1
|
Beraich A, Dikici B, El Farissi H, Batovska D, Nikolova K, Belbachir Y, Choukoud A, Bentouhami NE, Asehraou A, Talhaoui A. The Moroccan Meska Horra: A Natural Candidate for Food and Therapeutic Applications. Foods 2025; 14:1158. [PMID: 40238258 DOI: 10.3390/foods14071158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Mastic gum (Pistacia lentiscus L. resin), traditionally known as Meska Horra in Morocco, is valued for its bioactive properties, although its composition varies depending on its geographical origin. The essential oil profile is also influenced by the extraction method used. This study evaluates the chemical composition, bioactivity, and extraction efficiency of Meska Horra essential oil from eastern Morocco. Specifically, it explores its potential as a natural preservative and functional food ingredient by comparing various extraction methods and their impact on the profiles of volatile compounds. The essential oil obtained through hydrodistillation yielded 1.4% and met the standards of the European Pharmacopoeia despite differing in composition and quantity from Chios mastic gum. The major constituents were α-pinene, β-pinene, and D-limonene, comprising 55% of the oil. The oil demonstrated significant antioxidant and antimicrobial activity, supporting its potential application in food preservation. Molecular docking indicated that caryophyllene and its oxide are key bioactive compounds, although their effectiveness may be enhanced by synergistic interactions. Comparative analysis of extraction methods showed that headspace (HS) extraction captured highly volatile monoterpenes, while solid-phase microextraction (SPME) and ultrasound-assisted SPME (US-SPME) were more effective at extracting compounds such as cis-ocimene and limonene. US-SPME also extracted higher levels of m-cymene but lower levels of α-pinene. These findings highlights the importance of optimizing extraction methods and further investigating the role of synergistic effects in foods and pharmaceutical applications.
Collapse
Affiliation(s)
- Abdessamad Beraich
- Laboratory of Environment and Applied Chemistry (LCAE), Team Physical Chemistry of the Natural Resources and Processes, Department of Chemistry, Faculty of Sciences, Mohamed First University, Oujda 60000, Morocco
| | - Burak Dikici
- Department of Mechanical Engineering, Faculty of Engineering, Ataturk University, 25240 Erzurum, Turkey
| | - Hammadi El Farissi
- Laboratory of Environment and Applied Chemistry (LCAE), Team Physical Chemistry of the Natural Resources and Processes, Department of Chemistry, Faculty of Sciences, Mohamed First University, Oujda 60000, Morocco
- Chemical Engineering for Resources Valorization Group-UAE/L01FST, Faculty of Sciences and Technology, Abdelmalek Essaadi University, Tangier 90010, Morocco
| | - Daniela Batovska
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 103, 1113 Sofia, Bulgaria
| | - Krastena Nikolova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria
| | - Yousra Belbachir
- Laboratory of Environment and Applied Chemistry (LCAE), Team Physical Chemistry of the Natural Resources and Processes, Department of Chemistry, Faculty of Sciences, Mohamed First University, Oujda 60000, Morocco
| | - Anass Choukoud
- Laboratory of Environment and Applied Chemistry (LCAE), Team Physical Chemistry of the Natural Resources and Processes, Department of Chemistry, Faculty of Sciences, Mohamed First University, Oujda 60000, Morocco
- Chemical Engineering for Resources Valorization Group-UAE/L01FST, Faculty of Sciences and Technology, Abdelmalek Essaadi University, Tangier 90010, Morocco
| | - Nour Eddine Bentouhami
- Laboratory of Bioresources Biotechnology, Ethnopharmacology, and Health, Team Microbiology, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources Biotechnology, Ethnopharmacology, and Health, Team Microbiology, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco
| | - Abdelmoneam Talhaoui
- Laboratory of Environment and Applied Chemistry (LCAE), Team Physical Chemistry of the Natural Resources and Processes, Department of Chemistry, Faculty of Sciences, Mohamed First University, Oujda 60000, Morocco
| |
Collapse
|
2
|
Xiang W, Luo Y, An X, He T, Cai P, Kurban M, Liu W, Yuan T. Five new triterpenoids isolated from mastic: Structural identification and their anti-inflammatory activity. Fitoterapia 2025; 181:106395. [PMID: 39842554 DOI: 10.1016/j.fitote.2025.106395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Five new oleanane-type triterpenoids were isolated from mastic. Their structures including absolute configurations were determined by extensive spectroscopic methods and single-crystal X-ray crystallographic experiments. Compound 1 is distinguished by its rare furan ring. Compounds 3-5 are formed by the oxidative ring-opening reaction of the A ring in oleanane-type triterpenes, while compounds 3 and 4 are nor-triterpenes with a carbon atom missing at the C-28 position. The anti-inflammatory potential of the compounds was anticipated through network pharmacology, followed by a detailed molecular docking analysis. Finally, the anti-inflammatory effects were verified through the establishment of an in vitro model. Notably, compounds 3 and 4 exhibited significant inhibitory effects on NO production in RAW264.7 cells induced by lipopolysaccharide, with IC50 values of 8.68 ± 2.58 and 5.00 ± 3.06 μM, respectively. These values are lower than that of the positive control drug, dexamethasone, which has an IC50 of 9.93 ± 1.17 μM. The significant anti-inflammatory activity of these compounds suggests their potential as treatment candidates for inflammatory diseases.
Collapse
Affiliation(s)
- Wentian Xiang
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Yangkai Luo
- Jiangxi Provincial Key Laboratory of Natural and Biomimetic Drugs Research, School of Health, Jiangxi Normal University, Nanchang 330022, China
| | - Xuerui An
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Ting He
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Ping Cai
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Minawar Kurban
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China.
| | - Tao Yuan
- Jiangxi Provincial Key Laboratory of Natural and Biomimetic Drugs Research, School of Health, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
3
|
Huang M, Yu J, Guo M, Zhang J, Ren L. Recent advances in the preservation effects of spice essential oils on fruits and vegetables. Food Chem 2025; 464:141827. [PMID: 39522378 DOI: 10.1016/j.foodchem.2024.141827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Spice essential oils (SEOs) are currently a prominent area of investigation in food preservation due to their natural, effective, and environmentally friendly properties. This review discussed the latest research progress concerning the application of SEO in fruits and vegetables preservation. The article commenced with an overview of the sources of SEOs and their main components, explored their bioactivities, antimicrobial mechanisms, and the microencapsulation and nanotechnology utilizing spice essential oils. Further research explored the applications of SEOs in culinary, pharmaceuticals, cosmetics, agriculture, and food industries, with a focus on evaluating their effectiveness in extending the shelf-life of fruits and vegetables. Additionally, it discusses limitations such as intense aroma and toxicity concerns, while also outlining prospects for future research and applications in the food sector. Overall, SEOs offer promising avenues for effectively prolonging the storage period of post-harvested fruits and vegetables while maintaining their quality attributes.
Collapse
Affiliation(s)
- Mingxin Huang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jia Yu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Min Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China..
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China..
| |
Collapse
|
4
|
Noroozi F, Asle-Rousta M, Amini R, Sahraeian Z. Alpha-pinene ameliorates liver fibrosis by suppressing oxidative stress, inflammation, and the TGF-β/Smad3 signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:451-460. [PMID: 39968080 PMCID: PMC11831751 DOI: 10.22038/ijbms.2025.81693.17678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/18/2024] [Indexed: 02/20/2025]
Abstract
Objectives A monoterpene alpha-pinene possesses anti-oxidant, anti-inflammatory, and anti-apoptotic properties. Here, we investigated the effect of alpha-pinene on molecular, biochemical, and histological changes induced by carbon tetrachloride (CCl4) in the liver of male Wistar rats. Materials and Methods Animals were divided into four groups: Control, Pinene, CCl4, and CCl4.Pinene. Pinene and CCl4.Pinene groups were given alpha-pinene (50 mg/kg/day) through intraperitoneal (IP) injections for six consecutive weeks. CCl4 and CCl4.Pinene groups received IP injections of CCl4 (2 ml/kg twice weekly for six consecutive weeks). Results The results revealed that alpha-pinene inhibited enhancing liver enzyme AST (P<0.001), ALT (P<0.001), ALP (P<0.01), and GGT (P<0.001) activity in CCl4.Pinene rats. It reduced malondialdehyde (P<0.05) and nitric oxide (P<0.05) levels and increased the catalase enzyme activity (P<0.05) and glutathione levels (P<0.01) in the liver. Likewise, alpha-pinene suppressed proinflammatory and profibrotic gene expression and prevented significant histological damage and collagen deposition in the liver of these animals. Also, alpha-pinene reduced the expression of TLR4 (P<0.01), NF-κB (P<0.05), PI3K (P<0.05), Akt (P<0.05), mTOR (P<0.01), TGF-β1 (P<0.01), and Smad3 (P<0.01) in the liver of rats receiving CCl4. Conclusion We concluded that alpha-pinene reduced CCl4-induced liver fibrosis by lowering oxidative stress, suppressing liver inflammation, and inhibiting TLR4/NF-κB, TGF-β/Smad3, and PI3K/Akt/mTOR signaling pathways. Consequently, alpha-pinene may have potential therapeutic value in treating liver diseases.
Collapse
Affiliation(s)
- Fatemeh Noroozi
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | - Rahim Amini
- Department of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Zeinab Sahraeian
- Nanobiotechnology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
5
|
Zarei Z, Kharaziha M, Karimzadeh F, Khadem E. Synthesis and biological applications of nanocomposite hydrogels based on the methacrylation of hydroxypropyl methylcellulose and lignin loaded with alpha-pinene. Carbohydr Polym 2024; 346:122642. [PMID: 39245505 DOI: 10.1016/j.carbpol.2024.122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Oral conditions, such as recurrent aphthous stomatitis, are chronic inflammatory disorders that significantly affect the life quality. This study aims to develop a novel buccal mucoadhesive based on methacrylate hydroxypropyl methylcellulose (M-HPMC) and methacrylate lignin (M-SLS) encapsulated with nanostructured lipid carriers (NLCs) for controlled release of alpha-pinene (α-pinene). NLCs with particle sizes of 152 ± 3 nm were prepared by using stearic acid and oleic acid as solid and liquid lipids, respectively. Following the successful synthesis of M-HPMC and M-SLS, various concentrations of α-pinene loaded NLCs (0, 18, 38, and 50 wt%) were encapsulated in M-HPMC/M-SLS hydrogel. It was demonstrated that the physiological and mechanical performances of hydrogels were changed, depending on the NLC content. Remarkably, the incorporation of 18 wt% NLC improved the compressive strength (143 ± 14 kPa) and toughness (17 ± 1 kJ/m3) of M-HPMC/M-SLS hydrogel. This nanocomposite hydrogel considerably decreased dissipated energy from 1.64 kJ/m3 to 0.99 kJ/m3, after a five-cycle compression test. The nanocomposite hydrogel exhibited controlled α-pinene release for up to 96 h which could significantly improve the antioxidant activity of M-HPMC/M-SLS matrix. Moreover, the reinforcing M-HPMC/M-SLS hydrogel with α-pinene-loaded NLCs resulted in increased adhesive strength (113.5 ± 7.5 kPa) to bovine buccal mucosa and cytocompatibility in contact with fibroblasts.
Collapse
Affiliation(s)
- Z Zarei
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - M Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan, Iran.
| | - F Karimzadeh
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - E Khadem
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| |
Collapse
|
6
|
Mady MS, Elsayed HE, Tawfik NF, Moharram FA. Volatiles extracted from Melaleuca Rugulosa (Link) Craven leaves: comparative profiling, bioactivity screening, and metabolomic analysis. BMC Complement Med Ther 2024; 24:394. [PMID: 39538246 PMCID: PMC11562704 DOI: 10.1186/s12906-024-04683-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Melaleuca species (family Myrtaceae) are characterized by their wide-ranging applications as antimicrobials and in skin-related conditions. Herein, we estimated the volatile profile and biological significance of M. rugulosa (Link) leaves for the first time supported by a dereplication protocol. MATERIALS AND METHODS Volatile components were extracted using hydrodistillation (HD), supercritical fluid (SF), and headspace (HS) techniques and identified using GC/MS. The variations among the three extracts were assessed using principal component analysis and orthogonal partial least square discriminant analysis (OPLS-DA). The extracted volatiles were tested for radical scavenging activity, anti-aging, and anti-hyperpigmentation potential. Finally, disc diffusion and broth microdilution assays were implemented to explore the antibacterial capacity against Streptococcus pyogenes, Staphylococcus aureus, Clostridium perfringens, and Pseudomonas aeruginosa. RESULTS The yield of the SF technique (0.8%) was three times higher than HD. GC/MS analysis revealed that the oxygenated compounds are the most proponents in the three extracts being 95.93% (HD), 80.94% (HS), and 48.4% (SF). Moreover, eucalyptol (1,8-cineol) represents the major component in the HD-EO (89.60%) and HS (73.13%) volatiles, while dl-α-tocopherol (16.27%) and α-terpineol (11.89%) represent the highest percentage in SF extract. Regarding the bioactivity profile, the HD-EO and SF-extract showed antioxidant potential in terms of oxygen radical absorbance capacity, and β- carotene assays, while exerting weak activity towards DPPH. In addition, they displayed potent anti-elastase and moderate anti-collagenase activities. The HD-EO exhibited potent anti-tyrosinase activity, while the SF extract showed a moderate level compared to tested controls. OPLS-DA and dereplication studies predicted that the selective antibacterial activity of HD-EO to S. aureus was related to eucalyptol, while SF extract to C. perfringens was related to α-tocopherol. CONCLUSIONS M. rugulosa leaves are considered a vital source of bioactive volatile components that are promoted for controlling skin aging and infection. However, further safety and clinical studies are recommended.
Collapse
Affiliation(s)
- Mohamed S Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt.
| | - Heba E Elsayed
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Nashwa F Tawfik
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Fatma A Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
7
|
Karimi M, Pirzad S, Shirsalimi N, Ahmadizad S, Hashemi SM, Karami S, Kazemi K, Shahir-Roudi E, Aminzadeh A. Effects of chia seed (Salvia hispanica L.) supplementation on cardiometabolic health in overweight subjects: a systematic review and meta-analysis of RCTs. Nutr Metab (Lond) 2024; 21:74. [PMID: 39285289 PMCID: PMC11406937 DOI: 10.1186/s12986-024-00847-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Obesity is a significant public health issue associated with various chronic diseases. Research has indicated that chia seeds have the potential to improve cardiometabolic health. However, due to the diversity of research and inconsistencies in study design, further investigation is needed to fully understand their clinical effects on overweight individuals. This review aims to comprehensively analyze the available evidence on the effects of chia seeds on cardiometabolic indices in overweight populations through a meta-analysis. METHODS A comprehensive literature search was performed across PubMed, Web of Science, Scopus, and Embase databases from their inception until 01-03-2024 to identify randomized controlled trials (RCTs) evaluating the effect of chia on cardiometabolic indices in overweight subjects. The search strategy incorporated both Medical Subject Headings (MeSH). Following the screening, ten RCTs were finally included. The data, including subject characteristics, study design, and changes in serum biomarkers, were extracted and analyzed using Stata software version 18. RESULTS The meta-analysis results reveal that chia supplementation no significant changes in lipid profile, including triglycerides (TG) (MD: - 5.80 mg/dL, p = 0.47), total cholesterol (TC) (MD: - 0.29 mg/dL, p = 0.95), high-density lipoprotein (HDL) (MD: 1.53 mg/dL, p = 0.33), and low-density lipoprotein (LDL) (MD: 0.63 mg/dL, p = 0.88). Similarity fasting blood glucose (FBG) (MD: - 0.03 mg/dL, p = 0.98), hemoglobin A1c (HbA1c) (MD: - 0.13%, p = 0.13), and insulin levels (MD: 0.45 µIU/mL, p = 0.78). However, chia seed supplementation was associated with a significant reduction in C-reactive protein (CRP) (MD: - 1.18 mg/L, p < 0.0001), but no significant changes were observed in interleukin-6 (IL-6) (MD: - 0.15, p = 0.70) or tumor necrosis factor-alpha (TNF-α) (MD: 0.03, p = 0.91). There was no significant effect on body mass index (BMI) (MD: 0.1 kg/m2, p = 0.91), but a significant reduction in waist circumference (WC) (MD: - 2.82 cm, p < 0.001) was noted. Additionally, chia seed supplementation resulted in a significant reduction in systolic blood pressure (BP) (MD: - 3.27 mmHg, p = 0.03), though diastolic BP changes were non-significant (MD: - 2.69 mmHg, p = 0.09). The studies showed low to moderate heterogeneity in outcome measures, with I2 < 50%. CONCLUSION Chia seed supplementation does not significantly impact most lipid profile parameters and glycemic markers. However, it shows potential benefits in reducing WC, BP, and CRP. While chia seeds can be a valuable addition to cardiometabolic health management, they should be part of a broader health strategy that includes a balanced diet, exercise, and lifestyle modifications for optimal results.
Collapse
Affiliation(s)
- Mehdi Karimi
- Bogomolets National Medical University (NMU), Kyiv, Ukraine.
- Department of Biological Sciences in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran.
| | - Samira Pirzad
- Faculty of Medicine, Islamic Azad University, Tehran Medical Sciences Branch (IAUTMU), Tehran, Iran
| | - Niyousha Shirsalimi
- Faculty of Medicine, Hamadan University of Medical Science (UMSHA), Hamadan, Iran
| | - Sajad Ahmadizad
- Department of Biological Sciences in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Seyyed Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Shaghayegh Karami
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Kimia Kazemi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Erfan Shahir-Roudi
- Student Research Committee, School of Public Health, Shahroud University of Medical Sciences (SHMU), Shahroud, Iran
| | - Anita Aminzadeh
- Student Research Committee, School of Public Health, Shahroud University of Medical Sciences (SHMU), Shahroud, Iran
| |
Collapse
|
8
|
Blomquist SA, Fernandez ML. Chios Mastic Gum: A Promising Phytotherapeutic for Cardiometabolic Health. Nutrients 2024; 16:2941. [PMID: 39275256 PMCID: PMC11397435 DOI: 10.3390/nu16172941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Chios mastic gum (CMG) is a resin obtained from the Pistacia lentiscus var. Chia tree that grows in the Mediterranean. For millennia, it has been renowned for its medicinal properties, but recently, CMG has gained attention due to its pronounced anti-inflammatory and antioxidative properties and its use in oral health, inflammatory bowel disease, cancer, and risk factors related to cardiovascular and metabolic diseases. This narrative review seeks to briefly overview its bioactive constituents and examine and describe its potential as a cardiometabolic disease (CMD) phytotherapeutic. The results of clinical trials and in vivo, in vitro, and in silico studies provide accumulating evidence of the mechanisms underlying CMG's impacts on lipid and glucose metabolism, cardiovascular and hepatic health, inflammation, oxidative stress, body composition, and microbiota. Despite the relatively limited studies with mixed results, they have provided the foundation to understand the strengths, weaknesses, and opportunities moving forward that may help to establish CMG and its bioactives as viable therapeutics for CMD.
Collapse
Affiliation(s)
- Sarah A Blomquist
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ 85721, USA
| | - Maria Luz Fernandez
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ 85721, USA
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
9
|
Azevedo VAN, De Assis EIT, Silva AWB, Costa FDC, Souza LF, Silva JRV. α-Pinene Improves Follicle Morphology and Increases the Expression of mRNA for Nuclear Factor Erythroid 2-Related Factor 2 and Peroxiredoxin 6 in Bovine Ovarian Tissues Cultured In Vitro. Animals (Basel) 2024; 14:1443. [PMID: 38791661 PMCID: PMC11117312 DOI: 10.3390/ani14101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress during in vitro of ovarian tissues has adverse effects on follicle survival. α-pinene is a monoterpenoid molecule with antioxidant activity that has great potential to maintain cell survival in vitro. This study investigated the effect of α-pinene (1.25, 2.5, 5.0, 10.0, or 20.0 μg/mL) on primordial follicle growth and morphology, as well as on stromal cells and collagen fibers in bovine ovarian slices cultured for six days. The effect of α-pinene on transcripts of catalase (CAT), superoxide dismutase (SOD), peroxiredoxin 6 (PRDX6), glutathione peroxidase (GPX1), and nuclear factor erythroid 2-related factor 2 (NRF2) was investigated by real-time PCR. The tissues were processed for histological analysis to evaluate follicular growth, morphology, stromal cell density, and collagen fibers. The results showed that 2.5, 5.0, or 10.0 µg/mL α-pinene increased the percentages of normal follicles but did not influence follicular growth. The α-pinene (10.0 µg/mL) kept the stromal cell density and collagen levels in cultured bovine ovarian tissue like uncultured tissues. Ovarian tissues cultured in control medium had reduced expression of mRNA for NRF2, SOD, CAT, GPX1, and PRDX6, but α-pinene (10.0 µg/mL) increased mRNA levels for NRF2 and PRDX6. In conclusion, 10.0 µg/mL α-pinene improves the follicular survival, preserves stromal cell density and collagen levels, and increases transcripts of NRF2 and PRDX6 after in vitro culture of bovine ovarian tissue.
Collapse
Affiliation(s)
| | - Ernando Igo Teixeira De Assis
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral 62041-040, CE, Brazil
| | - Anderson Weiny Barbalho Silva
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral 62041-040, CE, Brazil
| | - Francisco Das Chagas Costa
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral 62041-040, CE, Brazil
| | - Layana Freitas Souza
- Laboratory of Biochemistry and Gene Expression, State University of Ceara, Fortaleza 60714-903, CE, Brazil
| | - José Roberto Viana Silva
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral 62041-040, CE, Brazil
| |
Collapse
|
10
|
Kartalis A, Afendoulis D, Didagelos M, Ampeliotis M, Moutafi M, Voutas P, Smyrnioudis N, Papagiannis N, Garoufalis S, Boula E, Smyrnioudis I, Vlachopoulos C. Effects of Chios Mastiha essential oil on cholesterol levels of healthy volunteers: A prospective, randomized, placebo-controlled study (MASTIHA-OIL). Hellenic J Cardiol 2024; 77:63-69. [PMID: 37634870 DOI: 10.1016/j.hjc.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023] Open
Abstract
INTRODUCTION Chios Mastiha essential oil (CMO) is a natural product extracted from the resin of Mastiha, possessing antioxidant, anti-microbial, anti-ulcer, anti-neoplastic, and cholesterol-lowering capabilities in vitro, and its hypolipidemic effect was confirmed in animal studies. Yet, there are no randomized, placebo-controlled clinical studies in the literature regarding CMO's hypolipidemic effects in humans. A prospective, randomized, placebo-controlled study was designed to study the hypolipidemic effect of CMO capsules on healthy volunteers with elevated cholesterol. METHODS 192 healthy volunteers were screened and 160 of them with total cholesterol> 200 mg/dl participated in the study. They were randomized with a 2:1 ratio of receiving CMO capsules (200 mg mastiha-oil/capsule) and placebo for 8 weeks respectively. 113 patients received CMO and 47 were randomized in the control group, and all of them completed the follow-up period. RESULTS After 8 weeks of CMO administration, total and LDL cholesterol were significantly lower in the CMO compared to the placebo group 215.2 ± 27.5 vs 237.0 ± 27.9 mg/dl (p < 0.001) and 135.0 ± 26.1 vs 153.0 ± 23.3 mg/dl (p < 0.001) respectively. No gastrointestinal adverse events or liver or renal toxicity were reported. Additionally, in the CMO group total cholesterol was significantly decreased by 20.6 mg/dl (9%), LDL by 18.1 mg/dl (12%), triglycerides by 21.8 mg/dl (15%), and glucose by 4.6 mg/dl (5%) and HDL was increased by 2.4 mg/dl (5%), compared to their baseline values. CONCLUSION The MASTIHA-OIL study showed the efficacy and safety of CMO in reduction of total and LDL cholesterol after 8 weeks of administration in healthy volunteers with elevated cholesterol levels.
Collapse
Affiliation(s)
| | | | - Matthaios Didagelos
- 1(st) Cardiology Department, "AHEPA" University Hospital of Thessaloniki, Greece
| | | | - Maria Moutafi
- Cardiology Department, General Hospital of Chios "Skylitseion", Greece
| | - Petros Voutas
- Cardiology Department, General Hospital of Chios "Skylitseion", Greece
| | | | | | | | - Eirini Boula
- Biochemistry Department, General Hospital of Chios "Skylitseion", Greece
| | | | | |
Collapse
|
11
|
Kamli H, Ali AAM, Salem YH, Shaikh A, El-Nashar HAS. Chemical Profiling and Enzyme Inhibitory Activities of Essential Oil Isolated from Pistacia khinjuk Leaves: Insights On GC-MS Analysis and Skin Aging-Relevant Enzymes. Chem Biodivers 2024; 21:e202302096. [PMID: 38412297 DOI: 10.1002/cbdv.202302096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Pistacia khinjuk is a species of flowering plants belonging to family Anacardiaceae, with promising pharmacological activities like antioxidants, anti-inflammatory, antiviral, and antimicrobial. This study aimed to investigate the GC-MS chemical composition of essential oil isolated from Pistacia khinjuk leaves and its inhibitory properties against aging-relevant enzymes such a collagenase and elastase. The isolated oil showed predominance of β-cadinene (15.34 %), γ-amorphene (8.50 %), α-cadinol (8.14 %), τ-cadinol (7.57 %), (E)-β-caryophyllene (5.77 %), α-pinene (4.70 %), phytol (4.57 %), α-muurolene (3.30 %), (+)-epi-bicyclosesquiphellandrene (3.21 %), and cubenene (3.16 %). Further, it showed remarkable inhibitory activities against collagenase and elastase with IC50 values of 15.61±0.69 and 41.12±2.09 μg/mL, respectively compared to epigallocatechin gallate (IC50=29.52±1.3 μg/mL and 26.86±1.37 μg/mL). as a conclusion, the leaf oil is recommended for topical cosmetic preparations to retard skin aging symptoms such as wrinkles. However, the bioavailability assessment and toxicological profile should be considered in the future studies.
Collapse
Affiliation(s)
- Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Abd-Allah M Ali
- Department of pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Yasmeen H Salem
- Department of pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Ahmad Shaikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Heba A S El-Nashar
- Department of pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| |
Collapse
|
12
|
Navarro M, Urrejola F, Espinoza M, Silva S, González S, Utreras D, Fernandez K, Bravo J. Biological activity of the essential oil of Drimys winteri. Front Chem 2024; 12:1321300. [PMID: 38666047 PMCID: PMC11043559 DOI: 10.3389/fchem.2024.1321300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
In the Chilean indigenous culture, the tree Drimys winteri (Winteraceae) Canelo is of great importance and is considered the sacred Mapuche tree. It has antibacterial and disinfectant properties and is used in the treatment of various diseases, such as fevers, ulcers, cancers, and respiratory tract problems. The essential oil obtained from D. winteri, DW_EO, is bioactive, possesses insecticidal and repellent properties against pests, and shows activity toward plant growth regulators. It also has a phytotoxic effect against the growth and germination of weeds. The essential oil obtained from the leaves and bark of Drimys winteri has demonstrated antifungal, immunomodulatory, anti-inflammatory, and anticancer properties in in vitro and in vivo studies. It also possesses antioxidant activity and antibacterial effects. The essential oil contains monoterpenes such as zafrol, pinenes, and linalool, among others, that contribute to its bioactivity. The DW_EO and bioactive compounds have great potential in various applications in medicine, industrial food, sanitizer, and other areas.
Collapse
Affiliation(s)
- Myriam Navarro
- Facultad de Salud y Odontología, Universidad Diego Portales, Santiago, Chile
- Facultad de Medicina, Centro de Investigación Biomédica, Laboratorio de Productos Naturales Bioactivos, Universidad Diego Portales, Santiago, Chile
| | - Felipe Urrejola
- Facultad de Medicina, Centro de Investigación Biomédica, Laboratorio de Productos Naturales Bioactivos, Universidad Diego Portales, Santiago, Chile
| | - Misael Espinoza
- Facultad de Medicina, Centro de Investigación Biomédica, Laboratorio de Productos Naturales Bioactivos, Universidad Diego Portales, Santiago, Chile
| | - Simón Silva
- Facultad de Medicina, Centro de Investigación Biomédica, Laboratorio de Productos Naturales Bioactivos, Universidad Diego Portales, Santiago, Chile
| | - Sebastián González
- Facultad de Medicina, Centro de Investigación Biomédica, Laboratorio de Productos Naturales Bioactivos, Universidad Diego Portales, Santiago, Chile
| | - Diego Utreras
- Facultad de Medicina, Centro de Investigación Biomédica, Laboratorio de Productos Naturales Bioactivos, Universidad Diego Portales, Santiago, Chile
| | - Katia Fernandez
- Facultad de Salud y Odontología, Universidad Diego Portales, Santiago, Chile
- Facultad de Medicina, Centro de Investigación Biomédica, Laboratorio de Productos Naturales Bioactivos, Universidad Diego Portales, Santiago, Chile
| | - Jessica Bravo
- Facultad de Medicina, Centro de Investigación Biomédica, Laboratorio de Productos Naturales Bioactivos, Universidad Diego Portales, Santiago, Chile
| |
Collapse
|
13
|
Alabrahim OAA, Azzazy HMES. Synergistic anticancer effect of Pistacia lentiscus essential oils and 5-Fluorouracil co-loaded onto biodegradable nanofibers against melanoma and breast cancer. DISCOVER NANO 2024; 19:27. [PMID: 38353827 PMCID: PMC10866856 DOI: 10.1186/s11671-024-03962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Chemoresistance and severe toxicities represent major drawbacks of chemotherapy. Natural extracts, including the essential oils of Pistacia lentiscus (PLEO), exhibit substantial anticancer and anti-inflammatory activities where different cancers are reported to dramatically recess following targeting with PLEO. PLEO has promising antimicrobial, anticancer, and anti-inflammatory properties. However, the therapeutic properties of PLEO are restricted by limited stability, bioavailability, and targeting ability. PLEO nanoformulation can maximize their physicochemical and therapeutic properties, overcoming their shortcomings. Hence, PLEO was extracted and its chemical composition was determined by GC-MS. PLEO and 5-Fluorouracil (5FU) were electrospun into poly-ε-caprolactone nanofibers (PCL-NFs), of 290.71 nm to 680.95 nm diameter, to investigate their anticancer and potential synergistic activities against triple-negative breast cancer cells (MDA-MB-231), human adenocarcinoma breast cancer cells (MCF-7), and human skin melanoma cell line (A375). The prepared nanofibers (NFs) showed enhanced thermal stability and remarkable physical integrity and tensile strength. Biodegradability studies showed prolonged stability over 42 days, supporting the NFs use as a localized therapy of breast tissues (postmastectomy) or melanoma. Release studies revealed sustainable release behaviors over 168 h, with higher released amounts of 5FU and PLEO at pH 5.4, indicating higher targeting abilities towards cancer tissues. NFs loaded with PLEO showed strong antioxidant properties. Finally, NFs loaded with either PLEO or 5FU depicted greater anticancer activities compared to free compounds. The highest anticancer activities were observed with NFs co-loaded with PLEO and 5FU. The developed 5FU-PLEO-PCL-NFs hold potential as a local treatment of breast cancer tissues (post-mastectomy) and melanoma to minimize their possible recurrence.
Collapse
Affiliation(s)
- Obaydah Abd Alkader Alabrahim
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, SSE # 1184, P.O. Box 74, New Cairo, 11835, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, SSE # 1184, P.O. Box 74, New Cairo, 11835, Egypt.
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena, Germany.
| |
Collapse
|
14
|
Duarte JL, Di Filippo LD, de Faria Mota Oliveira AEM, Sábio RM, Marena GD, Bauab TM, Duque C, Corbel V, Chorilli M. Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:104-114. [PMID: 38264062 PMCID: PMC10804528 DOI: 10.3762/bjnano.15.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024]
Abstract
Plant-based insecticides offer advantages such as negligible residual effects, reduced risks to both humans and the environment, and immunity to resistance issues that plague conventional chemicals. However, the practical use of monoterpenes in insect control has been hampered by challenges including their poor solubility and stability in aqueous environments. In recent years, the application of nanotechnology-based formulations, specifically nanoemulsions, has emerged as a prospective strategy to surmount these obstacles. In this study, we developed and characterized nanoemulsions based on cymene and myrcene and assessed their toxicity both in vitro using human keratinocytes (HaCAT) cells and in an in vivo model involving Galleria mellonella larvae. Additionally, we investigated the insecticidal efficacy of monoterpenes against the mosquito Aedes aegypti, the primary dengue vector, via larval bioassay. Employing a low-energy approach, we successfully generated nanoemulsions. The cymene-based nanoemulsion exhibited a hydrodynamic diameter of approximately 98 nm and a zeta potential of -25 mV. The myrcene-based nanoemulsion displayed a hydrodynamic diameter of 118 nm and a zeta potential of -20 mV. Notably, both nanoemulsions demonstrated stability over 60 days, accompanied by controlled release properties and low toxicity towards HaCAT cells and Galleria mellonella larvae. Moreover, the nanoemulsions exhibited significant lethality against third-instar Aedes aegypti larvae at a concentration of 50 mg/L. In conclusion, the utilization of nanoemulsions encapsulating cymene and myrcene presents a promising avenue for overcoming the limitations associated with poor solubility and stability of monoterpenes. This study sheds light on the potential of the nanoemulsions as effective and environmentally friendly insecticides in the ongoing battle against mosquito-borne diseases.
Collapse
Affiliation(s)
- Jonatas L Duarte
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Leonardo Delello Di Filippo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Rafael Miguel Sábio
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gabriel Davi Marena
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo, Brazil
| | - Tais Maria Bauab
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo, Brazil
| | - Cristiane Duque
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School - São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Vincent Corbel
- Institut de Recherche pour le Développement (IRD), MIVEGEC, Univ. Montpellier, CNRS, IRD, 911 Av Agropolis, 34 394 Montpellier, France
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Oswaldo Cruz (IOC), Laboratório de Fisiologia e Controle de Artrópodes Vetores (Laficave). Avenida Brasil, 4365 Manguinhos, Rio de Janeiro – RJ, CEP: 21040-360, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
15
|
Mladenović M, Astolfi R, Tomašević N, Matić S, Božović M, Sapienza F, Ragno R. In Vitro Antioxidant and In Vivo Antigenotoxic Features of a Series of 61 Essential Oils and Quantitative Composition-Activity Relationships Modeled through Machine Learning Algorithms. Antioxidants (Basel) 2023; 12:1815. [PMID: 37891894 PMCID: PMC10604248 DOI: 10.3390/antiox12101815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The antioxidant activity of essential oils (EOs) is an important and frequently studied property, yet it is not sufficiently understood in terms of the contribution of EOs mixtures' constituents and biological properties. In this study, a series of 61 commercial EOs were first evaluated as antioxidants in vitro, following as closely as possible the cellular pathways of reactive oxygen species (ROS) generation. Hence, EOs were assessed for the ability either to chelate metal ions, thus interfering with ROS generation within the respiratory chain, or to neutralize 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and lipid peroxide radicals (LOO•), thereby halting lipid peroxidation, as well as to neutralize 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid cation radicals (ABTS•+) and hydroxyl radicals (OH•), thereby preventing the ROS species from damaging DNA nucleotides. Showing noteworthy potencies to neutralize all of the radicals at the ng/mL level, the active EOs were also characterized as protectors of DNA double strands from damage induced by peroxyl radicals (ROO•), emerging from 2,2'-azobis-2-methyl-propanimidamide (AAPH) as a source, and OH•, indicating some genome protectivity and antigenotoxicity effectiveness in vitro. The chemical compositions of the EOs associated with the obtained activities were then analyzed by means of machine learning (ML) classification algorithms to generate quantitative composition-activity relationships (QCARs) models (models published in the AI4EssOil database available online). The QCARs models enabled us to highlight the key features (EOSs' chemical compounds) for exerting the redox potencies and to define the partial dependencies of the features, viz. percentages in the mixture required to exert a given potency. The ML-based models explained either the positive or negative contribution of the most important chemical components: limonene, linalool, carvacrol, eucalyptol, α-pinene, thymol, caryophyllene, p-cymene, eugenol, and chrysanthone. Finally, the most potent EOs in vitro, Ylang-ylang (Cananga odorata (Lam.)) and Ceylon cinnamon peel (Cinnamomum verum J. Presl), were promptly administered in vivo to evaluate the rescue ability against redox damage caused by CCl4, thereby verifying their antioxidant and antigenotoxic properties either in the liver or in the kidney.
Collapse
Affiliation(s)
- Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia;
| | - Roberta Astolfi
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Rome Sapienza University, P. le A. Moro 5, 00185 Rome, Italy; (R.A.); (F.S.)
| | - Nevena Tomašević
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia;
| | - Sanja Matić
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia;
| | - Mijat Božović
- Faculty of Science and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro;
| | - Filippo Sapienza
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Rome Sapienza University, P. le A. Moro 5, 00185 Rome, Italy; (R.A.); (F.S.)
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Rome Sapienza University, P. le A. Moro 5, 00185 Rome, Italy; (R.A.); (F.S.)
| |
Collapse
|
16
|
Chen T, Kong Q, Kuang X, Zhou J, Wang H, Zhou L, Yang H, Feng S, Ding C. Chemical Composition of Litsea pungens Essential Oil and Its Potential Antioxidant and Antimicrobial Activities. Molecules 2023; 28:6835. [PMID: 37836677 PMCID: PMC10574272 DOI: 10.3390/molecules28196835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Litsea pungens is a plant with medicinal and edible properties, where the fruits are edible and the leaves have medicinal properties. However, there is limited research on the chemical and pharmacological activities of the plant. In this study, essential oils were extracted by steam distillation and their antioxidant and antibacterial activities were further evaluated. Gas chromatography-mass spectrometry (GC-MS) was used to identify the chemical components of L. pungens fresh fruit essential oil (FREO) and L. pungens fresh flower essential oil (FLEO), rapeseed oil (RO) and commercial Litsea oil (CEO). The results showed that 12 chemical components were identified in FREO. Twelve chemical components were identified from FLEO, four chemical components were identified from CEO, and thirteen chemical components were identified from RO. Except for RO, the other three oils were mainly composed of terpenes, among which limonene is the main chemical component. In terms of antioxidant activity, FREO, FLEO, CEO and RO have antioxidant capacity, mainly reflected in the scavenging DPPH free radicals and the iron ion chelating ability, and the antioxidant activity shows a certain dose effect, but the antioxidant activity of FLEO is the weakest among the four oils. Meanwhile, under the stress of hydrogen peroxide, CEO demonstrated a significant antioxidant protective effect on cells. It is worth mentioning that compared with the positive control, the FREO exhibited a better antibacterial rate. When the concentration of essential oil is 20 mg/mL, the bacteriostatic rate can reach 100%. Therefore, it could be a promising candidate among medicinal and edible plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (T.C.); (Q.K.); (X.K.); (J.Z.); (H.W.); (L.Z.); (H.Y.); (S.F.)
| |
Collapse
|
17
|
Salas-Oropeza J, Rodriguez-Monroy MA, Jimenez-Estrada M, Perez-Torres A, Castell-Rodriguez AE, Becerril-Millan R, Jarquin-Yanez K, Canales-Martinez MM. Essential Oil of Bursera morelensis Promotes Cell Migration on Fibroblasts: In Vitro Assays. Molecules 2023; 28:6258. [PMID: 37687087 PMCID: PMC10488845 DOI: 10.3390/molecules28176258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Essential oils (EOs) are complex mixtures of volatile natural compounds. We have extensively studied the EO of Bursera morelensis, which demonstrates antibacterial, antifungal, anti-inflammatory, and wound-healing activities. The objective of this work was to determine the effect of this EO on fibroblast migration in a three-dimensional in vitro model. For the three-dimensional in vitro model, a series of fibrin hydrogel scaffolds (FSs) were built in which fibroblasts were cultured and subsequently stimulated with fibroblast growth factor (FGF) or EO. The results demonstrated that these FSs are appropriate for fibroblast culture, since no decrease in cell viability or changes in cell proliferation were found. The results also showed that this EO promotes cell migration four hours after stimulation, and the formation of cell projections (filopodia) outside the SF was observed. From these results, we confirmed that part of the mechanism of action of the essential oil of B. morelensis during the healing process is the stimulation of fibroblast migration to the wound site.
Collapse
Affiliation(s)
- Judith Salas-Oropeza
- Laboratorio de Farmacognosia, UBIPRO Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla C.P. 54090, Mexico; (J.S.-O.); (R.B.-M.)
| | - Marco Aurelio Rodriguez-Monroy
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla C.P. 54090, Mexico;
| | - Manuel Jimenez-Estrada
- Instituto de Química-UNAM, Circuito Exterior, Ciudad Universitaria, Ciudad de México D.F. 04510, Mexico;
| | - Armando Perez-Torres
- Facultad de Medicina-UNAM, Circuito Exterior, Ciudad Universitaria, Ciudad de México D.F. 04510, Mexico; (A.P.-T.); (A.E.C.-R.); (K.J.-Y.)
| | - Andres Eliu Castell-Rodriguez
- Facultad de Medicina-UNAM, Circuito Exterior, Ciudad Universitaria, Ciudad de México D.F. 04510, Mexico; (A.P.-T.); (A.E.C.-R.); (K.J.-Y.)
| | - Rodolfo Becerril-Millan
- Laboratorio de Farmacognosia, UBIPRO Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla C.P. 54090, Mexico; (J.S.-O.); (R.B.-M.)
| | - Katia Jarquin-Yanez
- Facultad de Medicina-UNAM, Circuito Exterior, Ciudad Universitaria, Ciudad de México D.F. 04510, Mexico; (A.P.-T.); (A.E.C.-R.); (K.J.-Y.)
| | - Maria Margarita Canales-Martinez
- Laboratorio de Farmacognosia, UBIPRO Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla C.P. 54090, Mexico; (J.S.-O.); (R.B.-M.)
| |
Collapse
|
18
|
Georgantopoulos A, Vougioukas A, Kalousi FD, Tsialtas I, Psarra AMG. Comparative Studies on the Anti-Inflammatory and Apoptotic Activities of Four Greek Essential Oils: Involvement in the Regulation of NF-κΒ and Steroid Receptor Signaling. Life (Basel) 2023; 13:1534. [PMID: 37511910 PMCID: PMC10381560 DOI: 10.3390/life13071534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Essential oils (EOs) are well-known for their anti-fungal, anti-microbial, anti-inflammatory and relaxing activities. Steroid hormones, especially glucocorticoids, are also well-known for their anti-inflammatory activities and control of the hypothalamus-pituitary-adrenal (HPA) axis and glucose homeostasis. The biological activities of glucocorticoids render them the most widely prescribed anti-inflammatory drugs, despite their adverse side effects. In this study, comparative studies of the anti-inflammatory activities and interference with glucocorticoids receptor (GR) and estrogen receptor (ER) signaling of EOs from Greek Oregano, Melissa officinalis, Lavender and from the Chios Mastic, produced from the Greek endemic mastic tree, were performed in Human Embryonic Kidney 293 (HEK-293) cells. Chios Mastic (Mastiha) and oregano EOs exhibited the highest anti-inflammatory activities. The former showed a reduction in both NF-κB activity and protein levels. Mastic essential oil also caused a reduction in GR protein levels that may compensate for its boosting effect on dexamethasone (DEX)-induced GR transcriptional activation, ending up in no induction of the gluconeogenic phoshoenolpyruvate carboxykinase (PEPCK) protein levels that constitute the GR target. Oregano, Melissa officinalis and lavender EOs caused the suppression of the transcriptional activation of GR. Furthermore, the most active EO, that taken from Melissa officinalis, showed a reduction in both GR and PEPCK protein levels. Thus, the anti-inflammatory and anti-gluconeogenic activities of the EOs were uncovered, possibly via the regulation of GR signaling. Moreover, cytotoxic actions of Melissa officinalis and lavender EOs via the induction of mitochondrial-dependent apoptosis were revealed. Our results highlight these essentials oils' anti-inflammatory and apoptotic actions in relation to their implication on the regulation of steroid hormones' actions, uncovering their potential use in steroid therapy, with many applications in pharmaceutical and health industries as anti-cancer, anti-hyperglycemic and anti-inflammatory supplements.
Collapse
Affiliation(s)
- Achilleas Georgantopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Athanasios Vougioukas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Foteini D Kalousi
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Ioannis Tsialtas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Anna-Maria G Psarra
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
19
|
Swiderski J, Sakkal S, Apostolopoulos V, Zulli A, Gadanec LK. Combination of Taurine and Black Pepper Extract as a Treatment for Cardiovascular and Coronary Artery Diseases. Nutrients 2023; 15:nu15112562. [PMID: 37299525 DOI: 10.3390/nu15112562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The shift in modern dietary regimens to "Western style" and sedentary lifestyles are believed to be partly responsible for the increase in the global burden of cardiovascular diseases. Natural products have been used throughout human history as treatments for a plethora of pathological conditions. Taurine and, more recently, black pepper have gained attention for their beneficial health effects while remaining non-toxic even when ingested in excess. Taurine, black pepper, and the major terpene constituents found in black pepper (i.e., β-caryophyllene; α-pinene; β-pinene; α-humulene; limonene; and sabinene) that are present in PhytoCann BP® have been shown to have cardioprotective effects based on anti-inflammatory, antioxidative, anti-hypertensive and anti-atherosclerotic mechanisms. This comprehensive review of the literature focuses on determining whether the combination of taurine and black pepper extract is an effective natural treatment for reducing cardiovascular diseases risk factors (i.e., hypertension and hyperhomocysteinemia) and for driving anti-inflammatory, antioxidative and anti-atherosclerotic mechanisms to combat coronary artery disease, heart failure, myocardial infarction, and atherosclerotic disease.
Collapse
Affiliation(s)
- Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
20
|
Tan JQ, Zhang L, Xu HX. Garcinia oligantha: A comprehensive overview of ethnomedicine, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116130. [PMID: 36621661 DOI: 10.1016/j.jep.2022.116130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Garcinia oligantha Merr. is an ethnomedicine plant mainly distributed in Guangdong and Hainan, China. It has the effects of heat-clearing and detoxicating, which has been used by local ethnic minorities to treat a variety of diseases, including inflammation, internal heat, toothache and scald. THE AIM OF THE REVIEW This review summarizes and discusses the progress of the chemical compounds and biological activities of G. oligantha that have been studied in recent years to provide the direction for the prospective research and applications of G. oligantha. MATERIALS AND METHODS The relevant literature about G. oligantha was accessible from ancient Chinese medical books and records, theses, as well as major scientific databases such as Google Scholar, PubMed, Web of Science, ScienceDirect, SciFinder, Baidu Scholar and China National Knowledge Infrastructure (CNKI). RESULTS To date, more than 150 chemical compounds were isolated from this plant, including xanthones, volatile oil, fatty acid, benzofurane derivative and biphenyl compounds. Xanthones are the main bioactive compounds that exhibit diverse biological effects, such as antitumor, analgesic, anti-inflammatory, antioxidative, neuroprotective, antimalarial and antibacterial effects, which are consistent with its traditional uses as a folk medicine. Modern pharmacological studies show that these compounds participate in a variety of signaling pathways underlying different pathophysiologies, making them a valuable medicinal resource. CONCLUSION G. oligantha is an ethnomedicine with a long history. However, due to regional and cultural constraints, the popularisation and use of ethnomedicine are still limited. Modern pharmacological and chemical research suggest that G. oligantha contains a variety of bioactive compounds and showed diverse biological functions, which is worthy of comprehensive and in-depth research. This review summarizes and discusses the recent progress in studies on G. oligantha, looking forward to promote further research and sustainable development of folk medicinal plants.
Collapse
Affiliation(s)
- Jia-Qi Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Li Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| | - Hong-Xi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
21
|
Abd-ElGawad AM, Saleh I, El-Razek MHA, Elkarim ASA, El-Amier YA, Mohamed TA, El Gendy AENG, Afifi SM, Esatbeyoglu T, Elshamy AI. Chemical Profiling of Significant Antioxidant and Phytotoxic Microwave-Extracted Essential Oil from Araucaria heterophylla Resin. SEPARATIONS 2023; 10:141. [DOI: 10.3390/separations10020141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Due to the various hazards of using synthetic chemical compounds in pharmaceutics, agriculture, and industry, scientists and researchers do their best to explore and assess new green natural compounds from natural resources with potent activity. The essential oil (EO) from the resin collected from Araucaria heterophylla Salisb. was extracted by the microwave technique and chemically characterized via GC-MS analysis. Furthermore, the extract EO was assessed for its antioxidant and phytotoxic activities. The EO has 33 compounds, mainly terpenes (98.23%), and the major compounds were α-pinene (62.57%), β-pinene (6.60%), germacrene D (5.88%), and β-caryophyllene (3.56%). The extracted EO showed substantial antioxidant activity, where it showed IC50 values of 142.42 and 118.03 mg L−1 for DPPH and ABTS, respectively. On the other hand, the EO revealed considerable phytotoxicity against the weed Chenopodium murale, where the EO showed IC50 values of 304.0, 230.1, and 147.1 mg L−1, for seed germination, seedling shoot growth, and seedling root growth, respectively. Moreover, the EO showed the same pattern of allelopathic inhibition against the weed Sonchus oleraceus, where it showed IC50 values of 295.7, 224.5, and 106.1 mg L−1, for seed germination, seedling shoot growth, and seedling root growth, respectively. The present study showed that the extraction technique affects the constituents of the EO, particularly the quantitative composition. The EO of A. heterophylla resin also revealed considerable antioxidant and phytotoxic activity against weeds. Therefore, it can be considered a promising natural resource that could be integrated into the weed management approach. However, further study is recommended for deep characterization of their authentic compounds and evaluation of their mode of action(s) on a wide spectrum of weeds.
Collapse
Affiliation(s)
- Ahmed M. Abd-ElGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ibrahim Saleh
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Mohamed H. Abd El-Razek
- Department of Natural Compounds Chemistry, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Asmaa S. Abd Elkarim
- Chemistry of Tanning Materials and Leather Technology Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Yasser A. El-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Tarik A. Mohamed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Abd El-Nasser G. El Gendy
- Medicinal and Aromatic Plants Research Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Sherif M. Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am KleinenFelde 30, 30167 Hannover, Germany
| | - Abdelsamed I. Elshamy
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
22
|
Evaluation of the Anti-Inflammatory Properties of Mastic Oil Extracted from Pistacia lentiscus var. chia. IMMUNO 2023. [DOI: 10.3390/immuno3010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Mastic oil (MO) is extracted from the resin of the bark of Pistacia lentiscus var. chia, a tree abundantly grown in the Greek island of Chios. Various biological activities, such as antimicrobial, anticancer and antioxidant, have been associated with the dietary intake of MO. However, little is known about MO’s potential anti-inflammatory effects, while some of its main chemical constituents were reported to exert significant anti-inflammatory activity. This study aims to assay the bioactivity of MO on in vitro and in vivo experimental inflammation models, in particular on LPS-stimulated RAW264.7 macrophages, murine primary peritoneal macrophages and a model of zymosan-induced peritonitis in BALB/c mice. The per os administration of MO inhibited the recruitment of macrophages into the peritoneal cavity of zymosan-treated mice, but did not affect neutrophil mobilisation or the levels of IL-6 or TNF-α in the peritoneal fluid. Similarly, IL-6 and TNF-α secretion in primary LPS-stimulated macrophages was not affected by MO, but the levels of phosphoproteins that activate inflammation in macrophages were differentially regulated. Finally, MO and some of its individual constituents reduced nitric oxide (NO), prostaglandin E2 and TNF-α levels in supernatants of LPS-stimulated RAW264.7 cells and inhibited their phagocytosis rate. Our data imply that MO may promote an anti-inflammatory transition in macrophages due to the combined bioactivities of its individual constituents. Thus, as a mixture of various compounds, MO seems to affect multiple molecular mechanisms that are involved in the development of inflammation. Therefore, more research, focusing on MO’s individual constituents and employing various pre-clinical inflammation models that activate different mechanisms, is required for a detailed investigation of the oil’s potential anti-inflammatory activity.
Collapse
|
23
|
Tian B, Liu J, Yang W, Wan JB. Biopolymer Food Packaging Films Incorporated with Essential Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1325-1347. [PMID: 36628408 DOI: 10.1021/acs.jafc.2c07409] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Petroleum-based packaging materials are typically nonbiodegradable, which leads to significant adverse environmental and health issues. Therefore, developing novel efficient, biodegradable, and nontoxic food packaging film materials has attracted increasing attention from researchers. Due to significant research and advanced technology, synthetic additives in packaging materials are progressively replaced with natural substances such as essential oils (EOs). EOs demonstrate favorable antioxidant and antibacterial properties, which would be an economical and effective alternative to synthetic additives. This review summarized the possible antioxidant and antimicrobial mechanisms of various EOs. We analyzed the properties and performance of food packaging films based on various biopolymers incorporated with EOs. The progress in intelligent packaging materials has been discussed as a prospect of food packaging materials. Finally, the current challenges regarding the practical application of EOs-containing biopolymer films in food packaging and areas of future research have been summarized.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, Macau SAR, China
| | - Wanzhexi Yang
- Department of Physiology, Pharmacology and Neuroscience, University College London, London WC1E 6BT, United Kingdom
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, Macau SAR, China
| |
Collapse
|
24
|
Alomar HA, Elkady WM, Abdel-Aziz MM, Ibrahim TA, Fathallah N. Anti- Heliobacter pylori and Anti-Inflammatory Potential of Salvia officinalis Metabolites: In Vitro and In Silico Studies. Metabolites 2023; 13:136. [PMID: 36677061 PMCID: PMC9865027 DOI: 10.3390/metabo13010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Due to its rising antibiotic resistance and associated inflammations, Helicobacter pylori poses a challenge in modern medicine. Salvia officinalis, a member of the Lamiaceae family, is a promising medicinal herb. In this regard, a phytochemical screening followed by GC-MS and LC-MS was done to evaluate the chemical profile of the total ethanolic extract (TES) and the essential oil, respectively. The anti-H. pylori and the anti-inflammatory activities were evaluated by a micro-well dilution technique and COX-2 inhibition assay. Potential anti-H. pylori inhibitors were determined by an in silico study. The results revealed that the main metabolites were flavonoids, sterols, volatile oil, saponins, and carbohydrates. The LC-MS negative ionization mode demonstrated 12 compounds, while GC-MS showed 21 compounds. Carnosic acid (37.66%), epirosmanol (20.65%), carnosol1 (3.3%), and 12-O-methyl carnosol (6.15%) were predominated, while eucalyptol (50.04%) and camphor (17.75%) were dominant in LC-MS and GC-MS, respectively. TES exhibited the strongest anti-H. pylori activity (3.9 µg/mL) asymptotic to clarithromycin (0.43 µg/mL), followed by the oil (15.63 µg/mL). Carnosic acid has the best-fitting energy to inhibit H. pylori (-46.6769 Kcal/mol). TES showed the highest reduction in Cox-2 expression approaching celecoxib with IC50 = 1.7 ± 0.27 µg/mL, followed by the oil with IC50 = 5.3 ± 0.62 µg/mL. Our findings suggest that S. officinalis metabolites with anti-inflammatory capabilities could be useful in H. pylori management. Further in vivo studies are required to evaluate and assess its promising activity.
Collapse
Affiliation(s)
- Hatun A. Alomar
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wafaa M. Elkady
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Marwa M. Abdel-Aziz
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo 11651, Egypt
| | - Taghreed A. Ibrahim
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Noha Fathallah
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| |
Collapse
|
25
|
Alves-Silva JM, Gonçalves MJ, Silva A, Cavaleiro C, Cruz MT, Salgueiro L. Chemical Profile, Anti-Microbial and Anti-Inflammaging Activities of Santolina rosmarinifolia L. Essential Oil from Portugal. Antibiotics (Basel) 2023; 12:antibiotics12010179. [PMID: 36671380 PMCID: PMC9854695 DOI: 10.3390/antibiotics12010179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Fungal infections and the accompanying inflammatory responses are associated with great morbidity and mortality due to the frequent relapses triggered by an increased resistance to antifungal agents. Furthermore, this inflammatory state can be exacerbated during inflammaging and cellular senescence. Essential oils (EO) are receiving increasing interest in the field of drug discovery due to their lipophilic nature and complex composition, making them suitable candidates in the development of new antifungal drugs and modulators of numerous molecular targets. This work chemically characterized the EO from Santolina rosmarinifolia L., collected in Setúbal (Portugal), and assessed its antifungal potential by determining its minimum inhibitory (MIC) and minimum lethal (MLC) concentration in accordance with the Clinical Laboratory Standard Guidelines (CLSI) guidelines, as well as its effect on several Candida albicans virulence factors. The anti-inflammatory effect was unveiled using lipopolysaccharide (LPS)-stimulated macrophages by assessing several pro-inflammatory mediators. The wound healing and anti-senescence potential of the EO was also disclosed. The EO was mainly characterized by β-pinene (29.6%), borneol (16.9%), myrcene (15.4%) and limonene (5.7%). It showed a strong antifungal effect against yeasts and filamentous fungi (MIC = 0.07-0.29 mg/mL). Furthermore, it inhibited dimorphic transition (MIC/16), decreased biofilm formation with a preeminent effect after 24 h (MIC/2) and disrupted preformed biofilms in C. albicans. Additionally, the EO decreased nitric oxide (NO) release (IC50 = 0.52 mg/mL) and pro-IL-1β and inducible nitric oxide synthase (iNOS) expression in LPS-stimulated macrophages, promoted wound healing (91% vs. 81% closed wound) and reduced cellular senescence (53% vs. 73% β-galactosidase-positive cells). Overall, this study highlights the relevant pharmacological properties of S. rosmarinifolia, opening new avenues for its industrial exploitation.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Institute for Clinical and Biomedical Research, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Maria José Gonçalves
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Carlos Cavaleiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
26
|
Rajčević N, Bukvički D, Dodoš T, Marin PD. Interactions between Natural Products-A Review. Metabolites 2022; 12:metabo12121256. [PMID: 36557296 PMCID: PMC9786035 DOI: 10.3390/metabo12121256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Plant-based natural products have been used as a source for therapeutics since the dawn of civilization. According to the World Health Organization (WHO), more than 80% of the world's population relies on traditional medicine for their primary healthcare. Numerous natural extracts, widely known in Traditional Chinese Medicine, Indian Ayurveda medicine and other practices, have led to the modern discovery and development of new drugs. Plants continuously interact with their environment, producing new compounds and ever-changing combinations of existing ones. Interestingly, some of the compounds have shown lower therapeutic activity in comparison to the extract they were isolated from. These findings suggest that the higher therapeutic activity of the source extract was due to the synergistic effect of several compounds. In other words, the total therapeutic potential of the extract cannot be explained only by the sum of its parts alone. In traditional medicine, most herbal remedies are based on a mixture of plants, and it is the interaction between different constituents that amplifies their therapeutic potential. Considering the significant influence traditional medicine has on human healthcare, knowing and studying the synergistic effect of compounds is paramount in designing smart therapeutic agents.
Collapse
|
27
|
Nascimento DR, Azevedo VAN, Barroso PAA, Barrozo LG, Silva BR, Silva AWB, Donato MAM, Peixoto CA, Silva JRV. Effects of N-acetylcysteine on Growth, Viability, and Ultrastructure of In Vitro Cultured Bovine Secondary Follicles. Animals (Basel) 2022; 12:ani12223190. [PMID: 36428416 PMCID: PMC9687016 DOI: 10.3390/ani12223190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate the effects of different concentrations of N-acetylcysteine (NAC) on the growth, antrum formation, viability, and ultrastructure of bovine secondary follicles cultured in vitro for 18 days. To this end, the follicles were cultured in TCM-199+ medium alone or supplemented with 1.0, 5.0, or 25.0 mM NAC. Follicular growth, antrum formation, viability (calcein-AM and ethidium homodimer-1) and ultrastructure were evaluated at the end of culture period. The results showed that 1.0 mM NAC increased the percentage of growing follicles and the fluorescence intensity for calcein-AM when compared to other treatments (p < 0.05). On the other hand, follicles cultured with 25.0 mM NAC had higher fluorescence intensity for ethidium homodimer-1, which is a sign of degeneration. Ultrastructural analysis showed that oocytes from follicles cultured in control medium alone or with 1 mM NAC had intact zonae pellucidae in close association with oolemmae, but the ooplasm showed mitochondria with a reduced number of cristae. On the other hand, oocytes from follicles cultured with 5 or 25 mM NAC had extremely vacuolated cytoplasm and no recognizable organelles. In conclusion, 1 mM NAC increases cytoplasmic calcein staining and the growth rate in bovine secondary follicles cultured in vitro, but the presence of 5 or 25 mM NAC causes damage in cellular membranes and organelles, as well as reducing the percentages of growing follicles.
Collapse
Affiliation(s)
- Danisvânia R. Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
| | - Venância A. N. Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
| | - Pedro A. A. Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
| | - Laryssa G. Barrozo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
| | - Bianca R. Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
| | - Anderson W. B. Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
| | - Mariana A. M. Donato
- Laboratory of Ultrastructure, CPqAM/FIOCRUZ, Federal University of Pernambuco, Recife CEP 50670-901, PE, Brazil
| | - Christina A. Peixoto
- Laboratory of Ultrastructure, CPqAM/FIOCRUZ, Federal University of Pernambuco, Recife CEP 50670-901, PE, Brazil
| | - José R. V. Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral CEP 62041-040, CE, Brazil
- Correspondence: ; Tel.: +55-(88)-3611-8000
| |
Collapse
|
28
|
Phytochemical Profile, Preliminary Toxicity, and Antioxidant Capacity of the Essential Oils of Myrciaria floribunda (H. West ex Willd.) O. Berg. and Myrcia sylvatica (G. Mey) DC. (Myrtaceae). Antioxidants (Basel) 2022; 11:antiox11102076. [PMID: 36290799 PMCID: PMC9658195 DOI: 10.3390/antiox11102076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
The essential oils (EOs) of Myrciaria floribunda (Mflo) and Myrcia sylvatica (Msyl) (Myrtaceae) were obtained by hydrodistillation. The analysis of volatile constituents was performed by GC/MS. Preliminary toxicity was assessed on Artemia salina Leach. The antioxidant capacity was measured by the ABTS•+ and DPPH• radical inhibitory activities. The results indicate that the Mflo EO had the highest yield (1.02%), and its chemical profile was characterized by high levels of hydrocarbon (65.83%) and oxygenated (25.74%) monoterpenes, especially 1,8-cineole (23.30%), terpinolene (22.23%) and α-phellandrene (22.19%). Regarding the Msyl EO, only hydrocarbon (51.60%) and oxygenated (46.52%) sesquiterpenes were identified in the sample, with (Z)-α-trans-bergamotene (24.57%), α-sinensal (13.44%), and (Z)-α-bisabolene (8.33%) at higher levels. The EO of Mflo exhibited moderate toxicity against A. salina (LC50 = 82.96 ± 5.20 µg.mL−1), while the EO of Msyl was classified as highly toxic (LC50 = 2.74 ± 0.50 µg.mL−1). In addition, relative to Trolox, the EOs of Mflo and Msyl showed significant inhibitory effects (p < 0.0001) against the DPPH• radical. This study contributes to the expansion of chemical and biological knowledge on the EOs of Myrtaceae species from the Amazon region.
Collapse
|
29
|
Giordo R, Cossu A, Porcu MC, Cappuccinelli R, Biosa G, Sharifi-Rad J, Pretti L, Nasrallah GK, Pintus G, Posadino AM. Cytoprotective, antioxidant, and anti-migratory activity of Pistacia lentiscus L. supercritical carbon dioxide extract on primary human endothelial cells. Nat Prod Res 2022:1-7. [PMID: 36200704 DOI: 10.1080/14786419.2022.2130304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Green chemistry is a useful tool for producing valuable chemicals from biomass. However, extracted compounds need to be tested for safety and efficacy before their use in humans. Here we investigate the chemical composition and biological effects of a leaves Pistacia lentiscus L. supercritical carbon dioxide (SCCO2) extract. Terpenes represented the main extract fraction, with Germacrene D (11.18%), delta-cadinene (10.54%), and alpha-pinene (8.7%) the most abundant molecules. Challenged with endothelial cells (ECs), increasing extract concentrations failed to affect cell proliferation or promote cell toxicity. ROS assessment in unstressed and H2O2-treated ECs revealed an extract dose-dependent antioxidant activity. Exposition of H2O2-treated ECs to increasing extract concentrations dose-dependently counteracted H2O2-induced cell impairments. The extract significantly counteracted fetal calf serum-induced ECs migration. For the first time, we report that a SCCO2 extract obtained from PL leaves is safe on ECs and may be a useful source of valuable compounds with vasculoprotective properties.
Collapse
Affiliation(s)
- Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Annalisa Cossu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | | | - Grazia Biosa
- Porto Conte Ricerche S.r.l, Alghero, Sassari, Italy
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Luca Pretti
- Porto Conte Ricerche S.r.l, Alghero, Sassari, Italy
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences Member of QU Health, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | | |
Collapse
|
30
|
Pinus halepensis Essential Oil Ameliorates Aβ1-42-Induced Brain Injury by Diminishing Anxiety, Oxidative Stress, and Neuroinflammation in Rats. Biomedicines 2022; 10:biomedicines10092300. [PMID: 36140401 PMCID: PMC9496595 DOI: 10.3390/biomedicines10092300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 01/18/2023] Open
Abstract
The Pinus L. genus comprises around 250 species, being popular worldwide for their medicinal and aromatic properties. The present study aimed to evaluate the P. halepensis Mill. essential oil (PNO) in an Alzheimer’s disease (AD) environment as an anxiolytic and antidepressant agent. The AD-like symptoms were induced in Wistar male rats by intracerebroventricular administration of amyloid beta1-42 (Aβ1-42), and PNO (1% and 3%) was delivered to Aβ1-42 pre-treated rats via inhalation route for 21 consecutive days, 30 min before behavioral assessments. The obtained results indicate PNO’s potential to relieve anxious–depressive features and to restore redox imbalance in the rats exhibiting AD-like neuropsychiatric impairments. Moreover, PNO presented beneficial effects against neuroinflammation and neuroapoptosis in the Aβ1-42 rat AD model.
Collapse
|
31
|
Solís-Quispe L, Pino JA, Marín-Villa JZ, Tomaylla-Cruz C, Solís-Quispe JA, Aragón-Alencastre LJ, Hernández I, Cuellar C, Rodeiro I, Fernández MD. Chemical composition and antioxidant activity of Ambrosia arborescens Miller leaf essential oil from Peruvian Andes. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2021.1937354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Leoncio Solís-Quispe
- Department of Chemistry, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú
| | - Jorge A. Pino
- Department of Aroma, Food Industry Research Institute, Havana, Cuba
- Department of Foods, Pharmacy and Food Institute, University of Havana, Havana, Cuba
| | - Jessica Z. Marín-Villa
- Department of Chemistry, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú
| | - Ciro Tomaylla-Cruz
- Department of Chemistry, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú
| | - Jorge A. Solís-Quispe
- Department of Chemistry, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú
| | | | - Ivones Hernández
- Department of Chemistry, Marine Sciences Institute, Havana, Cuba
| | - Cindel Cuellar
- Department of Chemistry, Marine Sciences Institute, Havana, Cuba
| | - Idania Rodeiro
- Department of Chemistry, Marine Sciences Institute, Havana, Cuba
| | | |
Collapse
|
32
|
Athanasopoulou S, Kapetanou M, Magouritsas MG, Mougkolia N, Taouxidou P, Papacharalambous M, Sakellaridis F, Gonos E. Antioxidant and Antiaging Properties of a Novel Synergistic Nutraceutical Complex: Readouts from an In Cellulo Study and an In Vivo Prospective, Randomized Trial. Antioxidants (Basel) 2022; 11:antiox11030468. [PMID: 35326118 PMCID: PMC8944750 DOI: 10.3390/antiox11030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Aging is a dynamic procedure that is developed in multiple layers and characterized by distinct hallmarks. The use of biomarkers that target different hallmarks of aging is substantial in predicting adverse outcomes during the aging process, implementing specifically designed antiaging interventions and monitoring responses to these interventions. The present study aimed to develop a novel composition of plant extracts, comprising identified active ingredients that synergistically target different hallmarks of aging in cellulo and in vivo. The selected single extracts and the developed composition were tested through a powerful set of biomarkers that we have previously identified and studied. The composition of selected extracts simultaneously increased cellular lifespan, reduced the cellular oxidative load and enhanced antioxidant defense mechanisms by increasing proteasome activity and content. In addition, the combination prevented telomere attrition and preserved optimum DNA methylation levels. Remarkably, biomarker profiling of healthy volunteers who received the identified combination in the form of a nutritional supplement within the frame of a prospective, randomized, controlled 3-month trial revealed an unprecedented antioxidant capacity in humans. In conclusion, our results support the notion that interventions with specifically designed combinations of natural compounds targeting multiple hallmarks of aging represent an effective way to improve healthspan and well-being.
Collapse
Affiliation(s)
- Sophia Athanasopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (S.A.); (M.K.); (N.M.)
- Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece
| | - Marianna Kapetanou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (S.A.); (M.K.); (N.M.)
| | | | - Nikoletta Mougkolia
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (S.A.); (M.K.); (N.M.)
| | - Polykseni Taouxidou
- Department of Physical Education and Sport Science, Aristotle University, 57001 Thessaloniki, Greece;
| | | | | | - Efstathios Gonos
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (S.A.); (M.K.); (N.M.)
- Hellenic Pasteur Institute, 11521 Athens, Greece
- Correspondence: ; Tel.: +30-210-6478860
| |
Collapse
|
33
|
Essential Oils Extracted from Organic Propolis Residues: An Exploratory Analysis of Their Antibacterial and Antioxidant Properties and Volatile Profile. Molecules 2021; 26:molecules26154694. [PMID: 34361848 PMCID: PMC8347542 DOI: 10.3390/molecules26154694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022] Open
Abstract
The industrial processing of crude propolis generates residues. Essential oils (EOs) from propolis residues could be a potential source of natural bioactive compounds to replace antibiotics and synthetic antioxidants in pig production. In this study, we determined the antibacterial/antioxidant activity of EOs from crude organic propolis (EOP) and from propolis residues, moist residue (EOMR), and dried residue (EODR), and further elucidated their chemical composition. The EOs were extracted by hydrodistillation, and their volatile profile was tentatively identified by GC-MS. All EOs had an antibacterial effect on Escherichia coli and Lactobacillus plantarum as they caused disturbances on the growth kinetics of both bacteria. However, EODR had more selective antibacterial activity, as it caused a higher reduction in the maximal culture density (D) of E. coli (86.7%) than L. plantarum (46.9%). EODR exhibited mild antioxidant activity, whereas EOMR showed the highest antioxidant activity (ABTS = 0.90 μmol TE/mg, FRAP = 463.97 μmol Fe2+/mg) and phenolic content (58.41 mg GAE/g). Each EO had a different chemical composition, but α-pinene and β-pinene were the major compounds detected in the samples. Interestingly, specific minor compounds were detected in a higher relative amount in EOMR and EODR as compared to EOP. Therefore, these minor compounds are most likely responsible for the biological properties of EODR and EOMR. Collectively, our findings suggest that the EOs from propolis residues could be resourcefully used as natural antibacterial/antioxidant additives in pig production.
Collapse
|