1
|
Volná A, Červeň J, Nezval J, Pech R, Špunda V. Bridging the Gap: From Photoperception to the Transcription Control of Genes Related to the Production of Phenolic Compounds. Int J Mol Sci 2024; 25:7066. [PMID: 39000174 PMCID: PMC11241081 DOI: 10.3390/ijms25137066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Phenolic compounds are a group of secondary metabolites responsible for several processes in plants-these compounds are involved in plant-environment interactions (attraction of pollinators, repelling of herbivores, or chemotaxis of microbiota in soil), but also have antioxidative properties and are capable of binding heavy metals or screening ultraviolet radiation. Therefore, the accumulation of these compounds has to be precisely driven, which is ensured on several levels, but the most important aspect seems to be the control of the gene expression. Such transcriptional control requires the presence and activity of transcription factors (TFs) that are driven based on the current requirements of the plant. Two environmental factors mainly affect the accumulation of phenolic compounds-light and temperature. Because it is known that light perception occurs via the specialized sensors (photoreceptors) we decided to combine the biophysical knowledge about light perception in plants with the molecular biology-based knowledge about the transcription control of specific genes to bridge the gap between them. Our review offers insights into the regulation of genes related to phenolic compound production, strengthens understanding of plant responses to environmental cues, and opens avenues for manipulation of the total content and profile of phenolic compounds with potential applications in horticulture and food production.
Collapse
Affiliation(s)
- Adriana Volná
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Jiří Červeň
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Jakub Nezval
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Radomír Pech
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Vladimír Špunda
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
- Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
| |
Collapse
|
2
|
Sano H, Kawaguchi S, Iimori T, Kuragano M, Tokuraku K, Uwai K. On-Site Evaluation of Constituent Content and Functionality of Perilla frutescens var. crispa Using Fluorescence Spectra. Molecules 2023; 28:7199. [PMID: 37894678 PMCID: PMC10609569 DOI: 10.3390/molecules28207199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Perilla frutescens leaves are hypothesized to possess antioxidant and amyloid-β (Aβ) aggregation inhibitory properties primarily due to their polyphenol-type compounds. While these bioactivities fluctuate daily, the traditional methods for quantifying constituent contents and functional properties are both laborious and impractical for immediate field assessments. To address this limitation, the present study introduces an expedient approach for on-site analysis, employing fluorescence spectra obtained through excitation light irradiation of perilla leaves. Standard analytical techniques were employed to evaluate various constituent contents (chlorophyl (Chl), total polyphenol content (TPC), total flavonoid content (TFC), and rosmarinic acid (RA)) and functional attributes (DPPH radical scavenging activity, ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and Aβ aggregation inhibitory activity). Correlations between the fluorescence spectra and these parameters were examined using normalized difference spectral index (NDSI), ratio spectral index (RSI), and difference spectral index (DSI) analyses. The resulting predictive model exhibited a high coefficient of determination, with R2 values equal to or greater than 0.57 for constituent contents and 0.49 for functional properties. This approach facilitates the convenient, simultaneous, and nondestructive monitoring of both the chemical constituents and the functional capabilities of perilla leaves, thereby simplifying the determination of optimal harvest times. The model derived from this method holds promise for real-time assessments, indicating its potential for the simultaneous evaluation of both constituents and functionalities in perilla leaves.
Collapse
Affiliation(s)
| | | | | | | | | | - Koji Uwai
- Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran 050-8585, Japan; (H.S.); (S.K.); (M.K.); (K.T.)
| |
Collapse
|
3
|
Saeid Nia M, Scholz L, Garibay-Hernández A, Mock HP, Repnik U, Selinski J, Krupinska K, Bilger W. How do barley plants with impaired photosynthetic light acclimation survive under high-light stress? PLANTA 2023; 258:71. [PMID: 37632541 PMCID: PMC10460368 DOI: 10.1007/s00425-023-04227-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023]
Abstract
MAIN CONCLUSION WHIRLY1 deficient barley plants surviving growth at high irradiance displayed increased non-radiative energy dissipation, enhanced contents of zeaxanthin and the flavonoid lutonarin, but no changes in α-tocopherol nor glutathione. Plants are able to acclimate to environmental conditions to optimize their functions. With the exception of obligate shade plants, they can adjust their photosynthetic apparatus and the morphology and anatomy of their leaves to irradiance. Barley (Hordeum vulgare L., cv. Golden Promise) plants with reduced abundance of the protein WHIRLY1 were recently shown to be unable to acclimatise important components of the photosynthetic apparatus to high light. Nevertheless, these plants did not show symptoms of photoinhibition. High-light (HL) grown WHIRLY1 knockdown plants showed clear signs of exposure to excessive irradiance such as a low epoxidation state of the violaxanthin cycle pigments and an early light saturation of electron transport. These responses were underlined by a very large xanthophyll cycle pool size and by an increased number of plastoglobules. Whereas zeaxanthin increased with HL stress, α-tocopherol, which is another lipophilic antioxidant, showed no response to excessive light. Also the content of the hydrophilic antioxidant glutathione showed no increase in W1 plants as compared to the wild type, whereas the flavone lutonarin was induced in W1 plants. HPLC analysis of removed epidermal tissue indicated that the largest part of lutonarin was presumably located in the mesophyll. Since lutonarin is a better antioxidant than saponarin, the major flavone present in barley leaves, it is concluded that lutonarin accumulated as a response to oxidative stress. It is also concluded that zeaxanthin and lutonarin may have served as antioxidants in the WHIRLY1 knockdown plants, contributing to their survival in HL despite their restricted HL acclimation.
Collapse
Affiliation(s)
| | - Louis Scholz
- Institute of Botany, Christian-Albrechts-University, Kiel, Germany
| | - Adriana Garibay-Hernández
- Leibniz Institute for Plant Genetics and Crop Plant Research, Gatersleben, Seeland, Germany
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Paul-Ehrlich Straße 23, 67663, Kaiserslautern, Germany
| | - Hans-Peter Mock
- Leibniz Institute for Plant Genetics and Crop Plant Research, Gatersleben, Seeland, Germany
| | - Urska Repnik
- Central Microscopy, Department of Biology, Christian-Albrechts-University, Kiel, Germany
| | | | - Karin Krupinska
- Institute of Botany, Christian-Albrechts-University, Kiel, Germany
| | - Wolfgang Bilger
- Institute of Botany, Christian-Albrechts-University, Kiel, Germany.
| |
Collapse
|
4
|
Kantharaj V, Yoon YE, Lee KA, Choe H, Chohra H, Seo WD, Kim YN, Lee YB. Saponarin, a Di-glycosyl Flavone from Barley ( Hordeum vulgare L.): An Effective Compound for Plant Defense and Therapeutic Application. ACS OMEGA 2023; 8:22285-22295. [PMID: 37396229 PMCID: PMC10308553 DOI: 10.1021/acsomega.3c00267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023]
Abstract
Saponarin (SA) is a major di-C-glycosyl-O-glycosyl flavone, which is predominantly accumulated in the young green leaves of barley (Hordeum vulgare L.), with numerous biological functions in plants, such as protection against environmental stresses. Generally, SA synthesis and its localization in the mesophyll vacuole or leaf epidermis are largely stimulated in response to biotic and abiotic stresses to participate in a plant's defense response. In addition, SA is also credited for its pharmacological properties, such as the regulation of signaling pathways associated with antioxidant and anti-inflammatory responses. In recent years, many researchers have shown the potential of SA to treat oxidative and inflammatory disorders, such as in protection against liver diseases, and reducing blood glucose, along with antiobesity effects. This review aims to highlight natural variations of SA in plants, biosynthesis pathway, and SA's role in response to environmental stress and implications in various therapeutic applications. In addition, we also discuss the challenges and knowledge gaps concerning SA use and commercialization.
Collapse
Affiliation(s)
- Vimalraj Kantharaj
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Young-Eun Yoon
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Keum-Ah Lee
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeonji Choe
- Division
of Applied Life Science (BK21), Gyeongsang
National University, Jinju 52828, Republic
of Korea
| | - Hadjer Chohra
- Division
of Applied Life Science (BK21), Gyeongsang
National University, Jinju 52828, Republic
of Korea
| | - Woo Duck Seo
- Division
of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Young-Nam Kim
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
- Division
of Applied Life Science (BK21), Gyeongsang
National University, Jinju 52828, Republic
of Korea
| | - Yong Bok Lee
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
- Division
of Applied Life Science (BK21), Gyeongsang
National University, Jinju 52828, Republic
of Korea
| |
Collapse
|
5
|
D’Orso F, Hill L, Appelhagen I, Lawrenson T, Possenti M, Li J, Harwood W, Morelli G, Martin C. Exploring the metabolic and physiological roles of HQT in S. lycopersicum by gene editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1124959. [PMID: 37063176 PMCID: PMC10102458 DOI: 10.3389/fpls.2023.1124959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
The most abundant phenolic compound in Solanaceous plants is chlorogenic acid (CGA), which possesses protective properties such as antimicrobial and antioxidant activities. These properties are particularly relevant when plants are under adverse conditions, such as pathogen attack, excess light, or extreme temperatures that cause oxidative stress. Additionally, CGA has been shown to absorb UV-B light. In tomato and potato, CGA is mainly produced through the HQT pathway mediated by the enzyme hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase. However, the absence of natural or induced mutants of this gene has made it unclear whether other pathways contribute to CGA production and accumulation. To address this question, we used CRISPR technology to generate multiple knock-out mutant lines in the tomato HQT gene. The resulting slhqt plants did not accumulate CGA or other caffeoylquinic acids (CQAs) in various parts of the plant, indicating that CQA biosynthesis depends almost entirely on the HQT pathway in tomato and, likely, other Solanaceous crops. We also found that the lack of CGA in slhqt plants led to higher levels of hydroxycinnamoyl-glucose and flavonoids compared to wild-type plants. Gene expression analysis revealed that this metabolic reorganization was partly due to flux redirection, but also involved modulation of important transcription factor genes that regulate secondary metabolism and sense environmental conditions. Finally, we investigated the physiological role of CGA in tomato and found that it accumulates in the upper epidermis where it acts as a protector against UV-B irradiation.
Collapse
Affiliation(s)
- Fabio D’Orso
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, Rome, Italy
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Lionel Hill
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Ingo Appelhagen
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Tom Lawrenson
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Marco Possenti
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, Rome, Italy
| | - Jie Li
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Wendy Harwood
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Giorgio Morelli
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, Rome, Italy
| | - Cathie Martin
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
6
|
Hunt L, Lhotáková Z, Neuwirthová E, Klem K, Oravec M, Kupková L, Červená L, Epstein HE, Campbell P, Albrechtová J. Leaf Functional Traits in Relation to Species Composition in an Arctic-Alpine Tundra Grassland. PLANTS (BASEL, SWITZERLAND) 2023; 12:1001. [PMID: 36903862 PMCID: PMC10005651 DOI: 10.3390/plants12051001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The relict arctic-alpine tundra provides a natural laboratory to study the potential impacts of climate change and anthropogenic disturbance on tundra vegetation. The Nardus stricta-dominated relict tundra grasslands in the Krkonoše Mountains have experienced shifting species dynamics over the past few decades. Changes in species cover of the four competing grasses-Nardus stricta, Calamagrostis villosa, Molinia caerulea, and Deschampsia cespitosa-were successfully detected using orthophotos. Leaf functional traits (anatomy/morphology, element accumulation, leaf pigments, and phenolic compound profiles), were examined in combination with in situ chlorophyll fluorescence in order to shed light on their respective spatial expansions and retreats. Our results suggest a diverse phenolic profile in combination with early leaf expansion and pigment accumulation has aided the expansion of C. villosa, while microhabitats may drive the expansion and decline of D. cespitosa in different areas of the grassland. N. stricta-the dominant species-is retreating, while M. caerulea did not demonstrate significant changes in territory between 2012 and 2018. We propose that the seasonal dynamics of pigment accumulation and canopy formation are important factors when assessing potential "spreader" species and recommend that phenology be taken into account when monitoring grass species using remote sensing.
Collapse
Affiliation(s)
- Lena Hunt
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Prague, Czech Republic
| | - Zuzana Lhotáková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Prague, Czech Republic
| | - Eva Neuwirthová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Prague, Czech Republic
| | - Karel Klem
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic
| | - Michal Oravec
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic
| | - Lucie Kupková
- Department of Applied Geoinformatics and Cartography, Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
| | - Lucie Červená
- Department of Applied Geoinformatics and Cartography, Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
| | - Howard E. Epstein
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA
| | - Petya Campbell
- Goddard Earth Science Technology and Research (GESTAR) II, University of Maryland Baltimore County, Baltimore, MD 21250, USA
- Biospheric Sciences Laboratory, Building 33, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - Jana Albrechtová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Prague, Czech Republic
| |
Collapse
|
7
|
Kumachova T, Babosha A, Ryabchenko A. Outer and internal cuticle in the leaves of Malus (Rosaceae) in mountains and plains. Microsc Res Tech 2022; 85:3439-3454. [PMID: 35804489 DOI: 10.1002/jemt.24199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/02/2022] [Accepted: 06/28/2022] [Indexed: 11/07/2022]
Abstract
The outer and internal cuticles in apple (Malus domestica Borkh.) leaves on the plain and in the mountains was studied using transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The outer cuticle consisted of lamellate and homogeneous layers of the cuticle proper and cuticular layer containing electron-transparent plates and electron-dense dendrites. Blue fluorescence predominated in the cell wall. The cuticle fluoresced green and red. The intensity of the red part of the spectrum in the cuticle increased with altitude, and the number of electron-transparent plates increased within the cuticular layer. The cell wall on both leaf sides was the thinnest in the arid conditions (300 m). At an altitude of 600 m, under favorable temperature and rainfall conditions, the cuticle thickness increased due to the cuticular layer adjacent to the cell wall. The internal cuticle was distinguished by intense yellow or red autofluorescence, similar in color and spectrum to the outer cuticle. The outer and internal cuticles had cuticular folds. The average distance between the ridges of the internal cuticle was almost the same in the samples at different altitudes. The ridge height was maximum at 600 m.
Collapse
Affiliation(s)
- Tamara Kumachova
- Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Moscow, Russia
| | - Alexander Babosha
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Moscow, Russia
| | - Andrey Ryabchenko
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Pech R, Volná A, Hunt L, Bartas M, Červeň J, Pečinka P, Špunda V, Nezval J. Regulation of Phenolic Compound Production by Light Varying in Spectral Quality and Total Irradiance. Int J Mol Sci 2022; 23:ijms23126533. [PMID: 35742975 PMCID: PMC9223736 DOI: 10.3390/ijms23126533] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Photosynthetically active radiation (PAR) is an important environmental cue inducing the production of many secondary metabolites involved in plant oxidative stress avoidance and tolerance. To examine the complex role of PAR irradiance and specific spectral components on the accumulation of phenolic compounds (PheCs), we acclimated spring barley (Hordeum vulgare) to different spectral qualities (white, blue, green, red) at three irradiances (100, 200, 400 µmol m−2 s−1). We confirmed that blue light irradiance is essential for the accumulation of PheCs in secondary barley leaves (in UV-lacking conditions), which underpins the importance of photoreceptor signals (especially cryptochrome). Increasing blue light irradiance most effectively induced the accumulation of B-dihydroxylated flavonoids, probably due to the significantly enhanced expression of the F3′H gene. These changes in PheC metabolism led to a steeper increase in antioxidant activity than epidermal UV-A shielding in leaf extracts containing PheCs. In addition, we examined the possible role of miRNAs in the complex regulation of gene expression related to PheC biosynthesis.
Collapse
Affiliation(s)
- Radomír Pech
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (R.P.); (A.V.)
| | - Adriana Volná
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (R.P.); (A.V.)
| | - Lena Hunt
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Praha, Czech Republic;
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.); (J.Č.); (P.P.)
| | - Jiří Červeň
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.); (J.Č.); (P.P.)
| | - Petr Pečinka
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.); (J.Č.); (P.P.)
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (R.P.); (A.V.)
- Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
- Correspondence: (V.Š.); (J.N.)
| | - Jakub Nezval
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (R.P.); (A.V.)
- Correspondence: (V.Š.); (J.N.)
| |
Collapse
|
9
|
Kozłowska W, Matkowski A, Zielińska S. Light Intensity and Temperature Effect on Salvia yangii (B. T. Drew) Metabolic Profile in vitro. FRONTIERS IN PLANT SCIENCE 2022; 13:888509. [PMID: 35646028 PMCID: PMC9136318 DOI: 10.3389/fpls.2022.888509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Plant in vitro culture is a feasible system for the testing influence of an environmental factor on the accumulation and chemodiversity of specialized metabolites, especially in medicinal plants. Light and temperature are among the most important factors affecting the physiology of plant organisms but their influence on specific metabolic pathways is not completely understood. Here, we examined the morphogenetic response, photosynthetic pigments content, lipid peroxidation level, DPPH radical scavenging activity, and the production of volatile and non-volatile constituents in Salvia yangii B. T. Drew (syn. Perovskia atriplicifolia Benth.) in vitro cultures kept under different light intensities (70, 130, and 220 μmol m-2 s-1) and at two selected temperatures (25 and 30°C). The experiment was continued for 7 months to monitor the changes in the treatment response in time. Phytochemical analysis was performed using chromatographic (GC-MS and UHLPC) and spectrophotometric techniques. The light intensity significantly influenced metabolic response in a non-linear manner, whereas temperature-induced adaptive modifications varied within the long cultivation. Significant differences were noted in the content of carnosic and rosmarinic acid, as well as in several sesquiterpenes (alloaromadendrene, β-caryophyllene, α-humulene). At elevated (30°C) temperature, a trend of differently modulated content of two major antioxidants-rosmarinic acid (RA, a phenylpropanoid pathway derived phenolic acid) and carnosic acid (CA, an abietane diterpenoid) was observed, where RA, but not CA, was depending on the light intensity. At 25°C, both compounds depended on light but in various ways. Among the volatile terpenoid compounds, the influence of light was pronounced, leading to modulation of proportions between individual mono- and sesquiterpenes as well as between hydrocarbon and oxygenated compounds. The study provided new information on the metabolic profile plasticity in S. yangii and added to the existing knowledge on the chemical adaptations in plant species from severe habitats.
Collapse
Affiliation(s)
- Weronika Kozłowska
- Division of Pharmaceutical Biotechnology, Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Wroclaw, Poland
| | - Adam Matkowski
- Division of Pharmaceutical Biology and Botany, Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Wroclaw, Poland
| | - Sylwia Zielińska
- Division of Pharmaceutical Biotechnology, Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
10
|
Hunt L, Fuksa M, Klem K, Lhotáková Z, Oravec M, Urban O, Albrechtová J. Barley Genotypes Vary in Stomatal Responsiveness to Light and CO 2 Conditions. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112533. [PMID: 34834896 PMCID: PMC8625854 DOI: 10.3390/plants10112533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 05/03/2023]
Abstract
Changes in stomatal conductance and density allow plants to acclimate to changing environmental conditions. In the present paper, the influence of atmospheric CO2 concentration and light intensity on stomata were investigated for two barley genotypes-Barke and Bojos, differing in their sensitivity to oxidative stress and phenolic acid profiles. A novel approach for stomatal density analysis was used-a pair of convolution neural networks were developed to automatically identify and count stomata on epidermal micrographs. Stomatal density in barley was influenced by genotype, as well as by light and CO2 conditions. Low CO2 conditions resulted in increased stomatal density, although differences between ambient and elevated CO2 were not significant. High light intensity increased stomatal density compared to low light intensity in both barley varieties and all CO2 treatments. Changes in stomatal conductance were also measured alongside the accumulation of pentoses, hexoses, disaccharides, and abscisic acid detected by liquid chromatography coupled with mass spectrometry. High light increased the accumulation of all sugars and reduced abscisic acid levels. Abscisic acid was influenced by all factors-light, CO2, and genotype-in combination. Differences were discovered between the two barley varieties: oxidative stress sensitive Barke demonstrated higher stomatal density, but lower conductance and better water use efficiency (WUE) than oxidative stress resistant Bojos at saturating light intensity. Barke also showed greater variability between treatments in measurements of stomatal density, sugar accumulation, and abscisic levels, implying that it may be more responsive to environmental drivers influencing water relations in the plant.
Collapse
Affiliation(s)
- Lena Hunt
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (M.F.); (Z.L.)
| | - Michal Fuksa
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (M.F.); (Z.L.)
| | - Karel Klem
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.)
| | - Zuzana Lhotáková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (M.F.); (Z.L.)
| | - Michal Oravec
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.)
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.)
| | - Jana Albrechtová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (M.F.); (Z.L.)
- Correspondence: ; Tel.: +420-221-95-1959
| |
Collapse
|
11
|
Garibay-Hernández A, Kessler N, Józefowicz AM, Türksoy GM, Lohwasser U, Mock HP. Untargeted metabotyping to study phenylpropanoid diversity in crop plants. PHYSIOLOGIA PLANTARUM 2021; 173:680-697. [PMID: 33963574 DOI: 10.1111/ppl.13458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Plant genebanks constitute a key resource for breeding to ensure crop yield under changing environmental conditions. Because of their roles in a range of stress responses, phenylpropanoids are promising targets. Phenylpropanoids comprise a wide array of metabolites; however, studies regarding their diversity and the underlying genes are still limited for cereals. The assessment of barley diversity via genotyping-by-sequencing is in rapid progress. Exploring these resources by integrating genetic association studies to in-depth metabolomic profiling provides a valuable opportunity to study barley phenylpropanoid metabolism; but poses a challenge by demanding large-scale approaches. Here, we report an LC-PDA-MS workflow for barley high-throughput metabotyping. Without prior construction of a species-specific library, this method produced phenylpropanoid-enriched metabotypes with which the abundance of putative metabolic features was assessed across hundreds of samples in a single-processed data matrix. The robustness of the analytical performance was tested using a standard mix and extracts from two selected cultivars: Scarlett and Barke. The large-scale analysis of barley extracts showed (1) that barley flag leaf profiles were dominated by glycosylation derivatives of isovitexin, isoorientin, and isoscoparin; (2) proved the workflow's capability to discriminate within genotypes; (3) highlighted the role of glycosylation in barley phenylpropanoid diversity. Using the barley S42IL mapping population, the workflow proved useful for metabolic quantitative trait loci purposes. The protocol can be readily applied not only to explore the barley phenylpropanoid diversity represented in genebanks but also to study species whose profiles differ from those of cereals: the crop Helianthus annuus (sunflower) and the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
| | | | | | - Gözde Merve Türksoy
- Leibniz Institute for Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Ulrike Lohwasser
- Leibniz Institute for Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Hans-Peter Mock
- Leibniz Institute for Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|