1
|
Kubat GB, Ulger O, Atalay O, Fatsa T, Turkel I, Ozerklig B, Celik E, Ozenc E, Simsek G, Tuncer M. The effects of exercise and mitochondrial transplantation alone or in combination against Doxorubicin-induced skeletal muscle atrophy. J Muscle Res Cell Motil 2024; 45:233-251. [PMID: 38822935 DOI: 10.1007/s10974-024-09676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Doxorubicin (DOX) is a chemotherapy drug used to treat various types of cancer, but it is associated with significant side effects such as skeletal muscle atrophy. Exercise has been found to prevent skeletal muscle atrophy through the modulation of mitochondrial pathways. Mitochondrial transplantation (MT) may mitigate toxicity, neurological disorders, kidney and liver injury, and skeletal muscle atrophy. The objective of this study was to evaluate the effects of MT, exercise, and MT with exercise on DOX-induced skeletal muscle atrophy. Male Sprague Dawley rats were randomly assigned to the following groups: control, DOX, MT with DOX, exercise with DOX, and exercise with MT and DOX. A 10-day treadmill running exercise and MT (6.5 µg/100 µL) to tibialis anterior (TA) muscle were administered prior to a single injection of DOX (20 mg/kg). Our data showed that exercise and MT with exercise led to an increase in cross-sectional area of the TA muscle. Exercise, MT and MT with exercise reduced inflammation and maintained mitochondrial enzyme activity. Additionally, exercise and MT have been shown to regulate mitochondrial fusion/fission. Our findings revealed that exercise and MT with exercise prevented oxidative damage. Furthermore, MT and MT with exercise decreased apoptosis and MT with exercise triggered mitochondrial biogenesis. These findings demonstrate the importance of exercise in the prevention of skeletal muscle atrophy and emphasize the significant benefits of MT with exercise. To the best of our knowledge, this is the first study to demonstrate the therapeutic effects of MT with exercise in DOX-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey.
- Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey.
| | - Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
- Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ozbeyen Atalay
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Tugba Fatsa
- Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Ertugrul Celik
- Department of Pathology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Emrah Ozenc
- Department of Pathology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Gulcin Simsek
- Department of Pathology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Grima-Terrén M, Campanario S, Ramírez-Pardo I, Cisneros A, Hong X, Perdiguero E, Serrano AL, Isern J, Muñoz-Cánoves P. Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets. Mol Aspects Med 2024; 100:101319. [PMID: 39312874 DOI: 10.1016/j.mam.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.
Collapse
Affiliation(s)
- Mercedes Grima-Terrén
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Silvia Campanario
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Ignacio Ramírez-Pardo
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Andrés Cisneros
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Xiaotong Hong
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | | | - Antonio L Serrano
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Pura Muñoz-Cánoves
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| |
Collapse
|
3
|
Jackson MJ. Reactive oxygen species in age-related musculoskeletal decline: implications for nutritional intervention. Proc Nutr Soc 2024:1-9. [PMID: 39512110 DOI: 10.1017/s0029665124004877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Musculoskeletal disorders and age-related musculoskeletal decline are major contributors to the burden of ill health seen in older subjects. Despite this increased burden, these chronic disorders of old age receive a relatively small proportion of national research funds. Much has been learned about fundamental processes involved in ageing from basic science research and this is leading to identification of key pathways that mediate ageing which may help the search for interventions to reduce age-related musculoskeletal decline. This short review will focus on the role of reactive oxygen species in age-related skeletal muscle decline and on the implications of this work for potential nutritional interventions in sarcopenia. The key physiological role of reactive oxygen species is now known to be in mediating redox signalling in muscle and other tissues and ageing leads to disruption of such pathways. In muscle, this is reflected in an age-related attenuation of specific adaptations and responses to contractile activity that impacts the ability of skeletal muscle from ageing individuals to respond to exercise. These pathways provides potential targets for identification of logical interventions that may help maintain muscle mass and function during ageing.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Nevoit G, Jarusevicius G, Potyazhenko M, Mintser O, Bumblyte IA, Vainoras A. Mitochondrial Dysfunction and Risk Factors for Noncommunicable Diseases: From Basic Concepts to Future Prospective. Diseases 2024; 12:277. [PMID: 39589951 PMCID: PMC11592525 DOI: 10.3390/diseases12110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Noncommunicable diseases (NCDs) are a very important medical problem. The key role of mitochondrial dysfunction (MD) in the occurrence and progression of NCDs has been proven. However, the etiology and pathogenesis of MD itself in many NCDs has not yet been clarified, which makes it one of the most serious medical problems in the modern world, according to many scientists. METHODS An extensive research in the literature was implemented in order to elucidate the role of MD and NCDs' risk factors in the pathogenesis of NCDs. RESULTS The authors propose to take a broader look at the problem of the pathogenesis of NCDs. It is important to understand exactly how NCD risk factors lead to MD. The review is structured in such a way as to answer this question. Based on a systematic analysis of scientific data, a theoretical concept of modern views on the occurrence of MD under the influence of risk factors for the occurrence of NCDs is presented. This was done in order to update MD issues in clinical medicine. MD and NCDs progress throughout a patient's life. Based on this, the review raised the question of the existence of an NCDs continuum. CONCLUSIONS MD is a universal mechanism that causes organ dysfunction and comorbidity of NCDs. Prevention of MD involves diagnosing and eliminating the factors that cause it. Mitochondria are an important therapeutic target.
Collapse
Affiliation(s)
- Ganna Nevoit
- Laboratory of Population Studies, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Gediminas Jarusevicius
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Maksim Potyazhenko
- Department of Internal Medicine and Emergency Medicine, Poltava State Medical University, 36011 Poltava, Ukraine;
| | - Ozar Mintser
- Department of Fundamental Disciplines and Informatics, Shupyk National Healthcare University of Ukraine, 04112 Kyiv, Ukraine;
| | - Inga Arune Bumblyte
- Department of Nephrology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Alfonsas Vainoras
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| |
Collapse
|
5
|
Rahman FA, Baechler BL, Quadrilatero J. Key considerations for investigating and interpreting autophagy in skeletal muscle. Autophagy 2024; 20:2121-2132. [PMID: 39007805 PMCID: PMC11423691 DOI: 10.1080/15548627.2024.2373676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Skeletal muscle plays a crucial role in generating force to facilitate movement. Skeletal muscle is a heterogenous tissue composed of diverse fibers with distinct contractile and metabolic profiles. The intricate classification of skeletal muscle fibers exists on a continuum ranging from type I (slow-twitch, oxidative) to type II (fast-twitch, glycolytic). The heterogenous distribution and characteristics of fibers within and between skeletal muscles profoundly influences cellular signaling; however, this has not been broadly discussed as it relates to macroautophagy/autophagy. The growing interest in skeletal muscle autophagy research underscores the necessity of comprehending the interplay between autophagic responses among skeletal muscles and fibers with different contractile properties, metabolic profiles, and other related signaling processes. We recommend approaching the interpretation of autophagy findings with careful consideration for two key reasons: 1) the distinct behaviors and responses of different skeletal muscles or fibers to various perturbations, and 2) the potential impact of alterations in skeletal muscle fiber type or metabolic profile on observed autophagic outcomes. This review provides an overview of the autophagic profile and response in skeletal muscles/fibers of different types and metabolic profiles. Further, this review discusses autophagic findings in various conditions and diseases that may differentially affect skeletal muscle. Finally, we provide key points of consideration to better enable researchers to fine-tune the design and interpretation of skeletal muscle autophagy experiments.Abbreviation: AKT1: AKT serine/threonine kinase 1; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATG4: autophagy related 4 cysteine peptidase; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; CKD: chronic kidney disease; COPD: chronic obstructive pulmonary disease; CS: citrate synthase; DIA: diaphragm; EDL: extensor digitorum longus; FOXO3/FOXO3A: forkhead box O3; GAS; gastrocnemius; GP: gastrocnemius-plantaris complex; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MYH: myosin heavy chain; PINK1: PTEN induced kinase 1; PLANT: plantaris; PRKN: parkin RBR E3 ubiquitin protein ligase; QUAD: quadriceps; RA: rectus abdominis; RG: red gastrocnemius; RQ: red quadriceps; SOL: soleus; SQSTM1: sequestosome 1; TA: tibialis anterior; WG: white gastrocnemius; WQ: white quadriceps; WVL: white vastus lateralis; VL: vastus lateralis; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Fasih A. Rahman
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Brittany L. Baechler
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Dobson GP, Letson HL, Morris JL. Revolution in sepsis: a symptoms-based to a systems-based approach? J Biomed Sci 2024; 31:57. [PMID: 38811967 PMCID: PMC11138085 DOI: 10.1186/s12929-024-01043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Severe infection and sepsis are medical emergencies. High morbidity and mortality are linked to CNS dysfunction, excessive inflammation, immune compromise, coagulopathy and multiple organ dysfunction. Males appear to have a higher risk of mortality than females. Currently, there are few or no effective drug therapies to protect the brain, maintain the blood brain barrier, resolve excessive inflammation and reduce secondary injury in other vital organs. We propose a major reason for lack of progress is a consequence of the treat-as-you-go, single-nodal target approach, rather than a more integrated, systems-based approach. A new revolution is required to better understand how the body responds to an infection, identify new markers to detect its progression and discover new system-acting drugs to treat it. In this review, we present a brief history of sepsis followed by its pathophysiology from a systems' perspective and future opportunities. We argue that targeting the body's early immune-driven CNS-response may improve patient outcomes. If the barrage of PAMPs and DAMPs can be reduced early, we propose the multiple CNS-organ circuits (or axes) will be preserved and secondary injury will be reduced. We have been developing a systems-based, small-volume, fluid therapy comprising adenosine, lidocaine and magnesium (ALM) to treat sepsis and endotoxemia. Our early studies indicate that ALM therapy shifts the CNS from sympathetic to parasympathetic dominance, maintains cardiovascular-endothelial glycocalyx coupling, reduces inflammation, corrects coagulopathy, and maintains tissue O2 supply. Future research will investigate the potential translation to humans.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia.
| | - Hayley L Letson
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia
| | - Jodie L Morris
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia
| |
Collapse
|
7
|
Nasb M, Li F, Dayoub L, Wu T, Wei M, Chen N. Bridging the gap: Integrating exercise mimicry into chronic disease management through suppressing chronic inflammation. J Adv Res 2024:S2090-1232(24)00176-0. [PMID: 38704088 DOI: 10.1016/j.jare.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/25/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Chronic inflammation is a common hallmark of many chronic diseases. Although exercise holds paramount importance in preventing and managing chronic diseases, adherence to exercise programs can be challenging for some patients. Consequently, there is a pressing need to explore alternative strategies to emulate the anti-inflammatory effects of exercise for chronic diseases. AIM OF REVIEW This review explores the emerging role of green tea bioactive components as potential mitigators of chronic inflammation, offering insights into their capacity to mimic the beneficial effects of exercise. We propose that bioactive components in green tea are promising agents for suppressing chronic inflammation, suggesting their unique capability to replicate the health benefits of exercise. KEY SCIENTIFIC CONCEPTS OF REVIEW This review focuses on several key concepts, including chronic inflammation and its role in chronic diseases, the anti-inflammatory effects of regular exercise, and bioactive components in green tea responsible for its health benefits. It elaborates on scientific evidence supporting the anti-inflammatory properties of green tea bioactive components, such as epigallocatechin gallate (EGCG), and theorizes how these bioactive components might replicate the effects of exercise at a molecular level. Through a comprehensive analysis of current research, this review proposes a novel perspective on the application of green tea as a potential intervention strategy to suppress chronic inflammation, thereby extending the benefits akin to those achieved through exercise.
Collapse
Affiliation(s)
- Mohammad Nasb
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Fengxing Li
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Lamis Dayoub
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Minhui Wei
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
8
|
Lei T, Rui Y, Xiaoshuang Z, Jinglan Z, Jihong Z. Mitochondria transcription and cancer. Cell Death Discov 2024; 10:168. [PMID: 38589371 PMCID: PMC11001877 DOI: 10.1038/s41420-024-01926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Mitochondria are major organelles involved in several processes related to energy supply, metabolism, and cell proliferation. The mitochondria function is transcriptionally regulated by mitochondria DNA (mtDNA), which encodes the key proteins in the electron transport chain that is indispensable for oxidative phosphorylation (OXPHOS). Mitochondrial transcriptional abnormalities are closely related to a variety of human diseases, such as cardiovascular diseases, and diabetes. The mitochondria transcription is regulated by the mtDNA, mitochondrial RNA polymerase (POLRMT), two transcription factors (TFAM and TF2BM), one transcription elongation (TEFM), and one known transcription termination factor (mTERFs). Dysregulation of these factors directly leads to altered expression of mtDNA in tumor cells, resulting in cellular metabolic reprogramming and mitochondrial dysfunction. This dysregulation plays a role in modulating tumor progression. Therefore, understanding the role of mitochondrial transcription in cancer can have implications for cancer diagnosis, prognosis, and treatment. Targeting mitochondrial transcription or related pathways may provide potential therapeutic strategies for cancer treatment. Additionally, assessing mitochondrial transcriptional profiles or biomarkers in cancer cells or patient samples may offer diagnostic or prognostic information.
Collapse
Affiliation(s)
- Tang Lei
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yu Rui
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhou Xiaoshuang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhang Jinglan
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhang Jihong
- Medical School, Kunming University of Science and Technology, Kunming, China.
- Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, China.
| |
Collapse
|
9
|
Kramer PA, Coen PM, Cawthon PM, Distefano G, Cummings SR, Goodpaster BH, Hepple RT, Kritchevsky SB, Shankland EG, Marcinek DJ, Toledo FGS, Duchowny KA, Ramos SV, Harrison S, Newman AB, Molina AJA. Skeletal Muscle Energetics Explain the Sex Disparity in Mobility Impairment in the Study of Muscle, Mobility and Aging. J Gerontol A Biol Sci Med Sci 2024; 79:glad283. [PMID: 38150179 PMCID: PMC10960628 DOI: 10.1093/gerona/glad283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 12/28/2023] Open
Abstract
The age-related decline in muscle mitochondrial energetics contributes to the loss of mobility in older adults. Women experience a higher prevalence of mobility impairment compared to men, but it is unknown whether sex-specific differences in muscle energetics underlie this disparity. In the Study of Muscle, Mobility and Aging (SOMMA), muscle energetics were characterized using in vivo phosphorus-31 magnetic resonance spectroscopy and high-resolution respirometry of vastus lateralis biopsies in 773 participants (56.4% women, age 70-94 years). A Short Physical Performance Battery (SPPB) score ≤8 was used to define lower-extremity mobility impairment. Muscle mitochondrial energetics were lower in women compared to men (eg, Maximal Complex I&II OXPHOS: Women = 55.06 ± 15.95; Men = 65.80 ± 19.74; p < .001) and in individuals with mobility impairment compared to those without (eg, Maximal Complex I&II OXPHOS in women: SPPB ≥ 9 = 56.59 ± 16.22; SPPB ≤ 8 = 47.37 ± 11.85; p < .001). Muscle energetics were negatively associated with age only in men (eg, Maximal ETS capacity: R = -0.15, p = .02; age/sex interaction, p = .04), resulting in muscle energetics measures that were significantly lower in women than men in the 70-79 age group but not the 80+ age group. Similarly, the odds of mobility impairment were greater in women than men only in the 70-79 age group (70-79 age group, odds ratio [OR]age-adjusted = 1.78, 95% confidence interval [CI] = 1.03, 3.08, p = .038; 80+ age group, ORage-adjusted = 1.05, 95% CI = 0.52, 2.15, p = .89). Accounting for muscle energetics attenuated up to 75% of the greater odds of mobility impairment in women. Women had lower muscle mitochondrial energetics compared to men, which largely explain their greater odds of lower-extremity mobility impairment.
Collapse
Affiliation(s)
- Philip A Kramer
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Paul M Coen
- AdventHealth, Translational Research Institute, Orlando, Florida, USA
| | - Peggy M Cawthon
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | | | - Steven R Cummings
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Bret H Goodpaster
- AdventHealth, Translational Research Institute, Orlando, Florida, USA
| | - Russell T Hepple
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Stephen B Kritchevsky
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Eric G Shankland
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Frederico G S Toledo
- Department of Medicine-Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kate A Duchowny
- Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Sofhia V Ramos
- AdventHealth, Translational Research Institute, Orlando, Florida, USA
| | - Stephanie Harrison
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony J A Molina
- Department of Medicine-Division of Geriatrics, Gerontology, and Palliative Care, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
10
|
Ansari MM, Ghosh M, Lee DS, Son YO. Senolytic therapeutics: An emerging treatment modality for osteoarthritis. Ageing Res Rev 2024; 96:102275. [PMID: 38494091 DOI: 10.1016/j.arr.2024.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Osteoarthritis (OA), a chronic joint disease affecting millions of people aged over 65 years, is the main musculoskeletal cause of diminished joint mobility in the elderly. It is characterized by lingering pain and increasing deterioration of articular cartilage. Aging and accumulation of senescent cells (SCs) in the joints are frequently associated with OA. Apoptosis resistance; irreversible cell cycle arrest; increased p16INK4a expression, secretion of senescence-associated secretory phenotype factors, senescence-associated β-galactosidase levels, secretion of extracellular vesicles, and levels of reactive oxygen and reactive nitrogen species; and mitochondrial dysregulation are some common changes in cellular senescence in joint tissues. Development of OA correlates with an increase in the density of SCs in joint tissues. Senescence-associated secretory phenotype has been linked to OA and cartilage breakdown. Senolytics and therapeutic pharmaceuticals are being focused upon for OA management. SCs can be selectively eliminated or killed by senolytics to halt the pathogenesis and progression of OA. Comprehensive understanding of how aging affects joint dysfunction will benefit OA patients. Here, we discuss age-related mechanisms associated with OA pathogenesis and senolytics as an emerging modality in the management of age-related SCs and pathogenesis of OA in preclinical and clinical studies.
Collapse
Affiliation(s)
- Md Meraj Ansari
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea; Department of Biotechnology, School of Bio, Chemical and Processing Engineering (SBCE), Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| | - Dong-Sun Lee
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju 63243, Republic of Korea.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
11
|
Affourtit C, Carré JE. Mitochondrial involvement in sarcopenia. Acta Physiol (Oxf) 2024; 240:e14107. [PMID: 38304924 DOI: 10.1111/apha.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Sarcopenia lowers the quality-of-life for millions of people across the world, as accelerated loss of skeletal muscle mass and function contributes to both age- and disease-related frailty. Physical activity remains the only proven therapy for sarcopenia to date, but alternatives are much sought after to manage this progressive muscle disorder in individuals who are unable to exercise. Mitochondria have been widely implicated in the etiology of sarcopenia and are increasingly suggested as attractive therapeutic targets to help restore the perturbed balance between protein synthesis and breakdown that underpins skeletal muscle atrophy. Reviewing current literature, we note that mitochondrial bioenergetic changes in sarcopenia are generally interpreted as intrinsic dysfunction that renders muscle cells incapable of making sufficient ATP to fuel protein synthesis. Based on the reported mitochondrial effects of therapeutic interventions, however, we argue that the observed bioenergetic changes may instead reflect an adaptation to pathologically decreased energy expenditure in sarcopenic muscle. Discrimination between these mechanistic possibilities will be crucial for improving the management of sarcopenia.
Collapse
Affiliation(s)
| | - Jane E Carré
- School of Biomedical Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
12
|
Zampieri S, Bersch I, Smeriglio P, Barbieri E, Boncompagni S, Maccarone MC, Carraro U. Program with last minute abstracts of the Padua Days on Muscle and Mobility Medicine, 27 February - 2 March, 2024 (2024Pdm3). Eur J Transl Myol 2024; 34:12346. [PMID: 38305708 PMCID: PMC11017178 DOI: 10.4081/ejtm.2024.12346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024] Open
Abstract
During the 2023 Padua Days on Muscle and Mobility Medicine the 2024 meeting was scheduled from 28 February to 2 March 2024 (2024Pdm3). During autumn 2023 the program was expanded with Scientific Sessions which will take place over five days (in 2024 this includes February 29), starting from the afternoon of 27 February 2024 in the Conference Rooms of the Hotel Petrarca, Thermae of Euganean Hills (Padua), Italy. As per consolidated tradition, the second day will take place in Padua, for the occasion in the Sala San Luca of the Monastery of Santa Giustina in Prato della Valle, Padua, Italy. Confirming the attractiveness of the Padua Days on Muscle and Mobility Medicine, over 100 titles were accepted until 15 December 2023 (many more than expected), forcing the organization of parallel sessions on both 1 and 2 March 2024. The five days will include lectures and oral presentations of scientists and clinicians from Argentina, Austria, Belgium, Brazil, Bulgaria, Canada, Denmark, Egypt, France, Germany, Iceland, Ireland, Italy, Romania, Russia, Slovenia, Switzerland, UK and USA. Only Australia, China, India and Japan are missing from this edition. But we are confident that authors from those countries who publish articles in the PAGEpress: European Journal of Translational Myology (EJTM: 2022 ESCI Clarivate's Impact Factor: 2.2; SCOPUS Cite Score: 3.2) will decide to join us in the coming years. Together with the program established by 31 January 2024, the abstracts will circulate during the meeting only in the electronic version of the EJTM Issue 34 (1) 2024. See you soon in person at the Hotel Petrarca in Montegrotto Terme, Padua, for the inauguration scheduled the afternoon of 27 February 2024 or on-line for free via Zoom. Send us your email address if you are not traditional participants listed in Pdm3 and EJTM address books.
Collapse
Affiliation(s)
- Sandra Zampieri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy; Department of Biomedical Sciences, University of Padova, Padua, Italy; Interdepartmental Research Centre of Myology, University of Padova, Padua, Italy; Armando Carraro & Carmela Mioni-Carraro Foundation for Translational Myology, Padua.
| | - Ines Bersch
- Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland; International FES Centre®, Swiss Paraplegic Centre Nottwil, Nottwil.
| | - Piera Smeriglio
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris.
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU).
| | - Simona Boncompagni
- Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti.
| | | | - Ugo Carraro
- Department of Biomedical Sciences, University of Padova, Padua, Italy; Interdepartmental Research Centre of Myology, University of Padova, Padua, Italy; Armando Carraro & Carmela Mioni-Carraro Foundation for Translational Myology, Padua.
| |
Collapse
|
13
|
Slavin MB, Khemraj P, Hood DA. Exercise, mitochondrial dysfunction and inflammasomes in skeletal muscle. Biomed J 2024; 47:100636. [PMID: 37499756 PMCID: PMC10828562 DOI: 10.1016/j.bj.2023.100636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
In the broad field of inflammation, skeletal muscle is a tissue that is understudied. Yet it represents about 40% of body mass in non-obese individuals and is therefore of fundamental importance for whole body metabolism and health. This article provides an overview of the unique features of skeletal muscle tissue, as well as its adaptability to exercise. This ability to adapt, particularly with respect to mitochondrial content and function, confers a level of metabolic "protection" against energy consuming events, and adds a measure of quality control that determines the phenotypic response to stress. Thus, we describe the particular role of mitochondria in promoting inflammasome activation in skeletal muscle, contributing to muscle wasting and dysfunction in aging, disuse and metabolic disease. We will then discuss how exercise training can be anti-inflammatory, mitigating the chronic inflammation that is observed in these conditions, potentially through improvements in mitochondrial quality and function.
Collapse
Affiliation(s)
- Mikhaela B Slavin
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, M3J 1P3, Canada
| | - Priyanka Khemraj
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, M3J 1P3, Canada
| | - David A Hood
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
14
|
Eggelbusch M, Charlton BT, Bosutti A, Ganse B, Giakoumaki I, Grootemaat AE, Hendrickse PW, Jaspers Y, Kemp S, Kerkhoff TJ, Noort W, van Weeghel M, van der Wel NN, Wesseling JR, Frings-Meuthen P, Rittweger J, Mulder ER, Jaspers RT, Degens H, Wüst RCI. The impact of bed rest on human skeletal muscle metabolism. Cell Rep Med 2024; 5:101372. [PMID: 38232697 PMCID: PMC10829795 DOI: 10.1016/j.xcrm.2023.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
Insulin sensitivity and metabolic flexibility decrease in response to bed rest, but the temporal and causal adaptations in human skeletal muscle metabolism are not fully defined. Here, we use an integrative approach to assess human skeletal muscle metabolism during bed rest and provide a multi-system analysis of how skeletal muscle and the circulatory system adapt to short- and long-term bed rest (German Clinical Trials: DRKS00015677). We uncover that intracellular glycogen accumulation after short-term bed rest accompanies a rapid reduction in systemic insulin sensitivity and less GLUT4 localization at the muscle cell membrane, preventing further intracellular glycogen deposition after long-term bed rest. We provide evidence of a temporal link between the accumulation of intracellular triglycerides, lipotoxic ceramides, and sphingomyelins and an altered skeletal muscle mitochondrial structure and function after long-term bed rest. An intracellular nutrient overload therefore represents a crucial determinant for rapid skeletal muscle insulin insensitivity and mitochondrial alterations after prolonged bed rest.
Collapse
Affiliation(s)
- Moritz Eggelbusch
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands; Department of Nutrition and Dietetics, Amsterdam University Medical Centers, Amsterdam Movement Sciences, Amsterdam, the Netherlands; Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, Amsterdam, the Netherlands
| | - Braeden T Charlton
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | | | - Bergita Ganse
- Research Centre for Musculoskeletal Science and Sports Medicine, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; Clinics and Institutes of Surgery, Saarland University, Homburg, Germany
| | - Ifigenia Giakoumaki
- Research Centre for Musculoskeletal Science and Sports Medicine, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Anita E Grootemaat
- Electron Microscopy Center Amsterdam, Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Paul W Hendrickse
- Research Centre for Musculoskeletal Science and Sports Medicine, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Yorrick Jaspers
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Tom J Kerkhoff
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Wendy Noort
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Nicole N van der Wel
- Electron Microscopy Center Amsterdam, Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Julia R Wesseling
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Petra Frings-Meuthen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Department of Pediatrics and Adolescent Medicine, University Hospital Cologne, Cologne, Germany
| | - Edwin R Mulder
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Richard T Jaspers
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Hans Degens
- Research Centre for Musculoskeletal Science and Sports Medicine, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; Lithuanian Sports University, Kaunas, Lithuania
| | - Rob C I Wüst
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Sakamoto K, Kurokawa J. [Pathophysiology of skeletal muscle during sepsis]. Nihon Yakurigaku Zasshi 2024; 159:112-117. [PMID: 38432919 DOI: 10.1254/fpj.23040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
While sepsis mortality is reducing in developed countries due to advances in intensive care medicine, morbidity is increasing due to aging and obesity. ICU-acquired weakness (ICU-AW) is a respiratory and limb muscle weakness experienced by many sepsis survivors and is present in 50-75% of sepsis patients. ICU-AW can persist for several years, making reintegration of sepsis survivors difficult and leading to a secondary decrease in long-term survival. Exposure of septic patients to multiple muscle-damaging factors during ICU admission, including hyperglycemia, immobility, mechanical ventilation, administration of muscle relaxants, and administration of steroidal anti-inflammatory drugs, may compound the hyper cytokine, hyper nitric oxide, and hyper oxidative conditions, leading to the development of ICU-AW. However, the pathogenesis of ICU-AW remains unclear, and the pathophysiology of ICU-AW awaits further elucidation to develop therapeutic strategies. Recent ICU-AW studies have also revealed that skeletal muscle itself is a key organ in the inflammatory response and metabolic abnormalities in sepsis. In this article, we review the pathophysiology of skeletal muscle in sepsis and international trends in the development of therapeutic agents based on our research results.
Collapse
Affiliation(s)
- Kazuho Sakamoto
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Junko Kurokawa
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
16
|
Zhang X, Zhao Y, Yan W. The role of extracellular vesicles in skeletal muscle wasting. J Cachexia Sarcopenia Muscle 2023; 14:2462-2472. [PMID: 37867162 PMCID: PMC10751420 DOI: 10.1002/jcsm.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/01/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Skeletal muscle wasting is a complicated metabolic syndrome accompanied by multiple diseases ranging from cancer to metabolic disorders and infectious conditions. The loss of muscle mass significantly impairs muscle function, resulting in poor quality of life and high mortality of associated diseases. The fundamental cellular and molecular mechanisms inducing muscle wasting have been well established, and those related pathways can be activated by a variety of extracellular signals, including inflammatory cytokines and catabolic stimuli. As an emerging messenger of cell-to-cell communications, extracellular vesicles (EVs) also get involved in the progression of muscle wasting by transferring bioactive cargoes including various proteins and non-coding RNAs to skeletal muscle. Like a double-edged sword, EVs play either a pro-wasting or anti-wasting role in the progression of muscle wasting, highly dependent on their parental cells as well as the specific type of cargo they encapsulate. This review aims to illustrate the current knowledge about the biological function of EVs cargoes in skeletal muscle wasting. Additionally, the potential therapeutic implications of EVs in the diagnosis and treatment of skeletal muscle wasting are also discussed. Simultaneously, several outstanding questions are included to shed light on future research.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| |
Collapse
|
17
|
Kramer PA, Coen PM, Cawthon PM, Distefano G, Cummings SR, Goodpaster BH, Hepple RT, Kritchevsky SB, Shankland EG, Marcinek DJ, Toledo FGS, Duchowny KA, Ramos SV, Harrison S, Newman AB, Molina AJA. Skeletal muscle energetics explain the sex disparity in mobility impairment in the Study of Muscle, Mobility and Aging (SOMMA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.08.23298271. [PMID: 37987007 PMCID: PMC10659490 DOI: 10.1101/2023.11.08.23298271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The age-related decline in muscle mitochondrial energetics contributes to the loss of mobility in older adults. Women experience a higher prevalence of mobility impairment compared to men, but it is unknown whether sex-specific differences in muscle energetics underlie this disparity. In the Study of Muscle, Mobility and Aging (SOMMA), muscle energetics were characterized using in vivo phosphorus-31 magnetic resonance spectroscopy and high-resolution respirometry of vastus lateralis biopsies in 773 participants (56.4% women, age 70-94 years). A Short Physical Performance Battery score ≤ 8 was used to define lower-extremity mobility impairment. Muscle mitochondrial energetics were lower in women compared to men (e.g. Maximal Complex I&II OXPHOS: Women=55.06 +/- 15.95; Men=65.80 +/- 19.74; p<0.001) and in individuals with mobility impairment compared to those without (e.g., Maximal Complex I&II OXPHOS in women: SPPB≥9=56.59 +/- 16.22; SPPB≤8=47.37 +/- 11.85; p<0.001). Muscle energetics were negatively associated with age only in men (e.g., Maximal ETS capacity: R=-0.15, p=0.02; age/sex interaction, p=0.04), resulting in muscle energetics measures that were significantly lower in women than men in the 70-79 age group but not the 80+ age group. Similarly, the odds of mobility impairment were greater in women than men only in the 70-79 age group (70-79 age group, OR age-adjusted =1.78, 95% CI=1.03, 3.08, p=0.038; 80+ age group, OR age-adjusted =1.05, 95% CI=0.52, 2.15, p=0.89). Accounting for muscle energetics attenuated up to 75% of the greater odds of mobility impairment in women. Women had lower muscle mitochondrial energetics compared to men, which largely explain their greater odds of lower-extremity mobility impairment.
Collapse
|
18
|
Lee HJ, Choi HJ, Lee SA, Baek DH, Heo JB, Song GY, Lee W. Myogenesis Effects of RGX365 to Improve Skeletal Muscle Atrophy. Nutrients 2023; 15:4307. [PMID: 37836590 PMCID: PMC10574276 DOI: 10.3390/nu15194307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
Age-related skeletal muscle atrophy and weakness not only reduce the quality of life of those afflicted, but also worsen the prognosis of underlying diseases. We evaluated the effect of RGX365, a protopanaxatriol-type rare ginsenoside mixture, on improving skeletal muscle atrophy. We investigated the myogenic effect of RGX365 on mouse myoblast cells (C2C12) and dexamethasone (10 µM)-induced atrophy of differentiated C2C12. RGX365-treated myotube diameters and myosin heavy chain (MyHC) expression levels were analyzed using immunofluorescence. We evaluated the myogenic effects of RGX365 in aging sarcopenic mice. RGX365 increased myoblast differentiation and MyHC expression, and attenuated the muscle atrophy-inducing F-box (Atrogin-1) and muscle RING finger 1 (MuRF1) expression. Notably, one month of oral administration of RGX365 to 23-month-old sarcopenic mice improved muscle fiber size and the expression of skeletal muscle regeneration-associated molecules. In conclusion, rare ginsenosides, agonists of steroid receptors, can ameliorate skeletal muscle atrophy during long-term administration.
Collapse
Affiliation(s)
- Hye-Jin Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Hui-Ji Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.-J.C.); (D.H.B.); (J.B.H.)
| | - Sang-Ah Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Republic of Korea;
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, 66123 Saarbruecken, Germany
| | - Dong Hyuk Baek
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.-J.C.); (D.H.B.); (J.B.H.)
| | - Jong Beom Heo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.-J.C.); (D.H.B.); (J.B.H.)
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.-J.C.); (D.H.B.); (J.B.H.)
- AREZ Co., Ltd., Daejeon 34036, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
19
|
Kubat GB, Bouhamida E, Ulger O, Turkel I, Pedriali G, Ramaccini D, Ekinci O, Ozerklig B, Atalay O, Patergnani S, Nur Sahin B, Morciano G, Tuncer M, Tremoli E, Pinton P. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion 2023; 72:33-58. [PMID: 37451353 DOI: 10.1016/j.mito.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Skeletal muscle, which accounts for approximately 40% of total body weight, is one of the most dynamic and plastic tissues in the human body and plays a vital role in movement, posture and force production. More than just a component of the locomotor system, skeletal muscle functions as an endocrine organ capable of producing and secreting hundreds of bioactive molecules. Therefore, maintaining healthy skeletal muscles is crucial for supporting overall body health. Various pathological conditions, such as prolonged immobilization, cachexia, aging, drug-induced toxicity, and cardiovascular diseases (CVDs), can disrupt the balance between muscle protein synthesis and degradation, leading to skeletal muscle atrophy. Mitochondrial dysfunction is a major contributing mechanism to skeletal muscle atrophy, as it plays crucial roles in various biological processes, including energy production, metabolic flexibility, maintenance of redox homeostasis, and regulation of apoptosis. In this review, we critically examine recent knowledge regarding the causes of muscle atrophy (disuse, cachexia, aging, etc.) and its contribution to CVDs. Additionally, we highlight the mitochondrial signaling pathways involvement to skeletal muscle atrophy, such as the ubiquitin-proteasome system, autophagy and mitophagy, mitochondrial fission-fusion, and mitochondrial biogenesis. Furthermore, we discuss current strategies, including exercise, mitochondria-targeted antioxidants, in vivo transfection of PGC-1α, and the potential use of mitochondrial transplantation as a possible therapeutic approach.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey.
| | - Esmaa Bouhamida
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey
| | - Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Gaia Pedriali
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Daniela Ramaccini
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Ozgur Ekinci
- Department of Pathology, Gazi University, 06500 Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Ozbeyen Atalay
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Simone Patergnani
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Beyza Nur Sahin
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Giampaolo Morciano
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Elena Tremoli
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
20
|
Kim A, Park SM, Kim NS, Lee H. Ginsenoside Rc, an Active Component of Panax ginseng, Alleviates Oxidative Stress-Induced Muscle Atrophy via Improvement of Mitochondrial Biogenesis. Antioxidants (Basel) 2023; 12:1576. [PMID: 37627571 PMCID: PMC10451796 DOI: 10.3390/antiox12081576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Loss of skeletal muscle mass and function has detrimental effects on quality of life, morbidity, and mortality, and is particularly relevant in aging societies. The enhancement of mitochondrial function has shown promise in promoting muscle differentiation and function. Ginsenoside Rc (gRc), a major component of ginseng, has various pharmacological activities; however, its effect on muscle loss remains poorly explored. In this study, we examined the effects of gRc on the hydrogen peroxide (H2O2)-induced reduction of cell viability in C2C12 myoblasts and myotubes and H2O2-induced myotube degradation. In addition, we investigated the effects of gRc on the production of intracellular reactive oxygen species (ROS) and mitochondrial superoxide, ATP generation, and peroxisome proliferator-activated receptor-gamma co-activator 1α (PGC-1α) activity in myoblasts and myotubes under H2O2 treatment. Furthermore, to elucidate the mechanism of action of gRc, we conducted a transcriptome analysis of myotubes treated with or without gRc under H2O2 treatment. gRc effectively suppressed H2O2-induced cytotoxicity, intracellular ROS, and mitochondrial superoxide production, restored PGC-1α promoter activity, and increased ATP synthesis. Moreover, gRc significantly affected the expression levels of genes involved in maintaining mitochondrial mass and biogenesis, while downregulating genes associated with muscle degradation in C2C12 myotubes under oxidative stress. We provide compelling evidence supporting the potential of gRc as a promising treatment for muscle loss and weakness. Further investigations of the pharmacological effects of gRc under various pathological conditions of muscle loss will contribute to the clinical development of gRc as a therapeutic intervention.
Collapse
Affiliation(s)
- Aeyung Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Sang-Min Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - No Soo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea;
| | - Haeseung Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
21
|
Wesolowski LT, Simons JL, Semanchik PL, Othman MA, Kim JH, Lawler JM, Kamal KY, White-Springer SH. The Impact of SRT2104 on Skeletal Muscle Mitochondrial Function, Redox Biology, and Loss of Muscle Mass in Hindlimb Unloaded Rats. Int J Mol Sci 2023; 24:11135. [PMID: 37446313 DOI: 10.3390/ijms241311135] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Mechanical unloading during microgravity causes skeletal muscle atrophy and impairs mitochondrial energetics. The elevated production of reactive oxygen species (ROS) by mitochondria and Nox2, coupled with impairment of stress protection (e.g., SIRT1, antioxidant enzymes), contribute to atrophy. We tested the hypothesis that the SIRT1 activator, SRT2104 would rescue unloading-induced mitochondrial dysfunction. Mitochondrial function in rat gastrocnemius and soleus muscles were evaluated under three conditions (10 days): ambulatory control (CON), hindlimb unloaded (HU), and hindlimb-unloaded-treated with SRT2104 (SIRT). Oxidative phosphorylation, electron transfer capacities, H2O2 production, and oxidative and antioxidant enzymes were quantified using high-resolution respirometry and colorimetry. In the gastrocnemius, (1) integrative (per mg tissue) proton LEAK was lesser in SIRT than in HU or CON; (2) intrinsic (relative to citrate synthase) maximal noncoupled electron transfer capacity (ECI+II) was lesser, while complex I-supported oxidative phosphorylation to ECI+II was greater in HU than CON; (3) the contribution of LEAK to ECI+II was greatest, but cytochrome c oxidase activity was lowest in HU. In both muscles, H2O2 production and concentration was greatest in SIRT, as was gastrocnemius superoxide dismutase activity. In the soleus, H2O2 concentration was greater in HU compared to CON. These results indicate that SRT2104 preserves mitochondrial function in unloaded skeletal muscle, suggesting its potential to support healthy muscle cells in microgravity by promoting necessary energy production in mitochondria.
Collapse
Affiliation(s)
- Lauren T Wesolowski
- Department of Animal Science, College of Agriculture and Life Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Jessica L Simons
- Department of Animal Science, College of Agriculture and Life Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Pier L Semanchik
- Department of Animal Science, College of Agriculture and Life Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Mariam A Othman
- Department of Kinesiology & Sport Management, School of Education and Human Development, Texas A&M University, College Station, TX 77843, USA
| | - Joo-Hyun Kim
- Department of Kinesiology & Sport Management, School of Education and Human Development, Texas A&M University, College Station, TX 77843, USA
| | - John M Lawler
- Department of Kinesiology & Sport Management, School of Education and Human Development, Texas A&M University, College Station, TX 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Khaled Y Kamal
- Department of Kinesiology & Sport Management, School of Education and Human Development, Texas A&M University, College Station, TX 77843, USA
| | - Sarah H White-Springer
- Department of Animal Science, College of Agriculture and Life Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
| |
Collapse
|
22
|
Picca A, Lozanoska-Ochser B, Calvani R, Coelho-Júnior HJ, Leewenburgh C, Marzetti E. Inflammatory, mitochondrial, and senescence-related markers: Underlying biological pathways of muscle aging and new therapeutic targets. Exp Gerontol 2023; 178:112204. [PMID: 37169101 DOI: 10.1016/j.exger.2023.112204] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
The maintenance of functional health is pivotal for achieving independent life in older age. The aged muscle is characterized by ultrastructural changes, including loss of type I and type II myofibers and a greater proportion of cytochrome c oxidase deficient and succinate dehydrogenase positive fibers. Both intrinsic (e.g., altered proteostasis, DNA damage, and mitochondrial dysfunction) and extrinsic factors (e.g., denervation, altered metabolic regulation, declines in satellite cells, and inflammation) contribute to muscle aging. Being a hub for several cellular activities, mitochondria are key to myocyte viability and mitochondrial dysfunction has been implicated in age-associated physical decline. The maintenance of functional organelles via mitochondrial quality control (MQC) processes is, therefore, crucial to skeletal myofiber viability and organismal health. The autophagy-lysosome pathway has emerged as a critical step of MQC in muscle by disposing organelles and proteins via their tagging for autophagosome incorporation and delivery to the lysosome for clearance. This pathway was found to be altered in muscle of physically inactive older adults. A relationship between this pathway and muscle tissue composition of the lower extremities as well as physical performance was also identified. Therefore, integrating muscle structure and myocyte quality control measures in the evaluation of muscle health may be a promising strategy for devising interventions fostering muscle health.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, Casamassima, 70100 Bari, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCSS, 00168 Rome, Italy
| | - Biliana Lozanoska-Ochser
- Department of Medicine and Surgery, LUM University, Casamassima, 70100 Bari, Italy; DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCSS, 00168 Rome, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCSS, 00168 Rome, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
23
|
Vardar Acar N, Özgül RK. The bridge between cell survival and cell death: reactive oxygen species-mediated cellular stress. EXCLI JOURNAL 2023; 22:520-555. [PMID: 37534225 PMCID: PMC10390897 DOI: 10.17179/excli2023-6221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 08/04/2023]
Abstract
As a requirement of aerobic metabolism, regulation of redox homeostasis is indispensable for the continuity of living homeostasis and life. Since the stability of the redox state is necessary for the maintenance of the biological functions of the cells, the balance between the pro-oxidants, especially ROS and the antioxidant capacity is kept in balance in the cells through antioxidant defense systems. The pleiotropic transcription factor, Nrf2, is the master regulator of the antioxidant defense system. Disruption of redox homeostasis leads to oxidative and reductive stress, bringing about multiple pathophysiological conditions. Oxidative stress characterized by high ROS levels causes oxidative damage to biomolecules and cell death, while reductive stress characterized by low ROS levels disrupt physiological cell functions. The fact that ROS, which were initially attributed as harmful products of aerobic metabolism, at the same time function as signal molecules at non-toxic levels and play a role in the adaptive response called mithormesis points out that ROS have a dose-dependent effect on cell fate determination. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Nese Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Riza Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
24
|
Abrigo J, Olguín H, Tacchi F, Orozco-Aguilar J, Valero-Breton M, Soto J, Castro-Sepúlveda M, Elorza AA, Simon F, Cabello-Verrugio C. Cholic and deoxycholic acids induce mitochondrial dysfunction, impaired biogenesis and autophagic flux in skeletal muscle cells. Biol Res 2023; 56:30. [PMID: 37291645 DOI: 10.1186/s40659-023-00436-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Skeletal muscle is sensitive to bile acids (BA) because it expresses the TGR5 receptor for BA. Cholic (CA) and deoxycholic (DCA) acids induce a sarcopenia-like phenotype through TGR5-dependent mechanisms. Besides, a mouse model of cholestasis-induced sarcopenia was characterised by increased levels of serum BA and muscle weakness, alterations that are dependent on TGR5 expression. Mitochondrial alterations, such as decreased mitochondrial potential and oxygen consumption rate (OCR), increased mitochondrial reactive oxygen species (mtROS) and unbalanced biogenesis and mitophagy, have not been studied in BA-induced sarcopenia. METHODS We evaluated the effects of DCA and CA on mitochondrial alterations in C2C12 myotubes and a mouse model of cholestasis-induced sarcopenia. We measured mitochondrial mass by TOM20 levels and mitochondrial DNA; ultrastructural alterations by transmission electronic microscopy; mitochondrial biogenesis by PGC-1α plasmid reporter activity and protein levels by western blot analysis; mitophagy by the co-localisation of the MitoTracker and LysoTracker fluorescent probes; mitochondrial potential by detecting the TMRE probe signal; protein levels of OXPHOS complexes and LC3B by western blot analysis; OCR by Seahorse measures; and mtROS by MitoSOX probe signals. RESULTS DCA and CA caused a reduction in mitochondrial mass and decreased mitochondrial biogenesis. Interestingly, DCA and CA increased LC3II/LC3I ratio and decreased autophagic flux concordant with raised mitophagosome-like structures. In addition, DCA and CA decreased mitochondrial potential and reduced protein levels in OXPHOS complexes I and II. The results also demonstrated that DCA and CA decreased basal, ATP-linked, FCCP-induced maximal respiration and spare OCR. DCA and CA also reduced the number of cristae. In addition, DCA and CA increased the mtROS. In mice with cholestasis-induced sarcopenia, TOM20, OXPHOS complexes I, II and III, and OCR were diminished. Interestingly, the OCR and OXPHOS complexes were correlated with muscle strength and bile acid levels. CONCLUSION Our results showed that DCA and CA decreased mitochondrial mass, possibly by reducing mitochondrial biogenesis, which affects mitochondrial function, thereby altering potential OCR and mtROS generation. Some mitochondrial alterations were also observed in a mouse model of cholestasis-induced sarcopenia characterised by increased levels of BA, such as DCA and CA.
Collapse
Affiliation(s)
- Johanna Abrigo
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Hugo Olguín
- Laboratory of Tissue Repair and Adult Stem Cells, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Franco Tacchi
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Josué Orozco-Aguilar
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
- Laboratorio de Ensayos Biológicos (LEBi), Universidad de Costa Rica, San José, Costa Rica
- Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
| | - Mayalen Valero-Breton
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Jorge Soto
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio Castro-Sepúlveda
- Exercise Physiology and Metabolism Laboratory, School of Kinesiology, Faculty of Medicine, Finis Terrae University, Santiago, Chile
| | - Alvaro A Elorza
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Institute of Biomedical Sciences, Faculty of Medicine, and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile.
- Laboratory of Integrative Physiopathology, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
25
|
Barone C, Qi X. Altered Metabolism in Motor Neuron Diseases: Mechanism and Potential Therapeutic Target. Cells 2023; 12:1536. [PMID: 37296656 PMCID: PMC10252517 DOI: 10.3390/cells12111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Motor Neuron Diseases (MND) are neurological disorders characterized by a loss of varying motor neurons resulting in decreased physical capabilities. Current research is focused on hindering disease progression by determining causes of motor neuron death. Metabolic malfunction has been proposed as a promising topic when targeting motor neuron loss. Alterations in metabolism have also been noted at the neuromuscular junction (NMJ) and skeletal muscle tissue, emphasizing the importance of a cohesive system. Finding metabolism changes consistent throughout both neurons and skeletal muscle tissue could pose as a target for therapeutic intervention. This review will focus on metabolic deficits reported in MNDs and propose potential therapeutic targets for future intervention.
Collapse
Affiliation(s)
| | - Xin Qi
- Department of Physiology and Biophysics, School of Medicine Case Western Reserve University, Cleveland, OH 44106-4970, USA;
| |
Collapse
|
26
|
Jung UJ. Sarcopenic Obesity: Involvement of Oxidative Stress and Beneficial Role of Antioxidant Flavonoids. Antioxidants (Basel) 2023; 12:antiox12051063. [PMID: 37237929 DOI: 10.3390/antiox12051063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenic obesity, which refers to concurrent sarcopenia and obesity, is characterized by decreased muscle mass, strength, and performance along with abnormally excessive fat mass. Sarcopenic obesity has received considerable attention as a major health threat in older people. However, it has recently become a health problem in the general population. Sarcopenic obesity is a major risk factor for metabolic syndrome and other complications such as osteoarthritis, osteoporosis, liver disease, lung disease, renal disease, mental disease and functional disability. The pathogenesis of sarcopenic obesity is multifactorial and complicated, and it is caused by insulin resistance, inflammation, hormonal changes, decreased physical activity, poor diet and aging. Oxidative stress is a core mechanism underlying sarcopenic obesity. Some evidence indicates a protective role of antioxidant flavonoids in sarcopenic obesity, although the precise mechanisms remain unclear. This review summarizes the general characteristics and pathophysiology of sarcopenic obesity and focuses on the role of oxidative stress in sarcopenic obesity. The potential benefits of flavonoids in sarcopenic obesity have also been discussed.
Collapse
Affiliation(s)
- Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| |
Collapse
|
27
|
Chen TCC, Kang HY, Tseng WC, Lin SC, Chan CW, Chen HL, Chou TY, Wang HH, Lau WY, Nosaka K. Muscle damage induced by maximal eccentric exercise of the elbow flexors after 3-week immobilization. Scand J Med Sci Sports 2023; 33:382-392. [PMID: 36427271 DOI: 10.1111/sms.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The present study investigated the effects of a 3-week immobilization (IM) on muscle damage induced by maximal eccentric exercise (MaxEC) to test the hypothesis that the IM would make muscles prone to muscle damage. Young healthy sedentary men were pseudo-randomly assigned to IM or control group (n = 12/group). Non-dominant arms of the IM group participants were immobilized at 90° elbow flexion by a cast for 21 days. All participants performed MaxEC consisting of five sets of six elbow flexor contractions by lowering a dumbbell set at 100% of pre-exercise maximal voluntary isometric contraction (MVC) strength of the non-dominant arm. This was performed at 2 days after the cast removal for the IM group. MVC torque, range of motion (ROM), muscle thickness (MT), muscle hardness, position sense (PS), and joint reaction angle (JRA) of the elbow flexors were measured at baseline, post-immobilization, and before, immediately after, and one to 5 days after MaxEC. The IM decreased MVC torque (-17 ± 2%), ROM (-2 ± 1%), MT (-7 ± 3%), and JRA (-12 ± 6%), and increased in muscle hardness (20 ± 6%) and PS (11 ± 2%) (p < 0.05). Changes in MVC (e.g., 2 days: -40 ± 5 vs. -30 ± 9%), ROM (2 days: -11 ± 2 vs. -9 ± 3%), muscle soreness (peak: 63 ± 22 vs. 48 ± 14 mm), plasma CK activity (peak: 7820 ± 4011 vs. 4980 ± 1363 IU/L), PS (maximal change: -23 ± 2 vs. -18 ± 3%), and JRA (maximal change: -37 ± 4 vs. -26 ± 3%) after MaxEC were greater (p < 0.05) for the IM than control group. These results supported the hypothesis and showed that the IM made the muscles more vulnerable to muscle damage induced by eccentric exercise.
Collapse
Affiliation(s)
- Trevor Chung-Ching Chen
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Hsing-Yu Kang
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Wei-Chin Tseng
- Department of Physical Education, University of Taipei, Taipei, Taiwan
| | - Shih-Che Lin
- Department of Physical Education, National Pingtung University, Pingtung, Taiwan
| | - Chuan-Wei Chan
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Hsin-Lian Chen
- Department of Physical Education, Health and Recreation, National Chiayi University, Chiayi, Taiwan
| | - Tai-Ying Chou
- Department of Athletic Performance, National Taiwan Normal University, Taipei, Taiwan
| | - Hung-Hao Wang
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Wing Yin Lau
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
28
|
Roy A, Narkar VA, Kumar A. Emerging role of TAK1 in the regulation of skeletal muscle mass. Bioessays 2023; 45:e2300003. [PMID: 36789559 PMCID: PMC10023406 DOI: 10.1002/bies.202300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/02/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Maintenance of skeletal muscle mass and strength throughout life is crucial for heathy living and longevity. Several signaling pathways have been implicated in the regulation of skeletal muscle mass in adults. TGF-β-activated kinase 1 (TAK1) is a key protein, which coordinates the activation of multiple signaling pathways. Recently, it was discovered that TAK1 is essential for the maintenance of skeletal muscle mass and myofiber hypertrophy following mechanical overload. Forced activation of TAK1 in skeletal muscle causes hypertrophy and attenuates denervation-induced muscle atrophy. TAK1-mediated signaling in skeletal muscle promotes protein synthesis, redox homeostasis, mitochondrial health, and integrity of neuromuscular junctions. In this article, we have reviewed the role and potential mechanisms through which TAK1 regulates skeletal muscle mass and growth. We have also proposed future areas of research that could be instrumental in exploring TAK1 as therapeutic target for improving muscle mass in various catabolic conditions and diseases.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| |
Collapse
|
29
|
Sopariwala DH, Rios AS, Pei G, Roy A, Tomaz da Silva M, Thi Thu Nguyen H, Saley A, Van Drunen R, Kralli A, Mahan K, Zhao Z, Kumar A, Narkar VA. Innately expressed estrogen-related receptors in the skeletal muscle are indispensable for exercise fitness. FASEB J 2023; 37:e22727. [PMID: 36583689 DOI: 10.1096/fj.202201518r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022]
Abstract
Transcriptional determinants in the skeletal muscle that govern exercise capacity, while poorly defined, could provide molecular insights into how exercise improves fitness. Here, we have elucidated the role of nuclear receptors, estrogen-related receptor alpha and gamma (ERRα/γ) in regulating myofibrillar composition, contractility, and exercise capacity in skeletal muscle. We used muscle-specific single or double (DKO) ERRα/γ knockout mice to investigate the effect of ERRα/γ deletion on muscle and exercise parameters. Individual knockout of ERRα/γ did not have a significant impact on the skeletal muscle. On the other hand, DKO mice exhibit pale muscles compared to wild-type (WT) littermates. RNA-seq analysis revealed a predominant decrease in expression of genes linked to mitochondrial and oxidative metabolism in DKO versus WT muscles. DKO muscles exhibit marked repression of oxidative enzymatic capacity, as well as mitochondrial number and size compared to WT muscles. Mitochondrial function is also impaired in single myofibers isolated from DKO versus WT muscles. In addition, mutant muscles exhibit reduced angiogenic gene expression and decreased capillarity. Consequently, DKO mice have a significantly reduced exercise capacity, further reflected in poor fatigue resistance of DKO mice in in vivo contraction assays. These results show that ERRα and ERRγ together are a critical link between muscle aerobic capacity and exercise tolerance. The ERRα/γ mutant mice could be valuable for understanding the long-term impact of impaired mitochondria and vascular supply on the pathogenesis of muscle-linked disorders.
Collapse
Affiliation(s)
- Danesh H Sopariwala
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Andrea S Rios
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Guangsheng Pei
- Center for Precision Medicine, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Anirban Roy
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Meiricris Tomaz da Silva
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Hao Thi Thu Nguyen
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Addison Saley
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA.,Department of Biosciences, Rice University, Houston, Texas, USA
| | - Rachel Van Drunen
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Anastasia Kralli
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristin Mahan
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, USA
| | - Zhongming Zhao
- Center for Precision Medicine, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, USA
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Vihang A Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences at UTHealth, Houston, Texas, USA
| |
Collapse
|
30
|
Picca A, Triolo M, Wohlgemuth SE, Martenson MS, Mankowski RT, Anton SD, Marzetti E, Leeuwenburgh C, Hood DA. Relationship between Mitochondrial Quality Control Markers, Lower Extremity Tissue Composition, and Physical Performance in Physically Inactive Older Adults. Cells 2023; 12:183. [PMID: 36611976 PMCID: PMC9818256 DOI: 10.3390/cells12010183] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Altered mitochondrial quality and function in muscle may be involved in age-related physical function decline. The role played by the autophagy-lysosome system, a major component of mitochondrial quality control (MQC), is incompletely understood. This study was undertaken to obtain initial indications on the relationship between autophagy, mitophagy, and lysosomal markers in muscle and measures of physical performance and lower extremity tissue composition in young and older adults. Twenty-three participants were enrolled, nine young (mean age: 24.3 ± 4.3 years) and 14 older adults (mean age: 77.9 ± 6.3 years). Lower extremity tissue composition was quantified volumetrically by magnetic resonance imaging and a tissue composition index was calculated as the ratio between muscle and intermuscular adipose tissue volume. Physical performance in older participants was assessed via the Short Physical Performance Battery (SPPB). Protein levels of the autophagy marker p62, the mitophagy mediator BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), the lysosomal markers transcription factor EB, vacuolar-type ATPase, and lysosomal-associated membrane protein 1 were measured by Western immunoblotting in vastus lateralis muscle biopsies. Older adults had smaller muscle volume and lower tissue composition index than young participants. The protein content of p62 and BNIP3 was higher in older adults. A negative correlation was detected between p62 and BNIP3 and the tissue composition index. p62 and BNIP3 were also related to the performance on the 5-time sit-to-stand test of the SPPB. Our results suggest that an altered expression of markers of the autophagy/mitophagy-lysosomal system is related to deterioration of lower extremity tissue composition and muscle dysfunction. Additional studies are needed to clarify the role of defective MQC in human muscle aging and identify novel biological targets for drug development.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
- Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy
| | - Matthew Triolo
- Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | | | - Matthew S. Martenson
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Robert T. Mankowski
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Stephen D. Anton
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - David A. Hood
- Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
31
|
Eggelbusch M, Shi A, Broeksma BC, Vázquez-Cruz M, Soares MN, de Wit GMJ, Everts B, Jaspers RT, Wüst RCI. The NLRP3 inflammasome contributes to inflammation-induced morphological and metabolic alterations in skeletal muscle. J Cachexia Sarcopenia Muscle 2022; 13:3048-3061. [PMID: 35978267 PMCID: PMC9745466 DOI: 10.1002/jcsm.13062] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Systemic inflammation is associated with skeletal muscle atrophy and metabolic dysfunction. Although the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome contributes to cytokine production in immune cells, its role in skeletal muscle is poorly understood. Here, we studied the link between inflammation, NLRP3, muscle morphology, and metabolism in in vitro cultured C2C12 myotubes, independent of immune cell involvement. METHODS Differentiated C2C12 myotubes were treated with lipopolysaccharide (LPS; 0, 10, and 100-200 ng/mL) to induce activation of the NLRP3 inflammasome with and without MCC950, a pharmacological inhibitor of NLRP3-induced IL-1β production. We assessed markers of the NLRP3 inflammasome, cell diameter, reactive oxygen species, and mitochondrial function. RESULTS NLRP3 gene expression and protein concentrations increased in a time-dependent and dose-dependent manner. Intracellular IL-1β concentration significantly increased (P < 0.0001), but significantly less with MCC950 (P = 0.03), suggestive of moderate activation of the NLRP3 inflammasome in cultured myotubes upon LPS stimulation. LPS suppressed myotube growth after 24 h (P = 0.03), and myotubes remained smaller up to 72 h (P = 0.0009). Exposure of myotubes to IL-1β caused similar alterations in cell morphology, and MCC950 mitigated these LPS-induced differences in cell diameter. NLRP3 appeared to co-localize with mitochondria, more so upon exposure to LPS. Mitochondrial reactive oxygen species were higher after LPS (P = 0.03), but not after addition of MCC950. Myotubes had higher glycolytic rates, and mitochondria were more fragmented upon LPS exposure, which was not altered by MCC950 supplementation. CONCLUSIONS LPS-induced activation of the NLRP3 inflammasome in cultured myotubes contributes to morphological and metabolic alterations, likely due to its mitochondrial association.
Collapse
Affiliation(s)
- Moritz Eggelbusch
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Department of Nutrition and Dietetics, Amsterdam UMC location VUmc, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| | - Andi Shi
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Bonnie C Broeksma
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Mariana Vázquez-Cruz
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Madu N Soares
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Gerard M J de Wit
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, University of Leiden, Leiden, The Netherlands
| | - Richard T Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Rob C I Wüst
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Triolo M, Bhattacharya D, Hood DA. Denervation induces mitochondrial decline and exacerbates lysosome dysfunction in middle-aged mice. Aging (Albany NY) 2022; 14:8900-8913. [PMID: 36342767 PMCID: PMC9740366 DOI: 10.18632/aging.204365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
With age, skeletal muscle undergoes a progressive decline in size and quality. Imbalanced mitochondrial turnover and the resultant dysfunction contribute to these phenotypic alterations. Motor neuron denervation (Den) is a contributor to the etiology of muscle atrophy associated with age. Further, aged muscle exhibits reduced plasticity to both enhanced and suppressed contractile activity. It remains unclear when the onset of this blunted response occurs, and how middle-aged muscle adapts to denervation. The purpose of this study was to compare mitochondrial turnover pathways in young (Y, ~5months) and middle-aged (MA, ~15months) mice, and determine the influence of Den. Transgenic mt-Keima mice were subjected to 1,3 or 7 days of Den. Muscle mass, mitochondrial content, and PGC-1α protein were not different between Y and MA mice. However, indications of enhanced mitochondrial fission and mitophagy were evident in MA muscle which were supported by a greater abundance of lysosome proteins. Den resulted in muscle atrophy and reductions in mitochondrial protein content by 7-days. These changes occurred concomitant with modest decreases in PGC-1α protein, but without further elevations in mitophagy. Although both autophagosomal and lysosomal proteins were elevated, evidence of lysosome dysfunction was present following Den in MA mice. These data suggest that increases in fission drive an acceleration of mitophagy in muscle of MA mice to preserve mitochondrial quality. Den exacerbates the aging phenotype by reducing biogenesis in the absence of a change in mitophagy, perhaps limited by lysosomal capacity, leading to an accumulation of dysfunctional mitochondria with an age-related loss of neuromuscular innervation.
Collapse
Affiliation(s)
- Matthew Triolo
- Muscle Health Research Centre, York University, Toronto, Ontario M3J 1P3, Canada,School of Kinesiology and Health Science, York University, Toronto, Ontario M3J 1P3, Canada
| | - Debasmita Bhattacharya
- Muscle Health Research Centre, York University, Toronto, Ontario M3J 1P3, Canada,School of Kinesiology and Health Science, York University, Toronto, Ontario M3J 1P3, Canada
| | - David A. Hood
- Muscle Health Research Centre, York University, Toronto, Ontario M3J 1P3, Canada,School of Kinesiology and Health Science, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
33
|
Torregrosa C, Chorin F, Beltran EEM, Neuzillet C, Cardot-Ruffino V. Physical Activity as the Best Supportive Care in Cancer: The Clinician's and the Researcher's Perspectives. Cancers (Basel) 2022; 14:5402. [PMID: 36358820 PMCID: PMC9655932 DOI: 10.3390/cancers14215402] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 08/11/2023] Open
Abstract
Multidisciplinary supportive care, integrating the dimensions of exercise alongside oncological treatments, is now regarded as a new paradigm to improve patient survival and quality of life. Its impact is important on the factors that control tumor development, such as the immune system, inflammation, tissue perfusion, hypoxia, insulin resistance, metabolism, glucocorticoid levels, and cachexia. An increasing amount of research has been published in the last years on the effects of physical activity within the framework of oncology, marking the appearance of a new medical field, commonly known as "exercise oncology". This emerging research field is trying to determine the biological mechanisms by which, aerobic exercise affects the incidence of cancer, the progression and/or the appearance of metastases. We propose an overview of the current state of the art physical exercise interventions in the management of cancer patients, including a pragmatic perspective with tips for routine practice. We then develop the emerging mechanistic views about physical exercise and their potential clinical applications. Moving toward a more personalized, integrated, patient-centered, and multidisciplinary management, by trying to understand the different interactions between the cancer and the host, as well as the impact of the disease and the treatments on the different organs, this seems to be the most promising method to improve the care of cancer patients.
Collapse
Affiliation(s)
- Cécile Torregrosa
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
- Département de Chirurgie Digestive et Oncologique, Hôpital Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris, 9 avenue Charles de Gaulle, 92100 Boulogne Billancourt, France
| | - Frédéric Chorin
- Laboratoire Motricité Humaine, Expertise, Sport, Santé (LAMHESS), HEALTHY Graduate School, Université Côte d’Azur, 06205 Nice, France
- Clinique Gériatrique du Cerveau et du Mouvement, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06205 Nice, France
| | - Eva Ester Molina Beltran
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
| | - Cindy Neuzillet
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
| | - Victoire Cardot-Ruffino
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
34
|
Lee DE, Kang HW, Kim SY, Kim MJ, Jeong JW, Hong WC, Fang S, Kim HS, Lee YS, Kim HJ, Park JS. Ivermectin and gemcitabine combination treatment induces apoptosis of pancreatic cancer cells via mitochondrial dysfunction. Front Pharmacol 2022; 13:934746. [PMID: 36091811 PMCID: PMC9459089 DOI: 10.3389/fphar.2022.934746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/02/2022] [Indexed: 12/06/2022] Open
Abstract
Pancreatic cancer is an aggressive cancer characterized by high mortality and poor prognosis, with a survival rate of less than 5 years in advanced stages. Ivermectin, an antiparasitic drug, exerts antitumor effects in various cancer types. This is the first study to evaluate the anticancer effects of the combination of ivermectin and gemcitabine in pancreatic cancer. We found that the ivermectin–gemcitabine combination treatment suppressed pancreatic cancer more effectively than gemcitabine alone treatment. The ivermectin–gemcitabine combination inhibited cell proliferation via G1 arrest of the cell cycle, as evidenced by the downregulation of cyclin D1 expression and the mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT-3) signaling pathway. Ivermectin–gemcitabine increased cell apoptosis by inducing mitochondrial dysfunction via the overproduction of reactive oxygen species and decreased the mitochondrial membrane potential. This combination treatment also decreased the oxygen consumption rate and inhibited mitophagy, which is important for cancer cell death. Moreover, in vivo experiments confirmed that the ivermectin–gemcitabine group had significantly suppressed tumor growth compared to the gemcitabine alone group. These results indicate that ivermectin exerts synergistic effects with gemcitabine, preventing pancreatic cancer progression, and could be a potential antitumor drug for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Da Eun Lee
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyeon Woong Kang
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - So Yi Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Myeong Jin Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Woong Jeong
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Woosol Chris Hong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Sungsoon Fang
- Department of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyung Sun Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yun Sun Lee
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Jung Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Hyo Jung Kim, ; Joon Seong Park,
| | - Joon Seong Park
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Hyo Jung Kim, ; Joon Seong Park,
| |
Collapse
|
35
|
Prado CM, Landi F, Chew STH, Atherton PJ, Molinger J, Ruck T, Gonzalez MC. Advances in Muscle Health and Nutrition: A Toolkit for Healthcare Professionals. Clin Nutr 2022; 41:2244-2263. [DOI: 10.1016/j.clnu.2022.07.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/03/2022] [Accepted: 07/31/2022] [Indexed: 11/03/2022]
|
36
|
Mallard J, Hucteau E, Charles AL, Bender L, Baeza C, Pélissie M, Trensz P, Pflumio C, Kalish-Weindling M, Gény B, Schott R, Favret F, Pivot X, Hureau TJ, Pagano AF. Chemotherapy impairs skeletal muscle mitochondrial homeostasis in early breast cancer patients. J Cachexia Sarcopenia Muscle 2022; 13:1896-1907. [PMID: 35373507 PMCID: PMC9178151 DOI: 10.1002/jcsm.12991] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chemotherapy is extensively used to treat breast cancer and is associated with skeletal muscle deconditioning, which is known to reduce patients' quality of life, treatment efficiency, and overall survival. To date, skeletal muscle mitochondrial alterations represent a major aspect explored in breast cancer patients; nevertheless, the cellular mechanisms remain relatively unknown. This study was dedicated to investigating overall skeletal muscle mitochondrial homeostasis in early breast cancer patients undergoing chemotherapy, including mitochondrial quantity, function, and dynamics. METHODS Women undergoing (neo)adjuvant anthracycline-cyclophosphamide and taxane-based chemotherapy participated in this study (56 ± 12 years). Two muscle biopsies were collected from the vastus lateralis muscle before the first and after the last chemotherapy administration. Mitochondrial respiratory capacity, reactive oxygen species production, and western blotting analyses were performed. RESULTS Among the 11 patients, we found a decrease in key markers of mitochondrial quantity, reaching -52.0% for citrate synthase protein levels (P = 0.02) and -38.2% for VDAC protein levels (P = 0.04). This mitochondrial content loss is likely explained by reduced mitochondrial biogenesis, as evidenced by a decrease in PGC-1α1 protein levels (-29.5%; P = 0.04). Mitochondrial dynamics were altered, as documented by a decrease in MFN2 protein expression (-33.4%; P = 0.01), a key marker of mitochondrial outer membrane fusion. Mitochondrial fission is a prerequisite for mitophagy activation, and no variation was found in either key markers of mitochondrial fission (Fis1 and DRP1) or mitophagy (Parkin, PINK1, and Mul1). Two contradictory hypotheses arise from these results: defective mitophagy, which probably increases the number of damaged and fragmented mitochondria, or a relative increase in mitophagy through elevated mitophagic potential (Parkin/VDAC ratio; +176.4%; P < 0.02). Despite no change in mitochondrial respiratory capacity and COX IV protein levels, we found an elevation in H2 O2 production (P < 0.05 for all substrate additions) without change in antioxidant enzymes. We investigated the apoptosis pathway and found an increase in the protein expression of the apoptosis initiation marker Bax (+72.0%; P = 0.04), without variation in the anti-apoptotic protein Bcl-2. CONCLUSIONS This study demonstrated major mitochondrial alterations subsequent to chemotherapy in early breast cancer patients: (i) a striking reduction in mitochondrial biogenesis, (ii) altered mitochondrial dynamics and potential mitophagy defects, (iii) exacerbated H2 O2 production, and (iv) increased initiation of apoptosis. All of these alterations likely explain, at least in part, the high prevalence of skeletal muscle and cardiorespiratory deconditioning classically observed in breast cancer patients.
Collapse
Affiliation(s)
- Joris Mallard
- Faculté de médecine, maïeutique et sciences de la santé, "Mitochondrie, Stress oxydant, Protection musculaire", Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France.,Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Elyse Hucteau
- Faculté de médecine, maïeutique et sciences de la santé, "Mitochondrie, Stress oxydant, Protection musculaire", Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France.,Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Anne-Laure Charles
- Faculté de médecine, maïeutique et sciences de la santé, "Mitochondrie, Stress oxydant, Protection musculaire", Université de Strasbourg, Strasbourg, France
| | - Laura Bender
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Claire Baeza
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Mathilde Pélissie
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Philippe Trensz
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Carole Pflumio
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | | | - Bernard Gény
- Faculté de médecine, maïeutique et sciences de la santé, "Mitochondrie, Stress oxydant, Protection musculaire", Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Roland Schott
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Fabrice Favret
- Faculté de médecine, maïeutique et sciences de la santé, "Mitochondrie, Stress oxydant, Protection musculaire", Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Xavier Pivot
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Thomas J Hureau
- Faculté de médecine, maïeutique et sciences de la santé, "Mitochondrie, Stress oxydant, Protection musculaire", Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Allan F Pagano
- Faculté de médecine, maïeutique et sciences de la santé, "Mitochondrie, Stress oxydant, Protection musculaire", Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
37
|
Blasco-Lafarga C, Monferrer-Marín J, Roldán A, Monteagudo P, Chulvi-Medrano I. Metabolic Flexibility and Mechanical Efficiency in Women Over-60. Front Physiol 2022; 13:869534. [PMID: 35464093 PMCID: PMC9019701 DOI: 10.3389/fphys.2022.869534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/21/2022] [Indexed: 01/12/2023] Open
Abstract
Purpose: Aging deteriorates metabolic flexibility (MF). Moreover, recent studies show that glycolysis is barely increased despite impoverished lipid metabolism, in addition to increased relevance of muscle power in older adults. This study aims to analyze MF, i.e., fat and carbohydrates oxidation rates (FATox and CHOox), and the point of maximal fat oxidation (MFO), in a group of active women over-60. It also aims to delve into the role of power production and mechanical efficiency regarding MF. This will help to decipher their metabolic behavior in response to increasing intensity. Methods: Twenty-nine women (66.13 ± 5.62 years) performed a submaximal graded cycling test, increasing 10 W each 3-min15-s, from 30 W to the second ventilatory threshold (VT2). Muscle power was adjusted with a Saris-H3 roller, together with a continuous gas analysis by indirect calorimetry (Cosmed K4b2). Pre and post-test blood lactate (BLa) samples were included. Frayn's equations, MFO and CHOoxpeak (mg/min/kg FFM) were considered for MF analysis (accounting for average VO2 and VCO2 in each last 60-s), whilst delta and gross efficiencies (DE%, GE%), and exercise economy (EC), were added for Mechanical Efficiency. Mean comparisons regarding intensities 60, 80 and 100% at VT2, completed the study together with correlation analysis among the main variables. Results: MFO and CHOoxpeak were small (6.35 ± 3.59 and 72.79 ± 34.76 g/min/kgFFM respectively) for a reduced muscle power (78.21 ± 15.84 W). Notwithstanding, GE% and EC increased significantly (p < 0.01) with exercise intensity. Importantly, coefficients of variation were very large confirming heterogeneity. Whilst muscle power outcomes correlated significantly (p < 0.01) with MFO (r = 0.66) and age (r = -0.62), these latter failed to be associated. Only GE% correlated to CHOoxpeak (r = -0.61, p < 0.01) regarding mechanical efficiency. Conclusions: Despite being active, women over-60 confirmed impaired substrates switching in response to exercise, from both FAT and CHO pathways. This limits their power production affecting exercise capacity. Our data suggest that decreased power with age has a key role above age per se in this metabolic inflexibility. Vice versa, increasing power seems to protect from mitochondrial dysfunction with aging. New studies will confirm if this higher efficiency when coming close to VT2, where GE is the more informative variable, might be a protective compensatory mechanism.
Collapse
Affiliation(s)
- Cristina Blasco-Lafarga
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Physical Education and Sport Department, University of Valencia, Valencia, Spain
| | - Jordi Monferrer-Marín
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Physical Education and Sport Department, University of Valencia, Valencia, Spain
| | - Ainoa Roldán
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Physical Education and Sport Department, University of Valencia, Valencia, Spain
| | - Pablo Monteagudo
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Physical Education and Sport Department, University of Valencia, Valencia, Spain
- Department of Education and Specific Didactics, Jaume I University, Castellon, Spain
| | - Ivan Chulvi-Medrano
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Physical Education and Sport Department, University of Valencia, Valencia, Spain
| |
Collapse
|
38
|
McMillin SL, Minchew EC, Lowe DA, Spangenburg EE. Skeletal muscle wasting: the estrogen side of sexual dimorphism. Am J Physiol Cell Physiol 2022; 322:C24-C37. [PMID: 34788147 PMCID: PMC8721895 DOI: 10.1152/ajpcell.00333.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The importance of defining sex differences across various biological and physiological mechanisms is more pervasive now than it has been over the past 15-20 years. As the muscle biology field pushes to identify small molecules and interventions to prevent, attenuate, or even reverse muscle wasting, we must consider the effect of sex as a biological variable. It should not be assumed that a therapeutic will affect males and females with equal efficacy or equivalent target affinities under conditions where muscle wasting is observed. With that said, it is not surprising to find that we have an unclear or even a poor understanding of the effects of sex or sex hormones on muscle wasting conditions. Although recent investigations are beginning to establish experimental approaches that will allow investigators to assess the impact of sex-specific hormones on muscle wasting, the field still needs rigorous scientific tools that will allow the community to address critical hypotheses centered around sex hormones. The focus of this review is on female sex hormones, specifically estrogens, and the roles that these hormones and their receptors play in skeletal muscle wasting conditions. With the overall review goal of assembling the current knowledge in the area of sexual dimorphism driven by estrogens with an effort to provide insights to interested physiologists on necessary considerations when trying to assess models for potential sex differences in cellular and molecular mechanisms of muscle wasting.
Collapse
Affiliation(s)
- Shawna L. McMillin
- 1Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota,2Division of Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Everett C. Minchew
- 3Department of Physiology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Dawn A. Lowe
- 1Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota,2Division of Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Espen E. Spangenburg
- 3Department of Physiology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| |
Collapse
|
39
|
Gollie JM, Patel SS, Harris-Love MO, Cohen SD, Blackman MR. Fatigability and the Role of Neuromuscular Impairments in Chronic Kidney Disease. Am J Nephrol 2022; 53:253-263. [PMID: 35344954 PMCID: PMC9871956 DOI: 10.1159/000523714] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/16/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND The combination of neuromuscular impairments plus psychosocial aspects of chronic kidney disease (CKD) may predispose these patients to greater risk for experiencing increased levels of fatigability. There has been extensive clinical and scientific interest in the problem of fatigue in CKD and end-stage kidney disease (ESKD) patients, whereas less attention has been directed to understanding fatigability. Accordingly, the primary purposes of this review are to (1) discuss fatigue and fatigability and their potential interactions in patients with CKD and ESKD, (2) provide evidence for increased fatigability in CKD and ESKD patients, (3) examine how commonly experienced neuromuscular impairments in CKD and ESKD patients may contribute to the severity of performance fatigability, and (4) highlight preliminary evidence on the effects of exercise as a potential clinical treatment for targeting fatigability in this population. SUMMARY Fatigue is broadly defined as a multidimensional construct encompassing a subjective lack of physical and/or mental energy that is perceived by the individual to interfere with usual or desired activities. In contrast, fatigability is conceptualized within the context of physical activity and is quantified as the interactions between reductions in objective measures of performance (i.e., performance fatigability) and perceptual adjustments regulating activity performance (i.e., perceived fatigability). We propose herein a conceptual model to extend current understandings of fatigability by considering the interactions among fatigue, perceived fatigability, and performance fatigability. Neuromuscular impairments reported in patients with CKD and ESKD, including reductions in force capacity, skeletal muscle atrophy, mitochondrial dysfunction, abnormal skeletal muscle excitability, and neurological complications, may each contribute to the greater performance fatigability observed in these patients. KEY MESSAGES Considering the interactions among fatigue, perceived fatigability, and performance fatigability provides a novel conceptual framework to advance the understanding of fatigability in CKD and ESKD patients. Measures of fatigability may provide valuable clinical insights into the overall health status of CKD and ESKD patients. Existing data suggest that CKD and ESKD patients are at greater risk of experiencing increased fatigability, partly due to neuromuscular impairments associated with reduced kidney function. Further investigations are warranted to determine the potential clinical role fatigability measures can play in monitoring the health of CKD and ESKD patients, and in identifying potential treatments targeting fatigability in this patient population.
Collapse
Affiliation(s)
- Jared M. Gollie
- Research Service, Washington DC VA Medical Center, Washington, DC, USA;,Department of Health, Human Function and Rehabilitation Sciences, George Washington University, Washington, DC, USA
| | - Samir S. Patel
- Renal Service, Washington DC VA Medical Center, Washington, DC, USA;,Department of Medicine, George Washington University, Washington, DC, USA
| | - Michael O. Harris-Love
- Physical Therapy Program, Department of Physical Medicine and Rehabilitation, University of Colorado, Aurora, CO, USA;,Geriatric Research Education and Clinical Center, VA Eastern Colorado Health Care System, Aurora, CO, USA
| | - Scott D. Cohen
- Renal Service, Washington DC VA Medical Center, Washington, DC, USA;,Department of Medicine, George Washington University, Washington, DC, USA
| | - Marc R. Blackman
- Research Service, Washington DC VA Medical Center, Washington, DC, USA;,Department of Medicine, George Washington University, Washington, DC, USA;,Departments of Medicine and Rehabilitation Medicine, Georgetown University, Washington, DC, USA
| |
Collapse
|
40
|
The Atrophic Effect of 1,25(OH) 2 Vitamin D 3 (Calcitriol) on C2C12 Myotubes Depends on Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10121980. [PMID: 34943083 PMCID: PMC8750283 DOI: 10.3390/antiox10121980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Dysfunctional mitochondrial metabolism has been linked to skeletal muscle loss in several physio-pathological states. Although it has been reported that vitamin D (VD) supports cellular redox homeostasis by maintaining normal mitochondrial functions, and VD deficiency often occurs in conditions associated with skeletal muscle loss, the efficacy of VD supplementation to overcome muscle wasting is debated. Investigations on the direct effects of VD metabolites on skeletal muscle using C2C12 myotubes have revealed an unexpected pro-atrophic activity of calcitriol (1,25VD), while its upstream metabolites cholecalciferol (VD3) and calcidiol (25VD) have anti-atrophic effects. Here, we investigated if the atrophic effects of 1,25VD on myotubes depend on its activity on mitochondrial metabolism. The impact of 1,25VD and its upstream metabolites VD3 and 25VD on mitochondria dynamics and the activity of C2C12 myotubes was evaluated by measuring mitochondrial content, architecture, metabolism, and reactive oxygen species (ROS) production. We found that 1,25VD induces atrophy through protein kinase C (PKC)-mediated ROS production, mainly of extramitochondrial origin. Consistent with this, cotreatment with the antioxidant N-acetylcysteine (NAC), but not with the mitochondria-specific antioxidant mitoTEMPO, was sufficient to blunt the atrophic activity of 1,25VD. In contrast, VD3 and 25VD have antioxidant properties, suggesting that the efficacy of VD supplementation might result from the balance between atrophic pro-oxidant (1,25VD) and protective antioxidant (VD3 and 25VD) metabolites.
Collapse
|
41
|
Wilburn D, Ismaeel A, Machek S, Fletcher E, Koutakis P. Shared and distinct mechanisms of skeletal muscle atrophy: A narrative review. Ageing Res Rev 2021; 71:101463. [PMID: 34534682 DOI: 10.1016/j.arr.2021.101463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022]
Abstract
Maintenance of skeletal muscle mass and function is an incredibly nuanced balance of anabolism and catabolism that can become distorted within different pathological conditions. In this paper we intend to discuss the distinct intracellular signaling events that regulate muscle protein atrophy for a given clinical occurrence. Aside from the common outcome of muscle deterioration, several conditions have at least one or more distinct mechanisms that creates unique intracellular environments that facilitate muscle loss. The subtle individuality to each of these given pathologies can provide both researchers and clinicians with specific targets of interest to further identify and increase the efficacy of medical treatments and interventions.
Collapse
Affiliation(s)
- Dylan Wilburn
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
| | - Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | - Steven Machek
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
| | - Emma Fletcher
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; Department of Biology, Baylor University, Waco, TX 76706, USA
| | | |
Collapse
|
42
|
Mallard J, Hucteau E, Hureau TJ, Pagano AF. Skeletal Muscle Deconditioning in Breast Cancer Patients Undergoing Chemotherapy: Current Knowledge and Insights From Other Cancers. Front Cell Dev Biol 2021; 9:719643. [PMID: 34595171 PMCID: PMC8476809 DOI: 10.3389/fcell.2021.719643] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor development and improve disease-free survival. However, chemotherapy also leads to severe off-target side-effects resulting, together with the tumor itself, in major skeletal muscle deconditioning. This review first focuses on recent advances in both macroscopic changes and cellular mechanisms implicated in skeletal muscle deconditioning of breast cancer patients, particularly as a consequence of the chemotherapy treatment. To date, only six clinical studies used muscle biopsies in breast cancer patients and highlighted several important aspects of muscle deconditioning such as a decrease in muscle fibers cross-sectional area, a dysregulation of protein turnover balance and mitochondrial alterations. However, in comparison with the knowledge accumulated through decades of intensive research with many different animal and human models of muscle atrophy, more studies are necessary to obtain a comprehensive understanding of the cellular processes implicated in breast cancer-mediated muscle deconditioning. This understanding is indeed essential to ultimately lead to the implementation of efficient preventive strategies such as exercise, nutrition or pharmacological treatments. We therefore also discuss potential mechanisms implicated in muscle deconditioning by drawing a parallel with other cancer cachexia models of muscle wasting, both at the pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Joris Mallard
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Elyse Hucteau
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Thomas J Hureau
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Allan F Pagano
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
43
|
Menant JC, Goldstein D, Au K, Trinh T, van Schooten KS, McCrary JM, Harris CA, Forster BC, Park SB. Evidence of slow and variable choice-stepping reaction time in cancer survivors with chemotherapy-induced peripheral neuropathy. Gait Posture 2021; 89:178-185. [PMID: 34320441 DOI: 10.1016/j.gaitpost.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/21/2021] [Accepted: 07/17/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is reported to affect up to 70 % of cancer survivors. Despite evidence that CIPN-related impairments often translate into balance and mobility deficits, the effects on stepping and quality of gait, well-documented risk factors for falls, are unclear. AIMS (i) Establish choice-stepping reaction time (CSRT) performance in survivors with CIPN compared to young and older healthy controls and people with Parkinson's disease; (ii) document walking stability; (iii) investigate relationships between stepping and gait data to objective and patient-reported outcomes. METHODS 41 cancer survivors with CIPN (mean (SD) age: 60.8 (9.7) years) who were ≥3months post chemotherapy, performed tests of simple and inhibitory CSRT. Walking stability measures were derived from 3-D accelerometry data during the 6-minute walk test. CIPN was assessed using neurological grading and patient-reported outcome measures (European Organization for Research and Treatment of Cancer Quality of Life Questionnaire in CIPN Questionnaire scale EORTC CIPN20). RESULTS In both stepping tests, CIPN participants performed at the level of adults aged 10 years older and people with mild to moderate Parkinson's disease. Mean (SD) total stepping response times in both CSRT (1160 (190) milliseconds) and inhibitory CSRT (1191 (164) milliseconds) tests were not associated with objective neurological grading but were correlated with increased difficulty feeling the ground. Participants with lower-limb vibration sensation deficit had slower and more variable CSRT times. There were no associations between walking stability and objective measures of CIPN, and limited correlations with the EORTC-CIPN20. CONCLUSIONS Cancer survivors with CIPN showed deficits in voluntary stepping responses and seemed to compensate for their sensory and motor deficits by walking slower to maintain stability. Objective and patient-reported outcomes of CIPN were correlated with slower and more variable stepping response times. Future studies should aim to identify the causes of the apparent premature decline in cognitive-motor function and develop remediating interventions.
Collapse
Affiliation(s)
- J C Menant
- Neuroscience Research Australia, University of New South Wales, New South Wales, Australia; School of Population Health, University of New South Wales, New South Wales, Australia.
| | - D Goldstein
- Prince of Wales Clinical School, University of New South Wales, Kensington, Australia; Dept. of Medical Oncology, Prince of Wales Hospital, Randwick, Australia
| | - K Au
- Prince of Wales Clinical School, University of New South Wales, Kensington, Australia
| | - T Trinh
- Prince of Wales Clinical School, University of New South Wales, Kensington, Australia
| | - K S van Schooten
- Neuroscience Research Australia, University of New South Wales, New South Wales, Australia; School of Population Health, University of New South Wales, New South Wales, Australia
| | - J M McCrary
- Prince of Wales Clinical School, University of New South Wales, Kensington, Australia; Institute of Music Physiology and Musicians' Medicine, Hannover University of Music Drama, and Media, Hannover, Germany
| | - C A Harris
- Dept. of Medical Oncology, St George Hospital, Kogarah, Australia; St George and Sutherland Clinical School, University of New South Wales, Australia
| | - B C Forster
- Dept. of Medical Oncology, The Mater Hospital, North Sydney, Australia; Northern Clinical School, The University of Sydney, St Leonards, New South Wales, Australia
| | - S B Park
- Prince of Wales Clinical School, University of New South Wales, Kensington, Australia; Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
44
|
Chemotherapy-Induced Myopathy: The Dark Side of the Cachexia Sphere. Cancers (Basel) 2021; 13:cancers13143615. [PMID: 34298829 PMCID: PMC8304349 DOI: 10.3390/cancers13143615] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In addition to cancer-related factors, anti-cancer chemotherapy treatment can drive life-threatening body wasting in a syndrome known as cachexia. Emerging evidence has described the impact of several key chemotherapeutic agents on skeletal muscle in particular, and the mechanisms are gradually being unravelled. Despite this evidence, there remains very little research regarding therapeutic strategies to protect muscle during anti-cancer treatment and current global grand challenges focused on deciphering the cachexia conundrum fail to consider this aspect—chemotherapy-induced myopathy remains very much on the dark side of the cachexia sphere. This review explores the impact and mechanisms of, and current investigative strategies to protect against, chemotherapy-induced myopathy to illuminate this serious issue. Abstract Cancer cachexia is a debilitating multi-factorial wasting syndrome characterised by severe skeletal muscle wasting and dysfunction (i.e., myopathy). In the oncology setting, cachexia arises from synergistic insults from both cancer–host interactions and chemotherapy-related toxicity. The majority of studies have surrounded the cancer–host interaction side of cancer cachexia, often overlooking the capability of chemotherapy to induce cachectic myopathy. Accumulating evidence in experimental models of cachexia suggests that some chemotherapeutic agents rapidly induce cachectic myopathy, although the underlying mechanisms responsible vary between agents. Importantly, we highlight the capacity of specific chemotherapeutic agents to induce cachectic myopathy, as not all chemotherapies have been evaluated for cachexia-inducing properties—alone or in clinically compatible regimens. Furthermore, we discuss the experimental evidence surrounding therapeutic strategies that have been evaluated in chemotherapy-induced cachexia models, with particular focus on exercise interventions and adjuvant therapeutic candidates targeted at the mitochondria.
Collapse
|
45
|
Skeletal Muscle Mitochondria Dysfunction in Genetic Neuromuscular Disorders with Cardiac Phenotype. Int J Mol Sci 2021; 22:ijms22147349. [PMID: 34298968 PMCID: PMC8307986 DOI: 10.3390/ijms22147349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction is considered the major contributor to skeletal muscle wasting in different conditions. Genetically determined neuromuscular disorders occur as a result of mutations in the structural proteins of striated muscle cells and therefore are often combined with cardiac phenotype, which most often manifests as a cardiomyopathy. The specific roles played by mitochondria and mitochondrial energetic metabolism in skeletal muscle under muscle-wasting conditions in cardiomyopathies have not yet been investigated in detail, and this aspect of genetic muscle diseases remains poorly characterized. This review will highlight dysregulation of mitochondrial representation and bioenergetics in specific skeletal muscle disorders caused by mutations that disrupt the structural and functional integrity of muscle cells.
Collapse
|
46
|
Hussain SNA, Sandri M, Gouspillou G. Editorial: Autophagy and Mitophagy in Skeletal Muscle Health and Disease. Front Physiol 2021; 12:703458. [PMID: 34177629 PMCID: PMC8219934 DOI: 10.3389/fphys.2021.703458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sabah N A Hussain
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre (MUHC), Montreal, QC, Canada.,Meakins Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Marco Sandri
- Meakins Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Biomedical Science, Veneto Institute of Molecular Medicine, University of Padova, Padua, Italy
| | - Gilles Gouspillou
- Département des Sciences de l'activité Physique, Faculté des Sciences, Université du Québec à Montréal (UQAM), Montreal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (IUGM), Montreal, QC, Canada
| |
Collapse
|
47
|
Dobrowolny G, Barbiera A, Sica G, Scicchitano BM. Age-Related Alterations at Neuromuscular Junction: Role of Oxidative Stress and Epigenetic Modifications. Cells 2021; 10:1307. [PMID: 34074012 PMCID: PMC8225025 DOI: 10.3390/cells10061307] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
With advancing aging, a decline in physical abilities occurs, leading to reduced mobility and loss of independence. Although many factors contribute to the physio-pathological effects of aging, an important event seems to be related to the compromised integrity of the neuromuscular system, which connects the brain and skeletal muscles via motoneurons and the neuromuscular junctions (NMJs). NMJs undergo severe functional, morphological, and molecular alterations during aging and ultimately degenerate. The effect of this decline is an inexorable decrease in skeletal muscle mass and strength, a condition generally known as sarcopenia. Moreover, several studies have highlighted how the age-related alteration of reactive oxygen species (ROS) homeostasis can contribute to changes in the neuromuscular junction morphology and stability, leading to the reduction in fiber number and innervation. Increasing evidence supports the involvement of epigenetic modifications in age-dependent alterations of the NMJ. In particular, DNA methylation, histone modifications, and miRNA-dependent gene expression represent the major epigenetic mechanisms that play a crucial role in NMJ remodeling. It is established that environmental and lifestyle factors, such as physical exercise and nutrition that are susceptible to change during aging, can modulate epigenetic phenomena and attenuate the age-related NMJs changes. This review aims to highlight the recent epigenetic findings related to the NMJ dysregulation during aging and the role of physical activity and nutrition as possible interventions to attenuate or delay the age-related decline in the neuromuscular system.
Collapse
Affiliation(s)
- Gabriella Dobrowolny
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics (DAHFMO)-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy;
| | - Alessandra Barbiera
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| | - Gigliola Sica
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| | - Bianca Maria Scicchitano
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| |
Collapse
|