist 2023; 16:2601-2609. [PMID: 37152404 PMCID: PMC10162101 DOI: 10.2147/idr.s404742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Background Carbapenemase-producing Klebsiella pneumoniae is an unprecedented threat to public health, and its detection remains challenging. Analysis of microbial volatile organic compounds (VOCs) may offer a rapid way to determine bacterial antibiotic susceptibility. Purpose The aim of this study was to explore the VOCs released by carbapenemase-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) using headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS). Methods Test bacteria were incubated in trypticase soy broth to the end of exponential growth phase, and imipenem was added in the middle time. Headspace VOCs were concentrated and analyzed using HS-SPME/GC-MS. Results The compound 3-methyl-1-butanol was found to be a biomarker among the 26 bacterial isolates (10 KPC-positive, 10 NDM-positive, 2 IMP-positive, 2 carbapenemase-negative CRKP, and 2 carbapenem-susceptible K. pneumonoiae). Conclusion This study explored a promising new strategy for the screening of carbapenemase-producing CRKP strains. Further research with larger sample sizes will potentially accelerate the application of biomarkers in routine microbiology.
Collapse
Affiliation(s)
- Hong Luo
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Yaping Hang
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Hongying Zhu
- Clinical Laboratory of Ganzhou People’s Hospital, Ganzhou, Jiangxi, People’s Republic of China
| | - Qiaoshi Zhong
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Suqin Peng
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Shumin Gu
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Xueyao Fang
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Longhua Hu
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
24
|
Ardebili A, Izanloo A, Rastegar M. Polymyxin combination therapy for multidrug-resistant, extensively-drug resistant, and difficult-to-treat drug-resistant gram-negative infections: is it superior to polymyxin monotherapy? Expert Rev Anti Infect Ther 2023; 21:387-429. [PMID: 36820511 DOI: 10.1080/14787210.2023.2184346] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION The increasing prevalence of infections with multidrug-resistant (MDR), extensively-drug resistant (XDR) or difficult-to-treat drug resistant (DTR) Gram-negative bacilli (GNB), including Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter species, and Escherichia coli poses a severe challenge. AREAS COVERED The rapid growing of multi-resistant GNB as well as the considerable deceleration in development of new anti-infective agents have made polymyxins (e.g. polymyxin B and colistin) a mainstay in clinical practices as either monotherapy or combination therapy. However, whether the polymyxin-based combinations lead to better outcomes remains unknown. This review mainly focuses on the effect of polymyxin combination therapy versus monotherapy on treating GNB-related infections. We also provide several factors in designing studies and their impact on optimizing polymyxin combinations. EXPERT OPINION An abundance of recent in vitro and preclinical in vivo data suggest clinical benefit for polymyxin-drug combination therapies, especially colistin plus meropenem and colistin plus rifampicin, with synergistic killing against MDR, XDR, and DTR P. aeruginosa, K. pneumoniae and A. baumannii. The beneficial effects of polymyxin-drug combinations (e.g. colistin or polymyxin B + carbapenem against carbapenem-resistant K. pneumoniae and carbapenem-resistant A. baumannii, polymyxin B + carbapenem + rifampin against carbapenem-resistant K. pneumoniae, and colistin + ceftolozan/tazobactam + rifampin against PDR-P. aeruginosa) have often been shown in clinical setting by retrospective studies. However, high-certainty evidence from large randomized controlled trials is necessary. These clinical trials should incorporate careful attention to patient's sample size, characteristics of patient's groups, PK/PD relationships and dosing, rapid detection of resistance, MIC determinations, and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Abdollah Ardebili
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahdieh Izanloo
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Mostafa Rastegar
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
25
|
Lin X, Liu X, Wu X, Xie X, Liu G, Wu J, Peng W, Wang R, Chen J, Huang H. Wide-spectrum antibiotic prophylaxis guarantees optimal outcomes in drowned donor kidney transplantation. Expert Rev Anti Infect Ther 2023; 21:203-211. [PMID: 36573685 DOI: 10.1080/14787210.2023.2163237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Drowned victims possibly obtain various pathogens from drowning sites. Using drowned renal donors to expand the donor pool still lacks consensus due to the potential risk of disease transmission. RESEARCH DESIGN AND METHODS This retrospective study enrolled 38 drowned donor renal recipients in a large clinical center from August 2012 to February 2021. A 1:2 matched cohort was generated with donor demographics, including age, gender, BMI, and ICU durations. Donor microbiological results, recipient perioperative infections, and early post-transplant and first-year clinical outcomes were analyzed. RESULTS Compared to the control group, drowned donors had significantly increased positive fungal cultures (36.84% vs.13.15%, p = 0.039). Recipients in the drowned group had significantly higher rates of gram-negative bacteria (GNB) and multidrug-resistant GNB infections (23.68% vs.5.26%, 18.42% vs. 3.95%, both p < 0.05). Other colonization and infections were also numerically more frequent in the drowned group. Drowned donor recipients receiving inadequate antibiotic prophylaxis had more perioperative bloodstream infections, higher DGF incidences, and more first-year respiratory tract infections and recipient loss than those receiving adequate prophylaxis (all p < 0.05). Clinical outcomes were similar between the adequate group and the control group. CONCLUSIONS Drowned donors could be suitable options under wide-spectrum and adequate antimicrobial prophylaxis.
Collapse
Affiliation(s)
- Xiaoli Lin
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Xinyu Liu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Xiaoying Wu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Xishao Xie
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Guangjun Liu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Jianyong Wu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Wenhan Peng
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Rending Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Hongfeng Huang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| |
Collapse
|
26
|
Qian C, Wu Q, Ruan Z, Liu F, Li W, Shi W, Ma L, Peng D, Yin H, Yao L, Li Z, Hong M, Xia L. A Visualized Mortality Prediction Score Model in Hematological Malignancies Patients with Carbapenem-Resistant Organisms Bloodstream Infection. Infect Drug Resist 2023; 16:201-215. [PMID: 36644657 PMCID: PMC9833326 DOI: 10.2147/idr.s393932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Background Bloodstream infection (BSI) due to carbapenem-resistant organisms (CROs) has emerged as a worldwide problem associated with high mortality. This study aimed to evaluate the risk factors associated with mortality in HM patients with CROs BSI and to establish a scoring model for early mortality prediction. Methods We conducted a retrospective cohort study at our hematological department from January 2018 to December 2021, including all HM patients with CROs BSI. The outcome measured was death within 30-day of BSI onset. Survivor and non-survivor subgroups were compared to identify predictors of mortality. Univariate and multivariate Cox regression analyses were used to identify prognostic risk factors and develop a nomogram. Results In total, 150 HM patients were included in the study showing an overall 30-day mortality rate of 56%. Klebsiella pneumonia was the dominant episode. Cox regression analysis showed that pre-infection length of stay was >14 days (score 41), Pitt score >4 (score 100), mucositis (score 41), CAR (The ratio of C-reactive protein to albumin) >8.8 (score 57), early definitive therapy (score 44), and long-duration (score 78) were positive independent risk predictors associated with 30-day mortality, all of which were selected into the nomogram. Furthermore, all patients were divided into the high-risk group (≥160 points) or the low-risk group based on the prediction score model. The mortality of the high-risk group was 8 times more than the low-risk group. Kaplan-Meier analysis showed that empirical polymyxin B therapy was associated with a lower 30-day mortality rate, which was identified as a good prognostic factor in the high-risk group. In comparison, empirical carbapenems and tigecycline were poor prognostic factors in a low-risk group. Conclusion Our score model can accurately predict 30-day mortality in HM patients with CROs BSI. Early administration of CROs-targeted therapy in the high-risk group is strongly recommended to decrease mortality.
Collapse
Affiliation(s)
- Chenjing Qian
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Zhixuan Ruan
- Faculty of Natural, Mathematical and Engineering Sciences, King’s College, London, UK
| | - Fang Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Weiming Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Ling Ma
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Danyue Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Hua Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Lan Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Zixuan Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Mei Hong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China,Correspondence: Mei Hong; Linghui Xia, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No. 1277, Wuhan, Hubei Province, People’s Republic of China, Tel +8613037137937; +8618627733999, Email ;
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| |
Collapse
|
27
|
Lu X, Zhong C, Liu Y, Ye H, Qu J, Zong Z, Lv X. Efficacy and safety of polymyxin E sulfate in the treatment of critically ill patients with carbapenem-resistant organism infections. Front Med (Lausanne) 2022; 9:1067548. [PMID: 36643845 PMCID: PMC9834999 DOI: 10.3389/fmed.2022.1067548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022] Open
Abstract
Objective Polymyxins are currently the last line of defense in the treatment of carbapenem-resistant organisms (CRO). As a kind of polymyxin available for clinical use in China, we aim to explore the efficacy and safety of colistin sulfate (Polymyxin E sulfate, PES) in this study. Methods This real-world retrospective study included 119 patients diagnosed with CRO infection and treated with PES for more than 72 h, from May 2020 to July 2022 at West China Hospital. The primary outcome was clinical efficacy at the end of treatment, and secondary outcomes included microbial response, in-hospital mortality and incidence of nephrotoxicity. Results The effective clinical and microbiological responses were 53.8% and 49.1%, respectively. And the in-hospital mortality was 27.7%. Only 9.2% of patients occurred with PES-related nephrotoxicity. Multivariate analysis revealed that duration of PES was an independent predictor of effective therapy, while age-adjusted Charlson comorbidity index (aCCI) and post-treatment PCT(p-PCT) were independent risk factors for poor outcome. Conclusions PES can be a salvage treatment for CRO-induced infections with favorable efficacy and low nephrotoxicity. The treatment duration of PES, aCCI and p-PCT were factors related to the clinical effectiveness of PES.
Collapse
|
28
|
Gupta N, Angadi K, Jadhav S. Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii with Special Reference to Carbapenemases: A Systematic Review. Infect Drug Resist 2022; 15:7631-7650. [PMID: 36579124 PMCID: PMC9791997 DOI: 10.2147/idr.s386641] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Carbapenemases are β-lactamase enzymes that hydrolyze a variety of β-lactams including carbapenem and belong to different Ambler classes (A, B, D). These enzymes can be encoded by plasmid or chromosomal-mediated genes. The major issues associated with carbapenemases-producing organisms are compromising the activity and increasing the resistance to carbapenems which are the last resort antibiotics used in treating serious infections. The global increase of pathogen, carbapenem-resistant A. baumannii has significantly threatened public health. Thus, there is a pressing need for a better understanding of this pathogen, to know the various carbapenem resistance encoding genes and dissemination of resistance genes from A. baumannii which help in developing strategies to overcome this problem. The horizontal transfer of resistant determinants through mobile genetic elements increases the incidence of multidrug, extensive drug, and Pan-drug resistant A. baumannii. Therefore, the current review aims to know the various mechanisms of carbapenem resistance, categorize and discuss carbapenemases encoding genes and various mobile genetic elements, and the prevalence of carbapenemase genes in recent years in A. baumannii from various geographical regions.
Collapse
Affiliation(s)
- Neetu Gupta
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Kalpana Angadi
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Savita Jadhav
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India,Correspondence: Savita Jadhav, Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India, Tel +919284434364, Email
| |
Collapse
|
29
|
Villanueva-Cotrina F, Condori DM, Gomez TO, Yactayo KM, Barron-Pastor H. First Isolates of OXA-48-Like Carbapenemase-Producing Enterobacteriaceae in A Specialized Cancer Center. Infect Chemother 2022; 54:765-773. [PMID: 36596684 PMCID: PMC9840961 DOI: 10.3947/ic.2022.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND OXA-48-like carbapenemases have been found in a growing and varied number of carbapenemase-producing Enterobacteriaceae (CPE) isolates, and they are spreading to several countries. Although this oxacillinase leads to weak resistance to carbapenems without affecting broad-spectrum cephalosporin activity, when they are associated with other resistance mechanisms, the level of resistance to these antibiotics may be significantly higher. This weak resistance against carbapenems and cephalosporins, along with the absence of other resistance mechanisms, could render OXA-48-like harboring isolates undetected in the laboratory routine. In addition, the lack of a specific screening test for this enzyme complicates the detection of these isolates. This report characterizes the first isolates of OXA-48-like CPE detected in our laboratory. MATERIALS AND METHODS The study was carried out at the Instituto Nacional de Enfermedades Neoplasicas, Lima - Peru, between March and December 2021. OXA-48-like CPE isolates were detected as part of the routine microbiological study, and clinical data were obtained by reviewing medical records. The automated microbiological system provides the bacterial identification and antimicrobial susceptibility profile by the dilution method. Additionally, the column chromatography test is used to detect carbapenemase enzymes, including OXA-48-like. Finally, the molecular identification of the OXA-48-like enzyme was carried out by Polymerase Chain Reaction PCR amplification for the blaOXA-48-like. RESULTS Seven OXA-48-like CPE strains were isolated. Notably, in all cases, the automated system issued a minimum inhibitory concentration (MIC) of ≥1 ug/mL for ertapenem and a MIC of >64/4 ug/mL for piperacillin/tazobactam. In addition, resistance category to imipenem and meropenem was found (2/7), at least one indeterminate category for any of these carbapenems (5/7), and other serine β-lactamases such as Extended-spectrum beta-lactamases (3/7) and AmpC (3/7). The immunochromatographic study confirmed the presence of the OXA-48-like enzyme in all isolates, while class A and class B were ruled out for them. Finally, the multiplex PCR, for the five isolates that could be recovered, showed amplification for carbapenemase OXA-48-like, while none of the other carpabemases was amplified for class A or class B carbapenemase genes. CONCLUSION We confirm the emergence of OXA-48-like CPE isolates in our cancer center and highlight the need to implement surveillance and detection measures of these strains, for controlling their dissemination. We found practical and inexpensive methodologies for the detection of OXA-48-like CPE: (1) the finding of resistance to ertapenem and piperacillin/tazobactam in the antibiogram in the absence of class A and B carbapenemases, for screening and (2) immunochromatographic study, for confirmation.
Collapse
Affiliation(s)
- Freddy Villanueva-Cotrina
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru.,Department of Medical Microbiology, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Dick Mamani Condori
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | - Tamin Ortiz Gomez
- Department of Pathology, AUNA Laboratory. Lima, Peru.,Group of Research and Teaching in Molecular Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Katia Mallma Yactayo
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | - Heli Barron-Pastor
- Group of Research and Teaching in Molecular Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
30
|
Wang J, Zhang J, Wu ZH, Liu L, Ma Z, Lai CC, Luo YG. Clinical Characteristics and Prognosis Analysis of Acinetobacter baumannii Bloodstream Infection Based on Propensity Matching. Infect Drug Resist 2022; 15:6963-6974. [PMID: 36474906 PMCID: PMC9719707 DOI: 10.2147/idr.s387898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/14/2022] [Indexed: 09/13/2023] Open
Abstract
PURPOSE In view of the fact that Acinetobacter baumannii bloodstream infection(BSI) is a great threat to human survival, early identification of the risk factors affecting prognosis will be of great benefit to the clinic. PATIENTS AND METHODS A propensity score matching method was used to collect patients identified with Acinetobacter baumannii BSI from 2016 to 2020 from a reputable hospital in China. RESULTS A total of 398 patients were considered. According to the 28-day prognosis, they were divided into the survival group 150 (37.7%) and the death group 248 (62.3%), and the prognosis was analyzed. Subsequently, Propensity score matching was adjusted for variables with p-values CONCLUSION The existence of drug resistance with Acinetobacter baumannii only leads to Inappropriate empirical antibiotic therapy, ultimately, Inappropriate empirical antibiotic therapy was the direct predictor of mortality.
Collapse
Affiliation(s)
- Jinghui Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jun Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Zhuang-hao Wu
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Lei Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Zijun Ma
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Cheng-cheng Lai
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yong-gang Luo
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
31
|
Wang JL, Xiang BX, Song XL, Que RM, Zuo XC, Xie YL. Prevalence of polymyxin-induced nephrotoxicity and its predictors in critically ill adult patients: A meta-analysis. World J Clin Cases 2022; 10:11466-11485. [PMID: 36387815 PMCID: PMC9649555 DOI: 10.12998/wjcc.v10.i31.11466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Polymyxin-induced nephrotoxicity is a major safety concern in clinical practice due to long-term adverse outcomes and high mortality.
AIM To conducted a systematic review and meta-analysis of the prevalence and potential predictors of polymyxin-induced nephrotoxicity in adult intensive care unit (ICU) patients.
METHODS PubMed, EMBASE, the Cochrane Library and Reference Citation Analysis database were searched for relevant studies from inception through May 30, 2022. The pooled prevalence of polymyxin-induced nephrotoxicity and pooled risk ratios of associated factors were analysed using a random-effects or fixed-effects model by Stata SE ver. 12.1. Additionally, subgroup analyses and meta-regression were conducted to assess heterogeneity.
RESULTS A total of 89 studies involving 12234 critically ill adult patients were included in the meta-analysis. The overall pooled incidence of polymyxin-induced nephrotoxicity was 34.8%. The pooled prevalence of colistin-induced nephrotoxicity was not higher than that of polymyxin B (PMB)-induced nephrotoxicity. The subgroup analyses showed that nephrotoxicity was significantly associated with dosing interval, nephrotoxicity criteria, age, publication year, study quality and sample size, which were confirmed in the univariable meta-regression analysis. Nephrotoxicity was significantly increased when the total daily dose was divided into 2 doses but not 3 or 4 doses. Furthermore, older age, the presence of sepsis or septic shock, hypoalbuminemia, and concomitant vancomycin or vasopressor use were independent risk factors for polymyxin-induced nephrotoxicity, while an elevated baseline glomerular filtration rate was a protective factor against colistin-induced nephrotoxicity.
CONCLUSION Our findings indicated that the incidence of polymyxin-induced nephrotoxicity among ICU patients was high. It emphasizes the importance of additional efforts to manage ICU patients receiving polymyxins to decrease the risk of adverse outcomes.
Collapse
Affiliation(s)
- Jiang-Lin Wang
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Bi-Xiao Xiang
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Xiao-Li Song
- Department of Pharmacy, Sanya Central Hospital, Sanya 572000, Hainan Province, China
| | - Rui-Man Que
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Xiao-Cong Zuo
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Yue-Liang Xie
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
32
|
Zheng G, Wang S, Lv H, Zhang G. Nomogram Analysis of Clinical Characteristics and Mortality Risk Factor of Non-Fermentative Gram-Negative Bacteria-Induced Post-Neurosurgical Meningitis. Infect Drug Resist 2022; 15:6379-6389. [PMID: 36345538 PMCID: PMC9636862 DOI: 10.2147/idr.s385502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022] Open
Abstract
Objective To explore the clinical characteristics of post-neurosurgical meningitis (PNM) patients infected with nonfermenting Gram-negative bacilli (NFGNB) and to evaluate the related mortality risk factors. Methods A cohort analysis of PNM patients infected with NFGNB in Beijing Tiantan Hospital and Capital Medical University from 2012.1 to 2020.12. The microbial distribution, antimicrobial sensitivity and genotypes were tested, and potential mortality risk factors were evaluated using Mann–Whitney U or chi-squared tests. Independent risk factors for mortality were established by constructing a logistic model. Results A total of 2940 PNM patients were enrolled in this study, of whom 207 (17.1%) were infected with NFGNB. Among these patients, 29 died of NFGNB meningitis, with an overall mortality rate of 14.0%. The top three NFGNBs were Acinetobacter baumannii (105 cases, 50.7%), Pseudomonas aeruginosa (29 cases, 14.0%) and Acinetobacter lwoffii (20 cases, 9.7%). Nomogram analysis revealed that hypertension (OR 4.551, 95% CI: 1.464–14.154, P = 0.009), external ventricular drainage (EVD) (OR 3.944, 95% CI: 1.286–12.095, P = 0.016), and assisted mechanical ventilator (AMV) (OR 6.192, 95% CI: 1.737–22.081, P = 0.005) were independent risk factors for mortality. In addition, antibiotic prophylaxis was shown to play a vital role in NFGNB-induced PNM therapy. Conclusion PNM patients infected with NFGNB have a high mortality rate. Hypertension, EVD and AMV were independent mortality risk factors, and clinical attention should be paid to their prevention and treatment.
Collapse
Affiliation(s)
- Guanghui Zheng
- Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, 100076, People’s Republic of China
- NMPA Key Laboratory for Quality Control of in vitro Diagnostics, Beijing, 100076, People’s Republic of China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, 100076, People’s Republic of China
| | - Siqi Wang
- School of clinical laboratory diagnostics, Capital Medical University, Beijing, 100076, People’s Republic of China
| | - Hong Lv
- Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, 100076, People’s Republic of China
- NMPA Key Laboratory for Quality Control of in vitro Diagnostics, Beijing, 100076, People’s Republic of China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, 100076, People’s Republic of China
| | - Guojun Zhang
- Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, 100076, People’s Republic of China
- NMPA Key Laboratory for Quality Control of in vitro Diagnostics, Beijing, 100076, People’s Republic of China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, 100076, People’s Republic of China
- Correspondence: Guojun Zhang, Laboratory of Beijing Tiantan Hospital, Capital Medical University, NO. 119 Nansihuan West Road, Fengtai District, Beijing, People’s Republic of China, Tel +86 15811219411, Email
| |
Collapse
|
33
|
Ahmadpour F, Shaseb E, Izadpanah M, Rakhshan A, Hematian F. Optimal dosing interval of intravenous Colistin monotherapy versus combination therapy: A systematic review and meta-analysis. Eur J Transl Myol 2022; 32:10833. [PMID: 36533669 PMCID: PMC9830404 DOI: 10.4081/ejtm.2022.10833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 01/13/2023] Open
Abstract
We aimed to maximize the clinical response and effectiveness of colistin antibiotics in patients with multi-drug (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria, there is an increasing interest in colistin combination therapy with other antibiotics and extended interval dosing regimens. This systematic review and meta-analysis aim is to evaluate if the combination therapy is superior to monotherapy with colistin regarding increased survival and also which dose interval is the most effective to utilize. English language, peer-reviewed journal publications from the first date available to 25 January 2022 were identified by searching the PubMed and Web of Science databases. Forest plots for overall and subgroups and funnel plots were graphed. 42 studies were included in the study. Among them, 38 studies were on combination therapy, and four on dose interval. The overall pooled odds ratio is 0.77 (CI: 0.62; 0.95) (p value < 0.017). The I^2 value was 43% (p value < 0.01). The Begg correlation test of funnel plot asymmetry showed no significant publication bias (0.064). The overall pooled odds ratio for Carbapenem is 0.74 (CI: 0.48; 1.13). A prospective randomized controlled trials (RCT) on 40 adults intensive care unit (ICU) patients with ventilator-associated pneumonia (VAP), comparing the mortality and ICU length of stay of 8- or 24- hour intervals regimens, showed that the ICU length of stay and ICU mortality were; 31.31, 35.3 days, and 32.06, 22.2% in groups 24-h interval and 8- hour interval (p value: 0.39, 0.87), respectively. It seems that combination therapy is associated with drug synergism and increased survival. The extended interval colistin administration may result in higher peak concentration and bacterial eradication. In both cases, we face a dearth of literature.
Collapse
Affiliation(s)
- Forouzan Ahmadpour
- Department of Pharmacotherapy, School of Pharmacy, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Elnaz Shaseb
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mandana Izadpanah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amin Rakhshan
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Hematian
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Assistant professor of clinical pharmacy, Department of Clinical Pharmacy, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. ORCID ID: 0000-0001-7062-4669
| |
Collapse
|
34
|
Jantarathaneewat K, Camins B, Apisarnthanarak A. What are the considerations for the treatment of multidrug resistant Acinetobacter baumannii infections? Expert Opin Pharmacother 2022; 23:1667-1672. [PMID: 36210527 DOI: 10.1080/14656566.2022.2134778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Kittiya Jantarathaneewat
- Center of Excellence in Pharmacy Practice and Management Research, Faculty of Pharmacy, Thammasat University, Pathum Thani, Thailand.,Research Group in Infectious Diseases Epidemiology and Prevention, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Bernard Camins
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anucha Apisarnthanarak
- Research Group in Infectious Diseases Epidemiology and Prevention, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand.,Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
35
|
Shahbazi F, Shojaei L, Farvadi F, Kadivarian S. Antimicrobial safety considerations in critically ill patients: part I: focused on acute kidney injury. Expert Rev Clin Pharmacol 2022; 15:551-561. [PMID: 35734940 DOI: 10.1080/17512433.2022.2093713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Antibiotic prescription is a challenging issue in critical care settings. Different pharmacokinetic and pharmacodynamic properties, polypharmacy, drug interactions, and high incidence of multidrug-resistant microorganisms in this population can influence the selection, safety, and efficacy of prescribed antibiotics. AREAS COVERED In the current article, we searched PubMed, Scopus, and Google Scholar for estimating renal function in acute kidney injury, nephrotoxicity of commonly used antibiotics, and nephrotoxin stewardship in intensive care units. EXPERT OPINION Early estimation of kidney function with an accurate method may be helpful to optimize antimicrobial treatment in critically ill patients. Different antibiotic dosing regimens may be required for patients with acute kidney injury. In many low-resource settings, therapeutic drug monitoring is not available for antibiotics. Acute kidney injury may influence treatment effectiveness and patient outcome.
Collapse
Affiliation(s)
- Foroud Shahbazi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Lida Shojaei
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fakhrossadat Farvadi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Kadivarian
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
36
|
Khan MA, Allemailem KS, Maswadeh H, Younus H. Safety and Prophylactic Efficacy of Liposome-Based Vaccine against the Drug-Resistant Acinetobacter baumannii in Mice. Pharmaceutics 2022; 14:pharmaceutics14071357. [PMID: 35890253 PMCID: PMC9318010 DOI: 10.3390/pharmaceutics14071357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022] Open
Abstract
In recent years, the emergence of multidrug-resistant Acientobacter baumannii has greatly threatened public health and depleted our currently available antibacterial armory. Due to limited therapeutic options, the development of an effective vaccine formulation becomes critical in order to fight this drug-resistant pathogen. The objective of the present study was to develop a safe vaccine formulation that can be effective against A. baumannii infection and its associated complications. Here, we prepared liposomes-encapsulated whole cell antigens (Lip-WCAgs) as a vaccine formulation and investigated its prophylactic efficacy against the systemic infection of A. baumannii. The immunization with Lip-WCAgs induced the higher production of antigen-specific antibody titers, greater lymphocyte proliferation, and increased secretion of Th1 cytokines, particularly IFN-γ and IL-12. Antisera from Lip-WCAgs-immunized mice showed the utmost bactericidal activity and potently inhibited the biofilm formation by A. baumannii. Interestingly, Lip-WCAgs-induced immune response was translated in in vivo protection studies as the immunized mice exhibited the highest resistance to A. baumannii infection. Mice in the group immunized with Lip-WCAgs had an 80% survival rate and a bacterial burden of 5464 ± 1193 CFUs per gram of the lung tissue, whereas the mice immunized with IFA-WCAgs had a 50% survival rate and 51,521 ± 8066 CFUs. In addition, Lip-WCAgs vaccinated mice had lower levels of the inflammatory markers, including CRP, IL-6, IL-1β, and TNF-α. The findings of this study suggest that Lip-WCAgs may be considered a potential vaccine formulation to protect individuals against A. baumannii infection.
Collapse
Affiliation(s)
- Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
- Correspondence: ; Tel.: +966-(50)-7059437; Fax: +966-(63)-801628
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Hamzah Maswadeh
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India;
| |
Collapse
|
37
|
Colistin Monotherapy versus Colistin plus Meropenem Combination Therapy for the Treatment of Multidrug-Resistant Acinetobacter baumannii Infection: A Meta-Analysis. J Clin Med 2022; 11:jcm11113239. [PMID: 35683622 PMCID: PMC9181109 DOI: 10.3390/jcm11113239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Introduction: Colistin combination therapy with other antibiotics is a way to enhance colistin activity. The purpose of this meta-analysis was to compare the efficacy and safety of treatment with colistin monotherapy versus colistin plus meropenem combination therapy in patients with drug-resistant Acinetobacter baumannii infection. (2) Methods: All studies were included if they reported one or more of the following outcomes: clinical improvement, complete microbiological response, 14-day mortality, hospital mortality, or nephrotoxicity. (3) Results: Three randomized controlled trials and seven retrospective studies were included in the meta-analysis. Colistin monotherapy has similar rates of clinical improvement, 14-day mortality, hospital mortality, and nephrotoxicity as colistin plus meropenem combination therapy. Regarding complete microbiological response, the colistin plus meropenem combination was better than colistin monotherapy. (4) Discussion: Previous meta-analyses demonstrated heterogeneity in study quality and a lack of evidence supporting the use of colistin-based combination therapy. Our meta-analysis clearly showed that colistin combined with meropenem was not superior to colistin monotherapy for the treatment of Acinetobacter baumannii infection. (5) Conclusions: The efficacy and safety of treatment with colistin monotherapy and that of colistin plus meropenem combination therapy in patients with drug-resistant Acinetobacter baumannii infection were comparable. The majority of the evidence was obtained from nonrandomized studies, and high-quality randomized controlled trials are needed to confirm the role of colistin plus meropenem combination therapy in the treatment of multidrug-resistant Acinetobacter baumannii infection.
Collapse
|
38
|
Sy CL, Chen PY, Cheng CW, Huang LJ, Wang CH, Chang TH, Chang YC, Chang CJ, Hii IM, Hsu YL, Hu YL, Hung PL, Kuo CY, Lin PC, Liu PY, Lo CL, Lo SH, Ting PJ, Tseng CF, Wang HW, Yang CH, Lee SSJ, Chen YS, Liu YC, Wang FD. Recommendations and guidelines for the treatment of infections due to multidrug resistant organisms. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:359-386. [PMID: 35370082 DOI: 10.1016/j.jmii.2022.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 01/12/2023]
Abstract
Antimicrobial drug resistance is one of the major threats to global health. It has made common infections increasingly difficult or impossible to treat, and leads to higher medical costs, prolonged hospital stays and increased mortality. Infection rates due to multidrug-resistant organisms (MDRO) are increasing globally. Active agents against MDRO are limited despite an increased in the availability of novel antibiotics in recent years. This guideline aims to assist clinicians in the management of infections due to MDRO. The 2019 Guidelines Recommendations for Evidence-based Antimicrobial agents use in Taiwan (GREAT) working group, comprising of infectious disease specialists from 14 medical centers in Taiwan, reviewed current evidences and drafted recommendations for the treatment of infections due to MDRO. A nationwide expert panel reviewed the recommendations during a consensus meeting in Aug 2020, and the guideline was endorsed by the Infectious Diseases Society of Taiwan (IDST). This guideline includes recommendations for selecting antimicrobial therapy for infections caused by carbapenem-resistant Acinetobacter baumannii, carbapenem-resistant Pseudomonas aeruginosa, carbapenem-resistant Enterobacterales, and vancomycin-resistant Enterococcus. The guideline takes into consideration the local epidemiology, and includes antimicrobial agents that may not yet be available in Taiwan. It is intended to serve as a clinical guide and not to supersede the clinical judgment of physicians in the management of individual patients.
Collapse
Affiliation(s)
- Cheng Len Sy
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Pao-Yu Chen
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Wen Cheng
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ling-Ju Huang
- Division of General Medicine, Infectious Diseases, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taiwan
| | - Ching-Hsun Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tu-Hsuan Chang
- Department of Pediatrics, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yi-Chin Chang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Jung Chang
- Department of Pediatrics, MacKay Children's Hospital and MacKay Memorial Hospital, Taipei, Taiwan
| | - Ing-Moi Hii
- Division of Infectious Diseases, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Lung Hsu
- Division of Pediatric Infectious Diseases, China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Ya-Li Hu
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Pi-Lien Hung
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chen-Yen Kuo
- Department of Pediatrics, Chang Gung Children's Hospital, College of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Pei-Chin Lin
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Pharmacy, School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Yen Liu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ching-Lung Lo
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Hao Lo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Pei-Ju Ting
- Division of Infectious Diseases, Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chien-Fang Tseng
- Department of Pediatrics, MacKay Children's Hospital and MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsiao-Wei Wang
- Division of Infectious Diseases, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ching-Hsiang Yang
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Susan Shin-Jung Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yao-Shen Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Ching Liu
- Division of Infectious Diseases, Taipei Medical University Shuang Ho Hospital, Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
39
|
Lu L, Xu C, Tang Y, Wang L, Cheng Q, Chen X, Zhang J, Li Y, Xiao H, Li X. The Threat of Carbapenem-Resistant Gram-Negative Bacteria in Patients with Hematological Malignancies: Unignorable Respiratory Non-Fermentative Bacteria-Derived Bloodstream Infections. Infect Drug Resist 2022; 15:2901-2914. [PMID: 35693849 PMCID: PMC9176635 DOI: 10.2147/idr.s359833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Background Carbapenem-resistant Gram-negative bacteria (CRGNB) bloodstream infection (BSI) pose a significant threat to the prognosis of hematologic malignancies (HM) patients. Understanding the distribution of pathogenic bacteria, changes in carbapenem-resistant trends, risk factors for CRGNB infections, and exploring the early detection measures can help reduce mortality. Methods We conducted a multicenter retrospective study of Gram-negative bacteria (GNB) BSI in patients with HM in three university-affiliated hospitals in Hunan Province, China, from January 2010 to December 2020. Demographic and clinical data were collected from the hospital electronic medical records system. Results CRGNB caused 138 (15.3%) of 902 GNB BSI. The detection rate of CRGNB increased from 6.4% in 2010–2012 to 35.4% in 2019–2020. The 7-day mortality rate was significantly higher in patients with CRGNB BSI than in patients with carbapenem-susceptible Gram-negative bacteria (CSGNB) BSI [31.9% (44/138) vs 9.7% (74/764), P < 0.001], and the mortality rate in patients with carbapenem-resistant non-fermenting bacteria (CRNFB) bloodstream infections was generally higher than that of carbapenem-resistant Enterobacteriaceae (CRE). Urinary catheter (OR, 2.814; CI=1.395–5.680; P=0.004) and prior exposure to carbapenem (OR, 4.372; CI=2.881–6.635; P<0.001) were independent risk factors for CRGNB BSI. Analysis of co-infections showed that 50%–85% of patients with CRGNB BSI had pulmonary infections, sputum culture results suggested that sputum culture positivity rate was as high as 57.1%–66.7% in patients with carbapenem-resistant Acinetobacter baumannii (CRAB) and Stenotrophomonas maltophilia BSI, and the results of antimicrobial susceptibility testing of sputum cultures were consistent with the blood cultures. Conclusion Carbapenem resistance has dramatically increased in HM patients with GNB BSI in recent years and is associated with a worse outcome, especially for non-fermenting bacteria. In high-risk patients, early screening of the respiratory tract specimens may help to detect CRNFB colonization and protect patients from breakthrough BSI.
Collapse
Affiliation(s)
- Linli Lu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Cong Xu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yishu Tang
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Liwen Wang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Qian Cheng
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Xin Chen
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jian Zhang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Ying Li
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Han Xiao
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Xin Li
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Correspondence: Xin Li, Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China, Tel/Fax +86-731-88618241, Email
| |
Collapse
|
40
|
Zhang Z, Tian L. Trends in DTR, CR, ECR, and FQR in Four Common Gram-Negative Bacteria: A Retrospective Study from 2013 to 2021. Infect Drug Resist 2022; 15:2625-2631. [PMID: 35634581 PMCID: PMC9139338 DOI: 10.2147/idr.s365139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The purpose of this study was to examine the prevalence of four important drug-resistance phenotypes: difficult-to-treat resistance (DTR), fluoroquinolone resistance (FQR), carbapenem resistance (CR), and extended-spectrum cephalosporin resistance (ECR). Methods DTR was defined as insensitivity to all the β-lactams and fluoroquinolones tested. We retrospectively analyzed the distribution characteristics of specific drug-resistant phenotypes of the main Gram-negative bacteria causing bloodstream infections (BSIs) in Tongji Hospital (Wuhan, China) between 2013 and 2021: Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Results FQR was the main antimicrobial resistance phenotype of E. coli, accounting for 59.45% (1117/1879, 95% confidence interval, 57.21%-61.65%); the detection rates for CR and DTR were low, accounting for 1.86% (35/1879, 1.34%-2.58%), and 1.81% (34/1879, 1.30%-2.52%), respectively. However, the detection rates for CR and DTR in K. pneumoniae were 38.83% (497/1280, 36.20%-41.53%) and 35.94% (460/1280, 33.35%-38.60%), respectively. In P. aeruginosa, the detection rates of the four drug-resistant phenotypes (DTR, CR, FQR, and ECR) were all < 30%, but conversely, for A. baumannii, the detection rates were all > 80%. The changes in the data from 2013 to 2021 showed upward trends (z > 0) for CR-E. coli, DTR-E. coli, FQR-E. coli, CR-K. pneumoniae, DTR-K. pneumoniae, FQR-K. pneumoniae, and ECR-K. pneumoniae, but downward trends (z < 0) for ECR-E. coli, CR-A. baumannii, DTR-A. baumannii, FQR-A. baumannii, ECR-A. baumannii, CR-P. aeruginosa, DTR-P. aeruginosa, FQR-P. aeruginosa, and ECR-P. aeruginosa. Conclusion DTR warrants further attention, especially in in BSI-associated K. pneumoniae and A. baumannii, in which the detection rates were very high. Between 2013 and 2021 in this region, DTR-E. coli and CR-E. coli showed obvious upward trends, whereas DTR-P. aeruginosa and ECR-P. aeruginosa showed obvious downward trends.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Lei Tian
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| |
Collapse
|
41
|
Hu H, Lou Y, Feng H, Tao J, Shi W, Ni S, Pan Q, Ge T, Shen P, Zhong Z, Xiao Y, Qu T. Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii Isolates Among Intensive Care Unit Patients and Environment. Infect Drug Resist 2022; 15:1821-1829. [PMID: 35444432 PMCID: PMC9013810 DOI: 10.2147/idr.s349895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/26/2022] [Indexed: 12/31/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Hangbin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yifeng Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Infectious Disease Department, Sanmen People’s Hospital, Taizhou, Zhejiang, People’s Republic of China
| | - Haiting Feng
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jingjing Tao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Weixiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Shuangling Ni
- Infectious Disease Department, Lishui People’s Hospital, Lishui, Zhejiang, People’s Republic of China
| | - Qunying Pan
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Tianxiang Ge
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Zifeng Zhong
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Correspondence: Tingting Qu; Yonghong Xiao, Tel +86 571 87236673, Email ;
| |
Collapse
|
42
|
Qu J, Qi TT, Qu Q, Long WM, Chen Y, Luo Y, Wang Y. Polymyxin B-Based Regimens for Patients Infected with Carbapenem-Resistant Gram-Negative Bacteria: Clinical and Microbiological Efficacy, Mortality, and Safety. Infect Drug Resist 2022; 15:1205-1218. [PMID: 35345474 PMCID: PMC8957303 DOI: 10.2147/idr.s357746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background The increasing prevalence of carbapenem-resistant Gram-negative bacteria (CR-GNB) represents a global healthcare crisis. This study explored the efficacy and safety of Polymyxin B (PMB)-based regimens and factors influencing their effectiveness. Methods Patients with CR-GNB infections treated with PMB for more than three days were enrolled in this retrospective study from 1st June 2018 to 30th April 2020. Data were collected on patient characteristics, bacterial culture, and drug-sensitivity test results; anti-infection treatment regimens, particularly details of PMB use; and adverse drug reactions. Clinical and microbiological efficacy, mortality, and safety of PMB-based regimens in CR-GNB infected patients were evaluated. Univariate analysis and multivariate logistic regression analyses were used to assess factors influencing efficacy and mortality. Results A total of 373 CR-GNB strains were cultured from 268 patients. About 41.04% of patients used PMB loading dose of 1.01 (0.84–1.69) mg/kg. Maintenance dose was 0.85 (0.82–1.00) mg/kg q12h. The clinical efficacy rate was 36.57% (98/268), the total bacterial clearance rate of PMB was 39.42%, and the all-cause mortality rate was 33.96%. The adverse drug reaction rate was 19.58%, among which the incidence of renal toxicity was highest (8.21%). Multivariate logistic regression analysis showed that clinical efficacy, bacterial clearance rate, and all-cause mortality were associated with patient-related facts, including mechanical ventilation use, underlying diseases (such as respiratory disease), the type and site of CR-GNB infection, and PMB administration timing and loading dose. Conclusion PMB is a relatively safe and effective antibiotic drug for treatment of critically ill patients with CR-GNB infection; however, PMB use should be subject to guidelines recommendations for early administration, loading administration, and adequate administration, which could help to improve the clinical efficacy, microbiological efficacy, and mortality.
Collapse
Affiliation(s)
- Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People’s Republic of China
| | - Ting-Ting Qi
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People’s Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410078, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, People’s Republic of China
| | - Wen-Ming Long
- Department of Pharmacy, Jingzhou District, Second People’s Hospital of Huaihua City, Huaihua, 418400, People’s Republic of China
| | - Ying Chen
- Department of Pharmacy, Wuhan University, Renmin Hospital, Wuhan, 430060, People’s Republic of China
| | - Yue Luo
- Department of Pharmacy, The People’s Hospital of Liuyang, Liuyang, 410300, People’s Republic of China
| | - Ying Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People’s Republic of China
- Correspondence: Ying Wang, Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, People’s Republic of China, Tel +86-15173198700, Fax +86-731-85292072, Email
| |
Collapse
|
43
|
Nguyen HT, Venter H, Woolford L, Young K, McCluskey A, Garg S, Page SW, Trott DJ, Ogunniyi AD. Impact of a Novel Anticoccidial Analogue on Systemic Staphylococcus aureus Infection in a Bioluminescent Mouse Model. Antibiotics (Basel) 2022; 11:antibiotics11010065. [PMID: 35052942 PMCID: PMC8773087 DOI: 10.3390/antibiotics11010065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, we investigated the potential of an analogue of robenidine (NCL179) to expand its chemical diversity for the treatment of multidrug-resistant (MDR) bacterial infections. We show that NCL179 exhibits potent bactericidal activity, returning minimum inhibitory concentration/minimum bactericidal concentrations (MICs/MBCs) of 1–2 µg/mL against methicillin-resistant Staphylococcus aureus, MICs/MBCs of 1–2 µg/mL against methicillin-resistant S. pseudintermedius and MICs/MBCs of 2–4 µg/mL against vancomycin-resistant enterococci. NCL179 showed synergistic activity against clinical isolates and reference strains of Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa in the presence of sub-inhibitory concentrations of colistin, whereas NCL179 alone had no activity. Mice given oral NCL179 at 10 mg/kg and 50 mg/kg (4 × doses, 4 h apart) showed no adverse clinical effects and no observable histological effects in any of the organs examined. In a bioluminescent S. aureus sepsis challenge model, mice that received four oral doses of NCL179 at 50 mg/kg at 4 h intervals exhibited significantly reduced bacterial loads, longer survival times and higher overall survival rates than the vehicle-only treated mice. These results support NCL179 as a valid candidate for further development to treat MDR bacterial infections as a stand-alone antibiotic or in combination with existing antibiotic classes.
Collapse
Affiliation(s)
- Hang Thi Nguyen
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia;
- Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia;
| | - Kelly Young
- Chemistry, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (K.Y.); (A.M.)
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (K.Y.); (A.M.)
| | - Sanjay Garg
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | | | - Darren J. Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia;
- Correspondence: (D.J.T.); (A.D.O.); Tel.: +61-8-8313-7989 (D.J.T.); +61-432331914 (A.D.O.); Fax: +61-8-8313-7956 (D.J.T.)
| | - Abiodun David Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia;
- Correspondence: (D.J.T.); (A.D.O.); Tel.: +61-8-8313-7989 (D.J.T.); +61-432331914 (A.D.O.); Fax: +61-8-8313-7956 (D.J.T.)
| |
Collapse
|
44
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:2094-2104. [DOI: 10.1093/jac/dkac145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/13/2022] [Indexed: 11/14/2022] Open
|
45
|
Keski̇n AS, Seyman D, Önder KD, Kizilateş F, Keski̇n O. Investigation of Effect of the Colistin Loading Dosage on the clinical, Microbiological, and Laboratory Results in Acinetobacter baumannii Ventilator-Associated Pneumonia /Pneumonia. Int J Clin Pract 2022; 2022:5437850. [PMID: 36105785 PMCID: PMC9441370 DOI: 10.1155/2022/5437850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/13/2022] [Indexed: 11/21/2022] Open
Abstract
MATERIALS AND METHODS Adult patients administered colistin with and without LD for MDR Acinetobacter baumannii VAP/pneumonia in intensive care units (ICUs) in a tertiary teaching hospital between 1 January 2018 and 31 December 2019 were included in this retrospective cohort study. The primary endpoint was an assessment of clinical and microbiological success between treatment groups. Secondary endpoints included 14- and 30-day mortality and development of nephrotoxicity. RESULTS A total of 101 patients were included (colistin with LD, n = 57; colistin without LD, n = 44). No significant difference in clinical success was observed between groups (73.7% versus 77.3%; p=0.670). In patients receiving colistin with LD, the microbiological success rate increased from 65.9% to 71.9%, but there was no statistically significantly difference (p=0.510). In terms of using combination therapies with carbapeneme and/or tigecycline, there was no significant difference between treatment groups (p=0.30). The rates of 14- and 30-day mortality were similar between groups. The colistin with LD group had a higher rate of nephrotoxicity compared to the other group (52.6% versus 20.5% p=0.001). The clinical and microbiological response times were found significantly higher in the colistin with LD group (p=0.001; p=0.017). CONCLUSION Colistin with LD was associated with a higher risk of nephrotoxicity and was not related to clinical success, microbiological success, and prolonged survival. Randomized comparative studies are needed to confirm the efficacy of LD colistin regimen on MDR Acinetobacter infection.
Collapse
Affiliation(s)
- Ayşegül Seremet Keski̇n
- University of Health Sciences Antalya Training and Research Hospital, Infectious Disease and Clinical Microbiology, Antalya, Turkey
| | - Derya Seyman
- University of Health Sciences Antalya Training and Research Hospital, Infectious Disease and Clinical Microbiology, Antalya, Turkey
| | - Kübra Demir Önder
- University of Health Sciences Antalya Training and Research Hospital, Infectious Disease and Clinical Microbiology, Antalya, Turkey
| | - Filiz Kizilateş
- University of Health Sciences Antalya Training and Research Hospital, Infectious Disease and Clinical Microbiology, Antalya, Turkey
| | - Olgun Keski̇n
- University of Health Sciences Antalya Training and Research Hospital, Department of Pulmomology., Antalya, Turkey
| |
Collapse
|
46
|
Wen YX, Qu Q, Long WM, Luo Y, Zhuang HH, Teng XQ, Qu J. Nephrotoxicity and Efficacy Assessment of Polymyxin B Use in Renal Transplant Patients. Infect Drug Resist 2022; 15:275-283. [PMID: 35115795 PMCID: PMC8801393 DOI: 10.2147/idr.s348571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/06/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yu-Xin Wen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People’s Republic of China
- Department of Pharmacy, Lixian People’s Hospital in Hunan, Lixian, 415500, People’s Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410078, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, People’s Republic of China
| | - Wen-Ming Long
- Department of Pharmacy, Jingzhou District, Second People’s Hospital of Huaihua City, Huaihua, 418400, People’s Republic of China
| | - Yue Luo
- Department of Pharmacy, The People’s Hospital of Liuyang, Liuyang, 410300, People’s Republic of China
| | - Hai-Hui Zhuang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People’s Republic of China
| | - Xin-Qi Teng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People’s Republic of China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People’s Republic of China
- Correspondence: Jian Qu, Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, People’s Republic of China, Tel +86-15973190614, Fax +86-731-85292072, Email
| |
Collapse
|
47
|
Banoub NG, Saleh SE, Helal HS, Aboshanab KM. Antibiotics Combinations and Chitosan Nanoparticles for Combating Multidrug Resistance Acinetobacter baumannii. Infect Drug Resist 2021; 14:3327-3339. [PMID: 34447258 PMCID: PMC8384262 DOI: 10.2147/idr.s328788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Background Successful treatment of Acinetobacter (A.) baumannii-associated infection is complicated by the emergence of multidrug resistance (MDR), particularly in clinical settings. This urges searching for new alternatives to encounter such health problem. Aim This study aimed to evaluate certain antibiotic combinations and CNPs either alone or in combination of some selected antibiotics for the purpose of combating MDR A. baumannii clinical isolates. Methods A total of 51 A. baumannii clinical isolates were recovered from discharged clinical specimens of the Clinical Microbiology Central Laboratory of AL Kasr Al Aini hospital, Cairo, Egypt. Conventional standard Lab tests were used for identification followed by recA gene testing for confirmation. Antimicrobial susceptibility tests were conducted out according to CLSI guidelines. Genotypic analysis using Enterobacterial Repetitive Intergenic Consensus-polymerase chain reaction (ERIC-PCR) of the respective isolates showed that they were clustered in nine clones. The prepared CNPs were characterized by dynamic light scattering and HR-transmission electron microscope imaging. Antibiotic combinations and co-effect of CNPs with some selected antibiotics (either each alone or in combination of two) were evaluated using the Checkerboard microdilution and minimum inhibitor concentration decrease factor (MDF) methods, respectively. Results The recovered 51 A. baumannii clinical isolates were MDR (100%) of these 92% (47/51) were extensively drug resistance (XDR). Combinations of colistin (CT)+meropenem (MEM) and MEM+tigecycline (TGC) showed synergism in 77.7% and 44.4% and additive effects in 22.3% and 55.6% of the tested MDR A. baumannii isolates (n=51), respectively. However, CT+TGC combination showed antagonism. CNPs exhibited good inhibitory activity (inhibition zones ranged from 24 to 31 mm) against selected nine MDR A. baumannii isolates (one isolate from each clone). The MIC of CNPs at concentrations (ranging from 1 to 5 mg/mL) were from 0.16 to 0.25 mg/mL, indicating good in vitro antimicrobial activities. CNPs (5 mg/mL) when combined with CT, TGC or MEM, CT+MEM and TGC+MEM significantly increased the susceptibilities of the MDR A. baumannii isolates to these antibiotics by 88.8%, 66.6%, 100%, 77.7%, and 44.4%, respectively. No significant effects were observed when CNPs (5 mg/mL) were combined with CT+TGC. Conclusion The current study demonstrated the significant in-vitro activities of CNPs either alone or in combination with CT, TGC or MEM, CT+MEM and TGC+MEM and the successful combinations of MEM either with CT or with TGC against the MDR A. baumannii pathogens. However, further in vivo studies should be conducted to verify such activities and their potential use in human.
Collapse
Affiliation(s)
- Nancy G Banoub
- Department of Microbiology and Immunology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Sarra E Saleh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hala S Helal
- Department of Microbiology and Immunology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
48
|
Alrahmany D, Omar AF, Harb G, El Nekidy WS, Ghazi IM. Acinetobacter baumannii Infections in Hospitalized Patients, Treatment Outcomes. Antibiotics (Basel) 2021; 10:antibiotics10060630. [PMID: 34070398 PMCID: PMC8229601 DOI: 10.3390/antibiotics10060630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/04/2022] Open
Abstract
Background Acinetobacter baumannii (AB), an opportunistic pathogen, could develop into serious infections with high mortality and financial burden. The debate surrounding the selection of effective antibiotic treatment necessitates studies to define the optimal approach. This study aims to compare the clinical outcomes of commonly used treatment regimens in hospitalized patients with AB infections to guide stewardship efforts. Material and methods: Ethical approval was obtained, 320 adult patients with confirmed AB infections admitted to our tertiary care facility within two years were enrolled. The treatment outcomes were statistically analyzed to study the relation between antibiotic regimens and 14, 28, and 90-day mortality as the primary outcomes using binary logistic regression—using R software—in addition to the length of hospitalization, adverse events due to antibiotic treatment, and 90-day recurrence as secondary outcomes. Results: Among 320 patients, 142 (44%) had respiratory tract, 105 (33%) soft tissue, 42 (13%) urinary tract, 22 (7%) bacte iemia, and other infections 9 (3%). Nosocomial infections were 190 (59%) versus community-acquired. Monotherapy was significantly associated with lower 28-day (p < 0.05, OR:0.6] and 90-day (p < 0.05, OR:0.4) mortality rates, shorter length of stay LOS (p < 0.05, Median: −12 days] and limited development of adverse events (p < 0.05, OR:0.4). Subgroup analysis revealed similar results ranging from lower odds of mortality, adverse events, and shorter LOS to statistically significant correlation to monotherapy. Meropenem (MEM) and piperacillin/tazobactam (PIP/TAZ) monotherapies showed non-significant high odd ratios of mortalities, adverse events, and disparate LOS. There was a statistical correlation between most combined therapies and adverse events, and longer LOS. Colistin based and colistin/meropenem (CST/MEM) combinations were superior in terms of 14-day mortality (p = 0.05, OR:0.4) and (p < 0.05, OR:0.4) respectively. Pip/Taz and MEM-based combined therapies were associated with statistically non-significant high odd ratios of mortalities. Tigecycline (TGC)-based combinations showed a significant correlation to mortalities (p < 0.05, OR:2.5). Conclusion: Monotherapy was associated with lower mortality rates, shorter LOS, and limited development of adverse events compared to combined therapies. Colistin monotherapy, colistin/meropenem, and other colistin combinations showed almost equivalent mortality outcomes. Patients on combined therapy were more susceptible to adverse events and comparable LOS. The possible adverse outcomes of PIP/TAZ and MEM-based therapies in the treatment of MDRAB infections and the association of TGC with a higher mortality rate raise doubts about their treatment role.
Collapse
Affiliation(s)
| | - Ahmed F. Omar
- General Medicine Department, Sohar Hospital, Sohar 311, Oman;
| | - Gehan Harb
- Gehan Harb Statistics, Cairo 11511, Egypt;
| | - Wasim S. El Nekidy
- Cleveland Clinic Abu Dhabi, Abu-Dhabi P.O. Box 112412, United Arab Emirates;
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Islam M. Ghazi
- Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA 19104, USA
- Correspondence: ; Tel.: +1-215-596-7121; Fax: +1-215-596-8586
| |
Collapse
|