1
|
Zhang B, Zeng M, Tie Q, Wang R, Wang M, Wu Y, Zheng X, Feng W. (-)-Epigallocatechin-3-gallate (EGCG) ameliorates ovalbumin-induced asthma by inhibiting inflammation via the TNF-α/TNF-R1/NLRP3 signaling pathway. Int Immunopharmacol 2025; 144:113708. [PMID: 39626539 DOI: 10.1016/j.intimp.2024.113708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/15/2024]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a polyphenol in green tea with potential lung-protective effects. However, the effects of EGCG on airway inflammation in asthma remain unclear. The aim of this study was to investigate the effect and mechanism of EGCG on asthmatic airway inflammation. In this study, the therapeutic effects of EGCG on ovalbumin (OVA)-induced asthmatic mice were tested first. Second, the effects of EGCG on airway inflammation, airway hyperresponsiveness (AHR), airway mucus hypersecretion, cell apoptosis and differential genes were investigated. Finally, the relationships between the effects of EGCG on airway inflammation and the TNF-α/TNF-R1/NLRP3 signaling pathway in asthmatic mice were explored. The results showed that EGCG could attenuate AHR, alleviate the symptoms of alveolar wall thickening and inflammatory cell infiltration, decrease the levels of inflammatory cytokines and airway mucus markers, reduce apoptosis and reactive oxygen species (ROS) and increase the mitochondrial membrane potential (MMP) in primary lung cells in asthmatic mice. Additionally, EGCG significantly inhibited the activation of the TNF-α/TNF-R1/NLRP3 signaling pathway in the lung tissues of asthmatic mice. The lowest binding free energies of EGCG with TNF-α, TNF-R1 and NLRP3 were -11.6, -11.6 and -8.2 kcal/mol, respectively. Moreover, the equilibrium dissociation constant (KD) of EGCG and TNF-R1was 26.05 μmol/L. EGCG-mediated inhibition of TNF-α/TNF-R1/NLRP3 signaling pathway activation was blocked in LPS-induced BEAS-2B and RAW264.7 cells overexpressing TNF-α. Consequently, EGCG effectively attenuated AHR and inhibited airway inflammation and airway mucus hypersecretion in asthmatic mice, and these effects may be closely related to the TNF-α/TNF-R1/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Beibei Zhang
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Mengnan Zeng
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Qimei Tie
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Ru Wang
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Mengya Wang
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Yuanyuan Wu
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Xiaoke Zheng
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Weisheng Feng
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Liao K, Wang F, Xia C, Xu Z, Zhong S, Bi W, Ruan J. The cGAS-STING pathway in COPD: targeting its role and therapeutic potential. Respir Res 2024; 25:302. [PMID: 39113033 PMCID: PMC11308159 DOI: 10.1186/s12931-024-02915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Chronic obstructive pulmonary disease(COPD) is a gradually worsening and fatal heterogeneous lung disease characterized by airflow limitation and increasingly decline in lung function. Currently, it is one of the leading causes of death worldwide. The consistent feature of COPD is airway inflammation. Several inflammatory factors are known to be involved in COPD pathogenesis; however, anti-inflammatory therapy is not the first-line treatment for COPD. Although bronchodilators, corticosteroids and roflumilast could improve airflow and control symptoms, they could not reverse the disease. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway plays an important novel role in the immune system and has been confirmed to be a key mediator of inflammation during infection, cellular stress, and tissue damage. Recent studies have emphasized that abnormal activation of cGAS-STING contributes to COPD, providing a direction for new treatments that we urgently need to develop. Here, we focused on the cGAS-STING pathway, providing insight into its molecular mechanism and summarizing the current knowledge on the role of the cGAS-STING pathway in COPD. Moreover, we explored antagonists of cGAS and STING to identify potential therapeutic strategies for COPD that target the cGAS-STING pathway.
Collapse
Affiliation(s)
- Kexin Liao
- First Clinical Medical College, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Fengshuo Wang
- College of Pharmacy, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Chenhao Xia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Ze Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Sen Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Wenqi Bi
- First Clinical Medical College, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Jingjing Ruan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| |
Collapse
|
3
|
Ju S, Tan Y, Wang Q, Zhou L, Wang K, Wen C, Wang M. Antioxidant and anti‑inflammatory effects of esculin and esculetin (Review). Exp Ther Med 2024; 27:248. [PMID: 38682114 PMCID: PMC11046185 DOI: 10.3892/etm.2024.12536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/19/2024] [Indexed: 05/01/2024] Open
Abstract
Fraxinus chinensis Roxb is a deciduous tree, which is distributed worldwide and has important medicinal value. In Asia, the bark of Fraxinus chinensis Roxb is a commonly used traditional Chinese medicine called Qinpi. Esculetin is a coumarin compound derived from the bark of Fraxinus chinensis Roxb and its glycoside form is called esculin. The aim of the present study was to systematically review relevant literature on the antioxidant and anti-inflammatory effects of esculetin and esculin. Esculetin and esculin can promote the expression of various endogenous antioxidant proteins, such as superoxide dismutase, glutathione peroxidase and glutathione reductase. This is associated with the activation of the nuclear factor erythroid-derived factor 2-related factor 2 signaling pathway. The anti-inflammatory effects of esculetin and esculin are associated with the inhibition of the nuclear factor κ-B and mitogen-activated protein kinase inflammatory signaling pathways. In various inflammatory models, esculetin and esculin can reduce the expression levels of various proinflammatory factors such as tumor necrosis factor-α, interleukin (IL)-1β and IL-6, thereby inhibiting the development of inflammation. In summary, esculetin and esculin may be promising candidates for the treatment of numerous diseases associated with inflammation and oxidative stress, such as ulcerative colitis, acute lung and kidney injury, lung cancer, acute kidney injury.
Collapse
Affiliation(s)
- Shaohua Ju
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Youli Tan
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Qiang Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Ling Zhou
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Kun Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Chenghong Wen
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Mingjian Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
4
|
Yang R, Wu X, Gounni AS, Xie J. Mucus hypersecretion in chronic obstructive pulmonary disease: From molecular mechanisms to treatment. J Transl Int Med 2023; 11:312-315. [PMID: 38130649 PMCID: PMC10732574 DOI: 10.2478/jtim-2023-0094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Ruonan Yang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, Hubei Province, China
| | - Xiaojie Wu
- Department of Respiratory and Critical Care Medicine, Wuhan NO. 1 Hospital, Wuhan Hospital of traditional Chinese and Western Medicine, Wuhan430022, Hubei Province, China
| | - Abdelilah Soussi Gounni
- Department of Immunology, Faculty of Medicine, University of Manitoba, ManitobaR3E 0W3, Canada
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, Hubei Province, China
| |
Collapse
|
5
|
Jiang H, Bai Z, Ou Y, Liu H, Si Z, Liu Y, Liu X, Liu X, Zhang Z, Tan N. β-Hydroxybutyric acid upregulated by Suhuang antitussive capsule ameliorates cough variant asthma through GSK3β/AMPK-Nrf2 signal axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116013. [PMID: 36586526 DOI: 10.1016/j.jep.2022.116013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cough variant asthma (CVA) is a chronic inflammatory disease characterized by cough as the main symptom. Suhuang antitussive capsule (Suhuang), one of traditional Chinese patent medicines, mainly treats CVA clinically. Previous studies have shown that Suhuang significantly improved CVA, post-infectious cough (PIC), sputum obstruction and airway remodeling. However, the effect of Suhuang on ovalbumin-induced (OVA-induced) metabolic abnormalities in CVA is unknown. AIM OF THE STUDY This study aimed to identify potential metabolites associated with efficacy of Suhuang in the treatment of CVA, and determined how Suhuang regulates metabolites, and differential metabolites reduce inflammation and oxidative stress. MATERIALS AND METHODS Rats were given 1 mg OVA/100 mg aluminum hydroxide in the 1st and 7th days by intraperitoneal injection and challenged by atomizing inhalation of 1% OVA saline solution after two weeks to establish the CVA model. Rats were intragastrically (i.g.) administrated with Suhuang at 1.4 g/kg and β-hydroxybutyric acid (β-HB) were given with different concentrations (87.5 and 175 mg/kg/day) by intraperitoneal injection for 2 weeks. After 26 days, GC-MS-based metabolomic approach was applied to observe metabolic changes and search differential metabolites. The number of coughs, coughs latencies, enzyme-linked immunosorbent assay (ELISA), histological analysis and quantitative-polymerase chain reaction (Q-PCR) were used to investigate the effects of Suhuang. Then β-HB on CVA rats, NLRP3 inflammasome and GSK3β/AMPK/Nrf2 signalling pathway were detected by western blotting. RESULTS The results showed that Suhuang treatment significantly enhanced the serum level of β-HB. Interestingly, exposure to exogenous β-HB was also protective against OVA-induced CVA. β-HB significantly reduced the number of coughs and lengthened coughs latencies, improved lung injury, reduced the secretion of various cytokines, and directly inhibited the NLRP3 inflammasome. In addition, β-HB increased the nuclear accumulation of Nrf2 by activating the GSK3β/AMPK signaling axis, and then inactivating the NF-κB signaling pathway, effectively protecting OVA-induced CVA from oxidative stress and inflammation. CONCLUSIONS The results of this study shows that β-HB can reduce inflammation and oxidative stress, the increased production of β-HB in serum might be the crucial factor for Suhuang to exert its effect in the treatment of CVA.
Collapse
Affiliation(s)
- Hong Jiang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Ziyu Bai
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yongyu Ou
- Beijing Haiyan Pharmaceutical Co., Ltd., Yangtze River Pharmaceutical Group, Beijing, 102206, PR China
| | - Huiling Liu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zilin Si
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yafang Liu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiaoqiong Liu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiaoqing Liu
- Beijing Haiyan Pharmaceutical Co., Ltd., Yangtze River Pharmaceutical Group, Beijing, 102206, PR China.
| | - Zhihao Zhang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
6
|
Birsa ML, Sarbu LG. Health Benefits of Key Constituents in Cichorium intybus L. Nutrients 2023; 15:1322. [PMID: 36986053 PMCID: PMC10058675 DOI: 10.3390/nu15061322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
The genus Cichorium (Asteraceae) that originates from the Mediterranean area consists of six species (Cichorium intybus, Cichorium frisee, Cichorium endivia, Cichorium grouse, Cichorium chico and Cichorium pumilum). Cichorium intybus L., commonly known as chicory, has a rich history of being known as a medicinal plant and coffee substitute. A variety of key constituents in chicory play important roles as antioxidant agents. The herb is also used as a forage plant for animals. This review highlights the bioactive composition of C. intybus L. and summarizes the antioxidant activity associated with the presence of inulin, caffeic acid derivatives, ferrulic acid, caftaric acid, chicoric acid, chlorogenic and isochlorogenic acids, dicaffeoyl tartaric acid, sugars, proteins, hydroxycoumarins, flavonoids and sesquiterpene lactones. It also covers the plant's occurrence, agriculture improvement, natural biosynthesis, geographical distribution and waste valorization.
Collapse
Affiliation(s)
| | - Laura G. Sarbu
- Department of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Blvd., 700506 Iasi, Romania
| |
Collapse
|
7
|
Hu Y, Li R, Jin J, Wang Y, Ma R. Quercetin improves pancreatic cancer chemo-sensitivity by regulating oxidative-inflammatory networks. J Food Biochem 2022; 46:e14453. [PMID: 36181395 DOI: 10.1111/jfbc.14453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
Chemotherapy is the main method for controlling pancreatic cancer metastasis but the prevalent chemotherapy resistance limits its utilization. The response of oxidation and inflammation often promotes pancreatic cancer progression and chemo-resistance. It is critical to explore the potential natural products with few side effects to control inflammatory responses and understand the related mechanisms. Quercetin is a flavonoid widely found in numerous vegetables, fruits, and foods and is thought to have antioxidant and anti-inflammatory properties, which may be associated with improvement of chemotherapy sensitivity during pancreatic cancer treatment. Quercetin may sensitize pancreatic cancer cells to the chemotherapeutic agents, including bromodomain and extraterminal domain inhibitors (BETI), daunorubicin, gemcitabine, sulforaphane, doxorubicin, and tumor necrosis factor-related signaling apoptosis-inducing ligand (TRAIL). Meanwhile, during the chemo-resistance therapy, many signaling molecules are involved with toll-like receptor 4 (TLR4)-mediated oxidative and inflammatory pathway. The effects of quercetin on other oxidative and inflammatory pathways were also explored. Quercetin may exert antitumor activity during the prevention of pancreatic cancer progression by regulating oxidative and inflammatory networks, which can promote immune escape of cancer cells by inducing immunosuppressive cytokines. Studying these patterns will help us to better understand the functional role of quercetin in the improvement of pancreatic cancer chemo-sensitivity. PRACTICAL APPLICATIONS: Chemotherapy is the major way for treating pancreatic cancer metastasis but the prevalent chemotherapy resistance caused by oxidative and inflammatory responses limits its utilization. It is necessary to explore the potential natural products with few side effects to prevent the oxidative and inflammatory responses. Quercetin is a flavonoid widely found in numerous vegetables, fruits, and foods and is thought to have antioxidant and anti-inflammatory properties, which may be associated with improvement of chemotherapy sensitivity of pancreatic cancer treatment by sensitizing pancreatic cancer cells to various chemotherapeutic agents via the regulation of oxidative and inflammatory networks. Studying these patterns will help us to better understand the functional role of quercetin in the improvement of pancreatic cancer chemo-sensitivity.
Collapse
Affiliation(s)
- Yaoyuan Hu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junyi Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yihui Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Ma
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Particulate matter in COPD pathogenesis: an overview. Inflamm Res 2022; 71:797-815. [PMID: 35710643 DOI: 10.1007/s00011-022-01594-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disorder with substantial patient burden and leading cause of death globally. Cigarette smoke remains to be the most recognised causative factor behind COPD pathogenesis. Given the alarming increase in prevalence of COPD amongst non-smokers in recent past, a potential role of air pollution particularly particulate matter (PM) in COPD development has gained much attention of the scientists. Indeed, several epidemiological studies indicate strong correlation between airborne PM and COPD incidence/exacerbations. PM-induced oxidative stress seems to be the major player in orchestrating COPD inflammatory cycle but the exact molecular mechanism(s) behind such a process are still poorly understood. This may be due to the complexity of multiple molecular pathways involved. Oxidative stress-linked mitochondrial dysfunction and autophagy have also gained importance and have been the focus of recent studies regarding COPD pathogenesis. Accordingly, the present review is aimed at understanding the key molecular players behind PM-mediated COPD pathogenesis through analysis of various experimental studies supported by epidemiological data to identify relevant preventive/therapeutic targets in the area.
Collapse
|
9
|
Jiao W, Qin N, Wang K, Wu D, Yu H, Du L, Wu G, Wu H, Zhao X. LC-MS/MS for determination of aesculetin in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr 2021; 36:e5233. [PMID: 34519055 DOI: 10.1002/bmc.5233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 01/11/2023]
Abstract
Aesculetin, a coumarin compound present in the sancho tree and chicory, exhibits excellent antioxidant and anti-inflammatory activities in the vascular and immune system. In this study, a rapid and sensitive ultra-high performance liquid chromatography electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) method was established and validated for the determination of aesculetin in rat plasma. Plasma samples were prepared by protein precipitation with acetonitrile. Chromatographic separation was performed on an Acquity UPLC HSS T3 C18 column (2.1 × 100 mm, 1.8 μm) with gradient elution at a flow rate of 0.3 ml/min, using mobile phase consisting of 0.1% formic acid (A) and acetonitrile (B). Aesculetin and puerarin (internal standard) were detected by multiple reaction monitoring in negative ion mode. The method was fully validated according to the US Food and Drug Administration guidelines. The calibration curve was linear over the range of 2-1,000 ng/ml with correlation coefficient >0.9980. The carry-over, matrix effect, extraction recovery, dilution effect, intra- and inter-day precision and the accuracy were within acceptable limits. The method was then applied to a pharmacokinetic study of aesculetin in rats. After oral administration at doses of 5, 10 and 20 mg/kg, the plasma concentration reached peaks of 95.7, 219.9, 388.6 ng/ml at times of 1.22-1.78 h. The oral bioavailability was calculated as 15.6-20.3% in rat plasma. The result provided pre-clinical information for further application of aesculetin.
Collapse
Affiliation(s)
- Weijie Jiao
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine Zhengzhou, Henan, China
| | - Nan Qin
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Kun Wang
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine Zhengzhou, Henan, China
| | - Dongmei Wu
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine Zhengzhou, Henan, China
| | - Hongyan Yu
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine Zhengzhou, Henan, China
| | - Lei Du
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine Zhengzhou, Henan, China
| | - Guiyue Wu
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine Zhengzhou, Henan, China
| | - Hong Wu
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xu Zhao
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine Zhengzhou, Henan, China
| |
Collapse
|
10
|
Abstract
Since the industrial revolution, air pollution has become a major problem causing several health problems involving the airways as well as the cardiovascular, reproductive, or neurological system. According to the WHO, about 3.6 million deaths every year are related to inhalation of polluted air, specifically due to pulmonary diseases. Polluted air first encounters the airways, which are a major human defense mechanism to reduce the risk of this aggressor. Air pollution consists of a mixture of potentially harmful compounds such as particulate matter, ozone, carbon monoxide, volatile organic compounds, and heavy metals, each having its own effects on the human body. In the last decades, a lot of research investigating the underlying risks and effects of air pollution and/or its specific compounds on the airways, has been performed, involving both in vivo and in vitro experiments. The goal of this review is to give an overview of the recent data on the effects of air pollution on healthy and diseased airways or models of airway disease, such as asthma or chronic obstructive pulmonary disease. Therefore, we focused on studies involving pollution and airway symptoms and/or damage both in mice and humans.
Collapse
|
11
|
Peng J, Yi B, Wang M, Tan J, Huang Z. CRISPR/Cas9-Mediated Whole Genomic Wide Knockout Screening Identifies Specific Genes Associated With PM 2.5-Induced Mineral Absorption in Liver Toxicity. Front Bioeng Biotechnol 2021; 9:669434. [PMID: 34307318 PMCID: PMC8293916 DOI: 10.3389/fbioe.2021.669434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
PM2.5, also known as fine particles, refers to particulate matter with a dynamic diameter of ≦2.5 μm in air pollutants, that carries metals (Zn, Co, Cd) which can pass through the alveolar epithelium and enter the circulatory system and tissues. PM2.5 can cause serious health problems, such as non-alcoholic fatty liver and hepatocellular carcinoma, although the underlying mechanisms of its toxic effect are poorly understood. Here, we exposed L02 cells to PM2.5 and performed a pooled genome−wide clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) to assess loss of function and identify new potential PM2.5targets. Enrichr and KEGG pathway analyses were performed to identify candidate genes associated with PM2.5 toxicity. Results revealed that four key genes, namely ATPase Na+/K+ transporting subunit alpha 2 (ATP1A2), metallothionein 1M (MT1M), solute carrier family 6 members 19 (SLC6A19) and transient receptor potential cation channel subfamily V member 6 (TRPV6) were associated with PM2.5 toxicity, mainly in regulating the mineral absorption pathway. Downregulating these genes increased cell viability and attenuated apoptosis in cells exposed to PM2.5. Conversely, overexpressing TRPV6 exacerbated cell apoptosis caused by PM2.5, while a reactive oxygen species (ROS) inhibitor N-acetyl-l-cysteine (NAC) alleviated PM2.5-induced apoptosis. In conclusion, ATP1A2, MT1M, SLC6A19 and TRPV6 may be contributing to absorption of metals in PM2.5 thereby inducing apoptosis mediated by ROS. Therefore, they hold potential as therapeutic targets for PM2.5-related diseases.
Collapse
Affiliation(s)
- Jinfu Peng
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mengyao Wang
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Center for Medical Genetics, Life Science School, Central South University, Changsha, China
| | - Zhijun Huang
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|