1
|
Liu M, Wu MX, Gong FF, Sun ZM, Li Y, Huan F, Chen GX, Liu QM, Liu H, Liu GM. Optimized carbonylation treatment of Litopenaeus vannamei matrix decreased its immunoreactivity and improved edible quality, simultaneously. Food Chem 2025; 464:141614. [PMID: 39423529 DOI: 10.1016/j.foodchem.2024.141614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The study aimed to investigate how carbonylation affects the immunoreactivity and edible quality of the Litopenaeus vannamei matrix. The carbonylation treatment conditions of the shrimp matrix were optimized. Firstly, the treatment condition is optimized with 1.0 mmol/L malonaldehyde at 37 °C, 12 h. The optimized carbonylated shrimp showed lower immunoreactivity, carbonyl group, and free amino acids. Then the edible quality was evaluated, optimized carbonylated shrimp matrix presented better digestibility and the continuous digestion products showed lower immunoreactivity. Optimized carbonylated shrimp for the other sensory indicators showed better texture properties and an inviting appearance. Looser microstructure by scanning electron microscopy contributed to the higher digestibility, lower immunoreactivity, and better edible quality for optimized carbonylated shrimp matrix. Besides, more potentially modified amino acid residues exposed on the allergen surface may be the other reason. In conclusion, optimized carbonylation treatment reduced the immunoreactivity and improved the edible quality of shrimp.
Collapse
Affiliation(s)
- Meng Liu
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, Fujian 361100, China; College of Ocean Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Ming-Xuan Wu
- College of Ocean Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Fei-Fei Gong
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, Fujian 361100, China
| | - Zhao-Min Sun
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, Fujian 361100, China
| | - Ying Li
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, Fujian 361100, China
| | - Fei Huan
- College of Ocean Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Qing-Mei Liu
- College of Ocean Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Hong Liu
- College of Ocean Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Guang-Ming Liu
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, Fujian 361100, China; College of Ocean Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China.
| |
Collapse
|
2
|
Liu K, Liu Z, Miao J, Huang Y, Lai K. Multi-response kinetic study of Maillard reaction hazards in the glucose-lysine model system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1207-1215. [PMID: 39299926 DOI: 10.1002/jsfa.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Nε-carboxymethyllysine (CML), Nε-carboxyethyllysine (CEL) and α-aminoadipic acid (AAA) are important foodborne hazards and their intake can cause a variety of diseases in humans. It is extremely important to investigate the formation mechanism of CML, CEL and AAA, as well as their association with each other when aiming to control their production. RESULTS A multi-response kinetic model was developed within the glucose-lysine Maillard reaction model system. The concentrations of glucose, lysine, glyoxal (GO), methylglyoxal (MGO), CML, CEL and AAA were quantified at different temperature (100-160 °C) and at different intervals (0-60 min). The experimental data were fitted to the proposed model to calculate kinetic parameters for the corresponding steps. The results indicated that the production of CML was primarily relied on the direct oxidative cleavage of the Amadori product, rather than the reaction between GO and Lys, whereas CEL and AAA were generated through the reaction of MGO with Lys. Significantly, the reaction between α-dicarbonyl compounds and Lys preferentially generated CML and CEL, resulting in the lower concentrations of AAA compared to CML and CEL. CONCLUSION The multi-response kinetic model developed in the present study can be applied well to the Maillard reaction. The relationship between the formation mechanisms of CML, CEL and AAA is also explained. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kaihua Liu
- College of Food Science and Technology, Shanghai Ocean University, LinGang New City, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, China
| | - Zhijie Liu
- College of Food Science and Technology, Shanghai Ocean University, LinGang New City, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, China
| | - Junjian Miao
- College of Food Science and Technology, Shanghai Ocean University, LinGang New City, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, China
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, LinGang New City, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
3
|
Sánchez-Terrón G, Martínez R, Freire MJ, Molina-Infante J, Estévez M. Gastrointestinal fate of proteins from commercial plant-based meat analogs: Silent passage through the stomach, oxidative stress in intestine, and gut dysbiosis in Wistar rats. J Food Sci 2024; 89:10294-10316. [PMID: 39475341 DOI: 10.1111/1750-3841.17458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 12/28/2024]
Abstract
Plant-based meat analogs (PBMAs) are common ultra-processed foods (UPFs) included in the vegan/vegetarian diets as presumed healthy alternatives to meat and meat products. However, such health claims need to be supported by scientific evidence. To gain further insight into this topic, two commercial UPFs typically sold as meat analogs, namely, seitan (S) and tofu (T), were included in a cereal-based chow and provided to Wistar rats for 10 weeks. A group of animals had, simultaneously, an isocaloric and isoprotein experimental diet formulated with cooked beef (B). In all cases, experimental chows (∼4 kcal/g feed) had their basal protein concentration increased from 14% to 30% using proteins from S, T, or B. Upon slaughter, in vivo protein digestibility was assessed, and the entire gastrointestinal tract (digests and tissues) was analyzed for markers of oxidative stress and untargeted metabolomics. Metagenomics was also applied to assess the variation of microbiota composition as affected by dietary protein. Diets based on PBMAs showed lower protein digestibility than those containing meat and promoted an intense luminal glycoxidative stress and an inflammatory intestinal response. The fermentation of undigested oxidized proteins from T in the colon of Wistar rats likely led to formation of mutagenic metabolites such as p-cresol. The presence of these compounds in the animal models raises concerns about the potential effects of full replacement of meat by certain PBMAs in the diet. Therefore, future research might target on translational human studies to shed light on these findings.
Collapse
Affiliation(s)
- G Sánchez-Terrón
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres, Spain
| | - R Martínez
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres, Spain
- Animal Health Department, Animal Health and Zoonoses Research Group (GISAZ), UIC Zoonosis and Emergent Diseases (ENZOEM Competitive Research Unit), Universidad of Córdoba (UCO, ROR-ID 05yc77b46), Córdoba, Spain
| | - M J Freire
- Meat Quality Area, Center of Scientific and Technological Research of Extremadura (CICYTEX-La Orden), Junta de Extremadura, Guadajira, Badajoz, Spain
| | - J Molina-Infante
- Gastroenterology Department, Hospital Universitario Cácerses, Servicio Extremeño de Salud, Cáceres, Spain
| | - M Estévez
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres, Spain
| |
Collapse
|
4
|
Sánchez-Terrón G, Martínez R, Ruiz J, Luna C, Estévez M. Impact of Sustained Fructose Consumption on Gastrointestinal Function and Health in Wistar Rats: Glycoxidative Stress, Impaired Protein Digestion, and Shifted Fecal Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16270-16285. [PMID: 37859404 PMCID: PMC10623553 DOI: 10.1021/acs.jafc.3c04515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The gastrointestinal tract (GIT) is the target of assorted pathological conditions, and dietary components are known to affect its functionality and health. In previous in vitro studies, we observed that reducing sugars induced protein glycoxidation and impaired protein digestibility. To gain further insights into the pathophysiological effects of dietary sugars, Wistar rats were provided with a 30% (w/v) fructose water solution for 10 weeks. Upon slaughter, in vivo protein digestibility was assessed, and the entire GIT (digests and tissues) was analyzed for markers of oxidative stress and untargeted metabolomics. Additionally, the impact of sustained fructose intake on colonic microbiota was also evaluated. High fructose intake for 10 weeks decreased protein digestibility and promoted changes in the physiological digestion of proteins, enhancing intestinal digestion rather than stomach digestion. Moreover, at colonic stages, the oxidative stress was harmfully increased, and both the microbiota and the intraluminal colonic metabolome were modified.
Collapse
Affiliation(s)
- Guadalupe Sánchez-Terrón
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres 10003, Spain
| | - Remigio Martínez
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres 10003, Spain
- Animal Health Department, Universidad of Extremadura (UEX), Cáceres 10003, Spain
- Animal Health Department, GISAZ Research Group, ENZOEM Competitive Research Unit, Universidad of Córdoba (UCO), Córdoba 14014, Spain
| | - Jorge Ruiz
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres 10003, Spain
| | - Carolina Luna
- Emergency Unit, Servicio Extremeño de Salud, SES, Junta de Extremadura, Cáceres 10003, Spain
| | - Mario Estévez
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres 10003, Spain
| |
Collapse
|
5
|
Desine S, Gabriel CL, Smith HM, Antonetti OR, Wang C, Calcutt MW, Doran AC, Silver HJ, Nair S, Terry JG, Carr JJ, Linton MF, Brown JD, Koethe JR, Ferguson JF. Association of alpha-aminoadipic acid with cardiometabolic risk factors in healthy and high-risk individuals. Front Endocrinol (Lausanne) 2023; 14:1122391. [PMID: 37745703 PMCID: PMC10513411 DOI: 10.3389/fendo.2023.1122391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/17/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Plasma levels of the metabolite alpha-aminoadipic acid (2-AAA) have been associated with risk of type 2 diabetes (T2D) and atherosclerosis. However, little is known about the relationship of 2-AAA to other cardiometabolic risk markers in pre-disease states, or in the setting of comorbid disease. Methods We measured circulating 2-AAA using two methods in 1) a sample of 261 healthy individuals (2-AAA Study), and 2) in a sample of 134 persons comprising 110 individuals with treated HIV, with or without T2D, a population at high risk of metabolic disease and cardiovascular events despite suppression of circulating virus, and 24 individuals with T2D without HIV (HATIM Study). We examined associations between plasma 2-AAA and markers of cardiometabolic health within each cohort. Results and discussion We observed differences in 2-AAA by sex and race in both cohorts, with higher levels observed in men compared with women, and in Asian compared with Black or white individuals (P<0.05). There was no significant difference in 2-AAA by HIV status within individuals with T2D in the HATIM Study. We confirmed associations between 2-AAA and dyslipidemia in both cohorts, where high 2-AAA associated with low HDL cholesterol (P<0.001) and high triglycerides (P<0.05). As expected, within the cohort of people with HIV, 2-AAA was higher in the setting of T2D compared to pre-diabetes or normoglycemia (P<0.001). 2-AAA was positively associated with body mass index (BMI) in the 2-AAA Study, and with waist circumference and measures of visceral fat volume in HATIM (all P<0.05). Further, 2-AAA associated with increased liver fat in persons with HIV (P<0.001). Our study confirms 2-AAA as a marker of cardiometabolic risk in both healthy individuals and those at high cardiometabolic risk, reveals relationships with adiposity and hepatic steatosis, and highlights important differences by sex and race. Further studies are warranted to establish molecular mechanisms linking 2-AAA to disease in other high-risk populations.
Collapse
Affiliation(s)
- Stacy Desine
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Curtis L. Gabriel
- Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Holly M. Smith
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Olivia R. Antonetti
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Chuan Wang
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - M. Wade Calcutt
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Amanda C. Doran
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Heidi J. Silver
- Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sangeeta Nair
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James G. Terry
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John Jeffrey Carr
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - MacRae F. Linton
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jonathan D. Brown
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John R. Koethe
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jane F. Ferguson
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
6
|
Sánchez-Quintero MJ, Delgado J, Martín Chaves L, Medina-Vera D, Murri M, Becerra-Muñoz VM, Estévez M, Crespo-Leiro MG, Paz López G, González-Jiménez A, A. G. Ranea J, Queipo-Ortuño MI, Plaza-Andrades I, Rodríguez-Capitán J, Pavón-Morón FJ, Jiménez-Navarro MF. Multi-Omics Approach Reveals Prebiotic and Potential Antioxidant Effects of Essential Oils from the Mediterranean Diet on Cardiometabolic Disorder Using Humanized Gnotobiotic Mice. Antioxidants (Basel) 2023; 12:1643. [PMID: 37627638 PMCID: PMC10451832 DOI: 10.3390/antiox12081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Essential oils sourced from herbs commonly used in the Mediterranean diet have demonstrated advantageous attributes as nutraceuticals and prebiotics within a model of severe cardiometabolic disorder. The primary objective of this study was to assess the influences exerted by essential oils derived from thyme (Thymus vulgaris) and oregano (Origanum vulgare) via a comprehensive multi-omics approach within a gnotobiotic murine model featuring colonic microbiota acquired from patients diagnosed with coronary artery disease (CAD) and type-2 diabetes mellitus (T2DM). Our findings demonstrated prebiotic and potential antioxidant effects elicited by these essential oils. We observed a substantial increase in the relative abundance of the Lactobacillus genus in the gut microbiota, accompanied by higher levels of short-chain fatty acids and a reduction in trimethylamine N-oxide levels and protein oxidation in the plasma. Moreover, functional enrichment analysis of the cardiac tissue proteome unveiled an over-representation of pathways related to mitochondrial function, oxidative stress, and cardiac contraction. These findings provide compelling evidence of the prebiotic and antioxidant actions of thyme- and oregano-derived essential oils, which extend to cardiac function. These results encourage further investigation into the promising utility of essential oils derived from herbs commonly used in the Mediterranean diet as potential nutraceutical interventions for mitigating chronic diseases linked to CAD and T2DM.
Collapse
Grants
- PI-0170-2018, PI-0131/2020, and PI-0245-2021 Consejería de Salud y Familias-Junta de Andalucía and European Regional Development Funds/European Social Fund
- UMA20-FEDERJA-074 Universidad de Málaga, Consejería de Economía, Conocimiento, Empresas y Universidad-Junta de Andalucía and ERDF/ESF
- ProyExcel_01009 Consejería de Transformación Económica, Industria, Conocimiento y Universidades-Junta de Andalucía and ERDF/ESF
- SEC/FEC-INV-BAS 23 Sociedad Española de Cardiología and Fundación Andaluza de Cardiología
- PT20/00101 Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación-Gobierno de España
- CB16/11/00360 CIBERCV-Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación-Gobierno de España and ERDF/ESF
- Q-2918001-E Cátedra de Terapias Avanzadas en Patología Cardiovascular, Universidad de Málaga
Collapse
Affiliation(s)
- María José Sánchez-Quintero
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Josué Delgado
- Higiene y Salud Alimentaria, Faculty of Veterinary, University of Extremadura, 10003 Cáceres, Spain;
- Instituto Universitario de Investigación de Carne y Productos Cárnicos (IPROCAR), University of Extremadura, 10003 Cáceres, Spain;
| | - Laura Martín Chaves
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Dina Medina-Vera
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Dermatology and Medicine, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Clinical Management Unit of Mental Health, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Mora Murri
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Clinical Management Unit of Endocrinology and Nutrition, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for the Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Víctor M. Becerra-Muñoz
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Mario Estévez
- Instituto Universitario de Investigación de Carne y Productos Cárnicos (IPROCAR), University of Extremadura, 10003 Cáceres, Spain;
| | - María G. Crespo-Leiro
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Service of Cardiology, Complexo Hospitalario Universitario A Coruña (CHUAC), University of A Coruña, Instituto Investigación Biomédica A Coruña (INIBIC), 15006 A Coruña, Spain
| | - Guillermo Paz López
- Bioinformatics, Common Support Structures (ECAI), IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (G.P.L.); (A.G.-J.); (J.A.G.R.)
| | - Andrés González-Jiménez
- Bioinformatics, Common Support Structures (ECAI), IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (G.P.L.); (A.G.-J.); (J.A.G.R.)
| | - Juan A. G. Ranea
- Bioinformatics, Common Support Structures (ECAI), IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (G.P.L.); (A.G.-J.); (J.A.G.R.)
- Department of Molecular Biology and Biochemistry, Faculty of Science, University of Málaga, 29010 Málaga, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Isabel Queipo-Ortuño
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Intercenter Clinical Management Unit of Medical Oncology, Hospitales Universitarios Regional y Virgen de la Victoria y Centro de Investigaciones Médico Sanitarias (CIMES), 29010 Málaga, Spain
- Department of Surgical Specialties, Biochemistry, and Immunology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Isaac Plaza-Andrades
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Intercenter Clinical Management Unit of Medical Oncology, Hospitales Universitarios Regional y Virgen de la Victoria y Centro de Investigaciones Médico Sanitarias (CIMES), 29010 Málaga, Spain
| | - Jorge Rodríguez-Capitán
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Francisco Javier Pavón-Morón
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Manuel F. Jiménez-Navarro
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
7
|
Wang Z, Wu Z, Tu J, Xu B. Muscle food and human health: A systematic review from the perspective of external and internal oxidation. Trends Food Sci Technol 2023; 138:85-99. [DOI: 10.1016/j.tifs.2023.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Desine S, Gabriel CL, Smith HM, Antonetti OR, Wang C, Calcutt MW, Doran AC, Silver HJ, Nair S, Terry JG, Carr JJ, Linton MF, Brown JD, Koethe JR, Ferguson JF. Association of alpha-aminoadipic acid (2-AAA) with cardiometabolic risk factors in healthy and high-risk individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.05.23290990. [PMID: 37333170 PMCID: PMC10274998 DOI: 10.1101/2023.06.05.23290990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Plasma levels of the metabolite alpha-aminoadipic acid (2-AAA) have been associated with risk of type 2 diabetes (T2D) and atherosclerosis. However, little is known about the relationship of 2-AAA to other cardiometabolic risk markers in pre-disease states, or in the setting of comorbid disease. We measured circulating 2-AAA using two methods in 1) a sample of 261 healthy individuals (2-AAA Study), and 2) in a sample of 134 persons comprising 110 individuals with treated HIV, with or without T2D, a population at high risk of metabolic disease and cardiovascular events despite suppression of circulating virus, and 24 individuals with T2D without HIV (HATIM Study). We examined associations between plasma 2-AAA and markers of cardiometabolic health within each cohort. We observed differences in 2-AAA by sex and race in both cohorts, with higher levels observed in men compared with women, and in Asian compared with Black or white individuals (P<0.05). There was no significant difference in 2-AAA by HIV status within individuals with T2D in the HATIM Study. We confirmed associations between 2-AAA and dyslipidemia in both cohorts where high 2-AAA associated with low HDL cholesterol (P<0.001) and high triglycerides (P<0.05). As expected, within the cohort of people with HIV, 2-AAA was higher in the setting of T2D compared to pre-diabetes or normoglycemia (P<0.001). 2-AAA was positively associated with body mass index (BMI) in the 2-AAA Study, and with waist circumference and measures of visceral fat volume in HATIM (all P<0.05). Further, 2-AAA associated with increased liver fat in persons with HIV (P<0.001). Our study confirms 2-AAA as a marker of cardiometabolic risk in both healthy individuals and those at high cardiometabolic risk, reveals relationships with adiposity and hepatic steatosis, and highlights important differences by sex and race. Further studies are warranted to establish molecular mechanisms linking 2-AAA to disease in other high-risk populations.
Collapse
Affiliation(s)
- Stacy Desine
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center
| | - Curtis L. Gabriel
- Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center
| | - Holly M. Smith
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center
| | | | - Chuan Wang
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center
| | - M. Wade Calcutt
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University
| | - Amanda C. Doran
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center
| | - Heidi J. Silver
- Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center
| | - Sangeeta Nair
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
| | - James G. Terry
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
| | - J. Jeffrey Carr
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
| | - MacRae F. Linton
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center
| | - Jonathan D. Brown
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center
| | - John R. Koethe
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
| | - Jane F. Ferguson
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center
| |
Collapse
|
9
|
Feng R, Liang W, Liu Y, Luo Y, Tan Y, Hong H. Protein oxidation affected the digestibility and modification sites of myofibrillar proteins from bighead carp fillets treated with hydroxyl radicals and endogenous oxidizing system. Food Chem 2023; 409:135279. [PMID: 36603476 DOI: 10.1016/j.foodchem.2022.135279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
This study aimed to investigate the effect of hydroxyl radical oxidizing system (HROS) and endogenous oxidizing system (EOS, i.e., frozen storage at -20 °C) on protein oxidation, digestive properties, and peptide modification of myofibrillar proteins (MPs) in bighead carp (Hypophthalmichthys nobilis) fillets. The oxidation degree increased with the frozen time and H2O2 concentration as evidenced by carbonyl group generation and sulfhydryl group loss in MPs. The digestibility of protein declined gradually during frozen storage, while it increased after treatment with 5 mM H2O2 compared with no H2O2 intervention. More modification numbers and types were observed in the EOS group than HROS in digested MPs peptides, which might be due to the complexity of the frozen fillet system such as the presence of lipid. The potential conversion of α-aminoadipic semialdehyde (AAS) to α-aminoadipic acids (AAA) was observed in HROS. Additionally, the myosin heavy chain was more susceptible to oxidation among all MPs by EOS oxidation.
Collapse
Affiliation(s)
- Ruifang Feng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| | - Wenyu Liang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| | - Yueyue Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China; National Research and Development Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China.
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China; Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China.
| |
Collapse
|
10
|
Men L, Wang Z, Gou M, Li Z, Li W, Li C, Li K, Gong X. Metabolomics and targeted amino acid analysis reveal the liver protective effect of arginyl-fructosyl-glucose from red ginseng on acute liver injury in mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
11
|
Liu S, Li C, Chu M, Zhang W, Wang W, Wang Y, Guo X, Deng F. Associations of forest negative air ions exposure with cardiac autonomic nervous function and the related metabolic linkages: A repeated-measure panel study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158019. [PMID: 35973547 DOI: 10.1016/j.scitotenv.2022.158019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Forest environment has many health benefits, and negative air ions (NAI) is one of the major forest environmental factors. Many studies have explored the effect of forest environment on cardiac autonomic nervous function, while forest NAI in the among function and the underlying mechanism still remain unclear. To explore the associations and molecular linkages between short-term exposure to forest NAI and heart rate variability (HRV), a repeated-measure panel study was conducted among 31 healthy adults. Participants were randomly selected to stay in a forest park for 3 days and 2 nights. Individual exposures including NAI were monitored simultaneously and HRV indices were measured repeatedly at the follow-up period. Urine samples were collected for non-targeted metabolomics analysis. Mixed-effect models were adopted to evaluate associations among NAI, HRV indices and metabolites. The median of NAI concentration was 68.11 (138.20) cm-3 during the study period. Short-term exposure to forest NAI was associated with the ameliorative HRV indices, especially the excitatory parasympathetic nerve. For instance, per interquartile range increase of 5-min moving average of NAI was associated with 9.99 % (95%CI: 8.95 %, 11.03 %) increase of power in high frequency. Eight metabolites were associated with NAI exposure. The down-regulated tyrosine metabolism was firstly observed, followed by other amino acid metabolic alterations. The NAI-related metabolic changes reflect the reduction of inflammation and oxidative stress. HRV indices were associated with 25 metabolites, mainly including arginine, proline and histidine metabolism. Short-term exposure to forest NAI is beneficial to HRV, especially to the parasympathetic nerve activity, by successively disturbing different metabolic pathways which mainly reflect the increased anti-inflammation and the reduced inflammation. The results will provide epidemiological evidences for developing forest therapy and improving cardiac autonomic nervous function.
Collapse
Affiliation(s)
- Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Chen Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Mengtian Chu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yazheng Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
12
|
Sánchez-Quintero MJ, Delgado J, Medina-Vera D, Becerra-Muñoz VM, Queipo-Ortuño MI, Estévez M, Plaza-Andrades I, Rodríguez-Capitán J, Sánchez PL, Crespo-Leiro MG, Jiménez-Navarro MF, Pavón-Morón FJ. Beneficial Effects of Essential Oils from the Mediterranean Diet on Gut Microbiota and Their Metabolites in Ischemic Heart Disease and Type-2 Diabetes Mellitus. Nutrients 2022; 14:4650. [PMID: 36364913 PMCID: PMC9657080 DOI: 10.3390/nu14214650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Ischemic heart disease (IHD) and type-2 diabetes mellitus (T2DM) remain major health problems worldwide and commonly coexist in individuals. Gut microbial metabolites, such as trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFAs), have been linked to cardiovascular and metabolic diseases. Previous studies have reported dysbiosis in the gut microbiota of these patients and the prebiotic effects of some components of the Mediterranean diet. Essential oil emulsions of savory (Satureja hortensis), parsley (Petroselinum crispum) and rosemary (Rosmarinus officinalis) were assessed as nutraceuticals and prebiotics in IHD and T2DM. Humanized mice harboring gut microbiota derived from that of patients with IHD and T2DM were supplemented with L-carnitine and orally treated with essential oil emulsions for 40 days. We assessed the effects on gut microbiota composition and abundance, microbial metabolites and plasma markers of cardiovascular disease, inflammation and oxidative stress. Our results showed that essential oil emulsions in mice supplemented with L-carnitine have prebiotic effects on beneficial commensal bacteria, mainly Lactobacillus genus. There was a decrease in plasma TMAO and an increase in fecal SCFAs levels in mice treated with parsley and rosemary essential oils. Thrombomodulin levels were increased in mice treated with savory and parsley essential oils. While mice treated with parsley and rosemary essential oils showed a decrease in plasma cytokines (INFɣ, TNFα, IL-12p70 and IL-22); savory essential oil was associated with increased levels of chemokines (CXCL1, CCL2 and CCL11). Finally, there was a decrease in protein carbonyls and pentosidine according to the essential oil emulsion. These results suggest that changes in the gut microbiota induced by essential oils of parsley, savory and rosemary as prebiotics could differentially regulate cardiovascular and metabolic factors, which highlights the potential of these nutraceuticals for reducing IHD risk in patients affected by T2DM.
Collapse
Affiliation(s)
- María José Sánchez-Quintero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain
- Unidad de Gestión Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Josué Delgado
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain
- Unidad de Gestión Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Higiene y Seguridad Alimentaria, Facultad de Veterinaria, IPROCAR, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain
- Unidad de Gestión Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Departamento de Dermatología y Medicina, Facultad de Medicina, Universidad de Málaga (UMA), 29010 Málaga, Spain
| | - Víctor M. Becerra-Muñoz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain
- Unidad de Gestión Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Isabel Queipo-Ortuño
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria y Centro de Investigaciones Médico Sanitarias (CIMES), 29010 Málaga, Spain
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga (UMA), 29010 Málaga, Spain
| | - Mario Estévez
- Instituto Universitario de Investigación de Carne y Productos Cárnicos (IPROCAR), Universidad de Extremadura (UEX), 10003 Cáceres, Spain
| | - Isaac Plaza-Andrades
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria y Centro de Investigaciones Médico Sanitarias (CIMES), 29010 Málaga, Spain
| | - Jorge Rodríguez-Capitán
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain
- Unidad de Gestión Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pedro L. Sánchez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Cardiología, Hospital Universitario de Salamanca, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Maria G. Crespo-Leiro
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Cardiología, Complexo Hospitalario Universitario A Coruña (CHUAC), Universidade da Coruña (UDC), Instituto Investigación Biomédica A Coruña (INIBIC), 15006 A Coruña, Spain
| | - Manuel F. Jiménez-Navarro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain
- Unidad de Gestión Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Dermatología y Medicina, Facultad de Medicina, Universidad de Málaga (UMA), 29010 Málaga, Spain
| | - Francisco Javier Pavón-Morón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain
- Unidad de Gestión Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| |
Collapse
|
13
|
Abstract
Protein oxidation is a topic of indisputable scientific interest given the impact of oxidized proteins on food quality and safety. Carbonylation is regarded as one of the most notable post-translational modifications in proteins and yet, this reaction and its consequences are poorly understood. From a mechanistic perspective, primary protein carbonyls (i.e. α-aminoadipic and γ-glutamic semialdehydes) have been linked to radical-mediated oxidative stress, but recent studies emphasize the role alternative carbonylation pathways linked to the Maillard reaction. Secondary protein carbonyls are introduced in proteins via covalent linkage of lipid carbonyls (i.e. protein-bound malondialdehyde). The high reactivity of protein carbonyls in foods and other biological systems indicates the intricate chemistry of these species and urges further research to provide insight into these molecular mechanisms and pathways. In particular, protein carbonyls are involved in the formation of aberrant and dysfunctional protein aggregates, undergo further oxidation to yield carboxylic acids of biological relevance and establish interactions with other biomolecules such as oxidizing lipids and phytochemicals. From a methodological perspective, the routine dinitrophenylhydrazine (DNPH) method is criticized not only for the lack of accuracy and consistency but also authors typically perform a poor interpretation of DNPH results, which leads to misleading conclusions. From a practical perspective, the biological relevance of protein carbonyls in the field of food science and nutrition is still a topic of debate. Though the implication of carbonylation on impaired protein functionality and poor protein digestibility is generally recognized, the underlying mechanism of such connections requires further clarification. From a medical perspective, protein carbonyls are highlighted as markers of protein oxidation, oxidative stress and disease. Yet, the specific role of specific protein carbonyls in the onset of particular biological impairments needs further investigations. Recent studies indicates that regardless of the origin (in vivo or dietary) protein carbonyls may act as signalling molecules which activate not only the endogenous antioxidant defences but also implicate the immune system. The present paper concisely reviews the most recent advances in this topic to identify, when applicable, potential fields of interest for future studies.
Collapse
|
14
|
Padilla P, Andrade MJ, Peña FJ, Rodríguez A, Estévez M. An in vitro assay of the effect of lysine oxidation end-product, α-aminoadipic acid, on the redox status and gene expression in probiotic Lactobacillus reuteri PL503. Amino Acids 2021; 54:663-673. [PMID: 34657206 PMCID: PMC9117375 DOI: 10.1007/s00726-021-03087-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 01/18/2023]
Abstract
This study was designed to gain information about the underlying mechanisms of the effects of a food-occurring free oxidized amino acid, α-aminoadipic acid (AAA), on the probiotic Lactobacillus reuteri PL503. This bacterium was incubated in colonic-simulated conditions (37 °C for 24 h in microaerophilic conditions) and exposed to three food-compatible AAA concentrations, namely, 1 mM, 5 mM, and 10 mM. A control group with no AAA exposure was also considered. Each of the four experimental conditions was replicated three times and samplings were collected at 12, 16, 20, and 24 h. The downregulation of the uspA gene by AAA (0.5-fold decrease as compared to control) suggests that AAA is identified as a potential chemical threat. The dhaT gene, implicated in the antioxidant defense, was found to be upregulated in bacteria treated with 1 and 5 mM AAA (up to twofold increase, as compared to control), which suggest the ability of the oxidized amino acid to impair the redox status of the bacterium. In fact, AAA caused an increased production of reactive oxygen species (ROS) and the accretion of post-translational changes (protein carbonylation) in L. reuteri (up to 13 nmol allysine/mg protein vs 1.8 nmol allysine/mg protein in control). These results suggest that probiotic bacteria identify oxidized amino acids as harmful species and activate mechanisms that may protect themselves and the host against their noxious effects.
Collapse
Affiliation(s)
- Patricia Padilla
- Food Technology, IPROCAR Research Institute, University of Extremadura, 10003, Cáceres, Spain.,Faculty of Veterinary Science, IPROCAR Research Institute, Food Hygiene and Safety, University of Extremadura, 10003, Cáceres, Spain
| | - María J Andrade
- Faculty of Veterinary Science, IPROCAR Research Institute, Food Hygiene and Safety, University of Extremadura, 10003, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, University of Extremadura, 10003, Cáceres, Spain
| | - Alicia Rodríguez
- Faculty of Veterinary Science, IPROCAR Research Institute, Food Hygiene and Safety, University of Extremadura, 10003, Cáceres, Spain
| | - Mario Estévez
- Food Technology, IPROCAR Research Institute, University of Extremadura, 10003, Cáceres, Spain.
| |
Collapse
|
15
|
Aldini G, Altomare AA. Reactive Carbonyl Species and Protein Adducts: Identification Strategies, Biological Mechanisms and Molecular Approaches for Their Detoxification. Antioxidants (Basel) 2021; 10:antiox10050690. [PMID: 33924749 PMCID: PMC8146889 DOI: 10.3390/antiox10050690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
|