1
|
Sugawa H, Ikeda T, Tominaga Y, Katsuta N, Nagai R. Rapid formation of N ε-(carboxymethyl)lysine (CML) from ribose depends on glyoxal production by oxidation. RSC Chem Biol 2024:d4cb00183d. [PMID: 39323732 PMCID: PMC11420854 DOI: 10.1039/d4cb00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
N ε-(Carboxymethyl)lysine (CML) is a major advanced glycation end-product (AGE) involved in protein dysfunction and inflammation in vivo. Its accumulation increases with age and is enhanced with the pathogenesis of diabetic complications. Therefore, the pathways involved in CML formation should be elucidated to understand the pathological conditions involved in CML. Ribose is widely used in glycation research because it shows a high reactivity with proteins to form AGEs. We previously demonstrated that ribose generates CML more rapidly than other reducing sugars, such as glucose; however, the underlying mechanism remains unclear. In this study, we focused on the pathway of CML formation from ribose. As a result, glyoxal (GO) was the most abundant product generated from ribose among the tested reducing sugars and was significantly correlated with CML formation from ribose-modified protein. The coefficient of determination (R 2) for CML formation between the ribose-modified protein and Amadori products or the ribose degradation product (RDP)-modified protein was higher for the RDP-modified protein. CML formation from ribose degradation products (RDP) incubated with protein significantly correlated with CML formation from GO-modified protein (r s = 0.95, p = 0.0000000869). GO and CML formation were inhibited by diethylenetriaminepentaacetic acid (DTPA) and enhanced by iron chloride. Additionally, flavonoid compounds such as isoquercetin, which are known to inhibit CML, also inhibited GO formation from ribose and CML formation. In conclusion, ribose undergoes auto-oxidation and oxidative cleavage between C-2 and C-3 to generate GO and enhance CML accumulation.
Collapse
Affiliation(s)
- Hikari Sugawa
- Department of Food and Life Sciences, School of Agriculture, Tokai University Japan
| | - Tsuyoshi Ikeda
- Faculty of Pharmaceutical Sciences, Sojo University Japan
| | - Yuki Tominaga
- Department of Food and Life Sciences, School of Agriculture, Tokai University Japan
| | - Nana Katsuta
- Research Institute of Agriculture, Tokai University Japan
| | - Ryoji Nagai
- Department of Food and Life Sciences, School of Agriculture, Tokai University Japan
| |
Collapse
|
2
|
Bejarano E, Domenech-Bendaña A, Avila-Portillo N, Rowan S, Edirisinghe S, Taylor A. Glycative stress as a cause of macular degeneration. Prog Retin Eye Res 2024; 101:101260. [PMID: 38521386 DOI: 10.1016/j.preteyeres.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
People are living longer and rates of age-related diseases such as age-related macular degeneration (AMD) are accelerating, placing enormous burdens on patients and health care systems. The quality of carbohydrate foods consumed by an individual impacts health. The glycemic index (GI) is a kinetic measure of the rate at which glucose arrives in the blood stream after consuming various carbohydrates. Consuming diets that favor slowly digested carbohydrates releases sugar into the bloodstream gradually after consuming a meal (low glycemic index). This is associated with reduced risk for major age-related diseases including AMD, cardiovascular disease, and diabetes. In comparison, consuming the same amounts of different carbohydrates in higher GI diets, releases glucose into the blood rapidly, causing glycative stress as well as accumulation of advanced glycation end products (AGEs). Such AGEs are cytotoxic by virtue of their forming abnormal proteins and protein aggregates, as well as inhibiting proteolytic and other protective pathways that might otherwise selectively recognize and remove toxic species. Using in vitro and animal models of glycative stress, we observed that consuming higher GI diets perturbs metabolism and the microbiome, resulting in a shift to more lipid-rich metabolomic profiles. Interactions between aging, diet, eye phenotypes and physiology were observed. A large body of laboratory animal and human clinical epidemiologic data indicates that consuming lower GI diets, or lower glycemia diets, is protective against features of early AMD (AMDf) in mice and AMD prevalence or AMD progression in humans. Drugs may be optimized to diminish the ravages of higher glycemic diets. Human trials are indicated to determine if AMD progression can be retarded using lower GI diets. Here we summarized the current knowledge regarding the pathological role of glycative stress in retinal dysfunction and how dietary strategies might diminish retinal disease.
Collapse
Affiliation(s)
- Eloy Bejarano
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Alicia Domenech-Bendaña
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | | | - Sheldon Rowan
- JM USDA Human Nutrition Research Center on Aging at Tufts University, United States
| | - Sachini Edirisinghe
- Tufts University Friedman School of Nutrition Science and Policy, United States
| | - Allen Taylor
- Tufts University Friedman School of Nutrition Science and Policy, United States.
| |
Collapse
|
3
|
Flores-Estrada J, Cano-Martínez A, Vargas-González Á, Castrejón-Téllez V, Cornejo-Garrido J, Martínez-Rosas M, Guarner-Lans V, Rubio-Ruíz ME. Hepatoprotective Mechanisms Induced by Spinach Methanolic Extract in Rats with Hyperglycemia-An Immunohistochemical Analysis. Antioxidants (Basel) 2023; 12:2013. [PMID: 38001866 PMCID: PMC10669258 DOI: 10.3390/antiox12112013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Spinach methanolic extract (SME) has a hepatoprotective effect due to its polyphenolic antioxidants; however, its action in parenchymal (PQ) and non-parenchymal (nPQ) cells remains unknown. This study investigates the hepatoprotective effect of SME on streptozotocin-induced hyperglycemic rats (STZ), focusing on immunohistochemical analyses. Methods: The extract was prepared, and the total polyphenols and antioxidant activity were quantified. Adult male Wistar rats were divided into four groups (n = 8): normoglycemic rats (NG), STZ-induced hyperglycemic (STZ), STZ treated with 400 mg/kg SME (STZ-SME), and NG treated with SME (SME) for 12 weeks. Serum liver transaminases and lipid peroxidation levels in tissue were determined. The distribution pattern and relative levels of markers related to oxidative stress [reactive oxygen species (ROS), superoxide dismutase-1, catalase, and glutathione peroxidase-1], of cytoprotective molecules [nuclear NRF2 and heme oxygenase-1 (HO-1)], of inflammatory mediators [nuclear NF-κB, TNF-α], proliferation (PCNA), and of fibrogenesis markers [TGF-β, Smad2/3, MMP-9, and TIMP1] were evaluated. Results: SME had antioxidant capacity, and it lowered serum transaminase levels in STZ-SME compared to STZ. It reduced NOX4 staining, and lipid peroxidation levels were related to low formation of ROS. In STZ-SME, the immunostaining for antioxidant enzymes increased in nPQ cells compared to STZ. However, enzymes were also localized in extra and intracellular vesicles in STZ. Nuclear NRF2 staining and HO-1 expression in PQ and nPQ were higher in STZ-SME than in STZ. Inflammatory factors were decreased in STZ-SME and were related to the percentage decrease in NF-κB nuclear staining in nPQ cells. Similarly, TGF-β (in the sinusoids) and MMP-9 (in nPQ) were increased in the STZ-SME group compared to the other groups; however, staining for CTGF, TIMP1, and Smad2/3 was lower. Conclusions: SME treatment in hyperglycemic rats induced by STZ may have hepatoprotective properties due to its scavenger capacity and the regulation of differential expression of antioxidant enzymes between the PQ and nPQ cells, reducing inflammatory and fibrogenic biomarkers in liver tissue.
Collapse
Affiliation(s)
| | - Agustina Cano-Martínez
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (A.C.-M.); (Á.V.-G.); (V.C.-T.); (M.M.-R.); (V.G.-L.); (M.E.R.-R.)
| | - Álvaro Vargas-González
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (A.C.-M.); (Á.V.-G.); (V.C.-T.); (M.M.-R.); (V.G.-L.); (M.E.R.-R.)
| | - Vicente Castrejón-Téllez
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (A.C.-M.); (Á.V.-G.); (V.C.-T.); (M.M.-R.); (V.G.-L.); (M.E.R.-R.)
| | - Jorge Cornejo-Garrido
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional, Mexico City 07320, Mexico;
| | - Martín Martínez-Rosas
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (A.C.-M.); (Á.V.-G.); (V.C.-T.); (M.M.-R.); (V.G.-L.); (M.E.R.-R.)
| | - Verónica Guarner-Lans
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (A.C.-M.); (Á.V.-G.); (V.C.-T.); (M.M.-R.); (V.G.-L.); (M.E.R.-R.)
| | - María Esther Rubio-Ruíz
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (A.C.-M.); (Á.V.-G.); (V.C.-T.); (M.M.-R.); (V.G.-L.); (M.E.R.-R.)
| |
Collapse
|
4
|
Li S, Ouyang G, Yuan L, Wu X, Zhang L. SRY-box transcription factor 9 modulates Müller cell gliosis in diabetic retinopathy by upregulating TXNIP transcription. Exp Anim 2023; 72:302-313. [PMID: 36642539 PMCID: PMC10435361 DOI: 10.1538/expanim.22-0126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023] Open
Abstract
Diabetic retinopathy (DR), a common complication of diabetes, involves excessive proliferation and inflammation of Muller cells and ultimately leads to vision loss and blindness. SRY-box transcription factor 9 (SOX9) has been reported to be highly expressed in Müller cells in light-induced retinal damage rats, but the functional role of SOX9 in DR remains unclear. To explore this issue, the DR rat model was successfully constructed via injection with streptozotocin (65 mg/kg) and the retinal thicknesses and blood glucose levels were evaluated. Müller cells were treated with 25 mmol/l glucose to create a cell model in vitro. The results indicated that SOX9 expression was significantly increased in DR rat retinas and in Müller cells stimulated with a high glucose (HG) concentration. HG treatment promoted the proliferation and migration capabilities of Müller cells, whereas SOX9 knockdown reversed those behaviors. Moreover, SOX9 knockdown provided protection against an HG-induced inflammatory response, as evidenced by reduced tumor necrosis factor-α, IL-1β, and IL-6 levels in serum and decreased NLRP3 inflammasome activation. Notably, SOX9 acted as a transcription factor that positively regulated thioredoxin-interacting protein (TXNIP), a positive regulator of Müller cells gliosis under HG conditions. A dual-luciferase assay demonstrated that SOX9 could enhance TXNIP expression at the transcriptional level through binding to the promoter of TXNIP. Moreover, TXNIP overexpression restored the effects caused by SOX9 silencing. In conclusion, these findings demonstrate that SOX9 may accelerate the progression of DR by promoting glial cell proliferation, metastasis, and inflammation, which involves the transcriptional regulation of TXNIP, providing new theoretical fundamentals for DR therapy.
Collapse
Affiliation(s)
- Sheng Li
- Department of Ophthalmology, Dalian No. 3 People's Hospital, No. 40, Qianshan Road, Ganjingzi District, Dalian, Liaoning, 116033, P.R. China
| | - Gaoxiang Ouyang
- Department of Ophthalmology, Dalian No. 3 People's Hospital, No. 40, Qianshan Road, Ganjingzi District, Dalian, Liaoning, 116033, P.R. China
| | - Linhui Yuan
- Department of Ophthalmology, Dalian No. 3 People's Hospital, No. 40, Qianshan Road, Ganjingzi District, Dalian, Liaoning, 116033, P.R. China
| | - Xiaoxuan Wu
- Department of Ophthalmology, Dalian No. 3 People's Hospital, No. 40, Qianshan Road, Ganjingzi District, Dalian, Liaoning, 116033, P.R. China
| | - Lijun Zhang
- Department of Ophthalmology, Dalian No. 3 People's Hospital, No. 40, Qianshan Road, Ganjingzi District, Dalian, Liaoning, 116033, P.R. China
| |
Collapse
|
5
|
Zhou Q, Liang W, Wan J, Wang M. Spinach (Spinacia oleracea) microgreen prevents the formation of advanced glycation end products in model systems and breads. Curr Res Food Sci 2023; 6:100490. [PMID: 37033738 PMCID: PMC10074504 DOI: 10.1016/j.crfs.2023.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The formation of advanced glycation end products (AGEs) in daily diets poses a great threat to human health, since AGEs are closely related to some chronic metabolic diseases. In this study, we investigated the antiglycative capabilities of some popular microgreens in chemical model. Our data indicated that baby spinach (Spinacia oleracea) had the highest antiglycative activity during 4-wks incubation, with antioxidation being the main action route. Moreover, a bread model was set up to evaluate its antiglycative potential in real food model. The results showed that the fortification of baby spinach in bread significantly inhibited AGEs formation, with acceptable taste and food quality. Further study revealed that the antiglycative components were mainly distributed in leaves, which were separated via column chromatography and tentatively identified as chlorophyll derivatives. In summary, this study highlighted the antiglycative benefits of baby spinach which can be developed into healthy functional foods.
Collapse
|
6
|
Liu X, Zhang P, Song X, Cui H, Shen W. PPARγ Mediates Protective Effect against Hepatic Ischemia/Reperfusion Injury via NF-κB Pathway. J INVEST SURG 2022; 35:1648-1659. [PMID: 35732295 DOI: 10.1080/08941939.2022.2090033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Hepatic ischemia/reperfusion injury (HIRI) is an unavoidable complication in liver surgery, however its pathological process is still unclear. Therefore, in this study, the role and mechanism of peroxisome proliferator-activated receptor gamma (PPARγ) was investigated in HIRI. MATERIALS AND METHODS We constructed mice models with HIRI and L02 cell models insulted hypoxia/re-oxygenation (H/R). PPARγ agonist rosiglitazone was administered prior to HIRI in mice and PPARγ-siRNA was to H/R treatment in L02 cells. Liver injury was measured by serum ALT, AST and LDH levels and performing H&E staining; the inflammatory injury was reflected by inflammatory markers IL-1β, IL-6 and TNF-α, which were assayed by Real-time PCR and Western blotting, MPO activity was determined using commercial kits; oxidative stress injury was evaluated by iNOS, MDA, SOD and GSH-PX levels; apoptosis was detected by cleaved-Caspase-3, TUNEL staining and flow cytometry; NF-κB signaling activation was reflected by phosphorylation of IκBα (p-IκBα) and nuclear translocation of NF-κB p65. RESULTS The level of PPARγ expression was obviously down-regulated both in mice liver subjected to IRI and in L02 cells to H/R. Overexpression of PPARγ presented protective effect on HIRI by reducing serum levels of aminotransferase and hepatic necrosis, inhibiting inflammation and apoptosis and alleviating oxidative stress in vivo. But PPARγ-siRNA aggravate H/R insult by promoting inflammation and apoptosis in vitro. Mechanistically, the NF-κB pathway activity was increased with PPARγ down-regulation by PPARγ-siRNA. Importantly, inhibition of NF-κB signaling abolished PPARγ knockdown-mediated hepatic injury. CONCLUSIONS PPARγ present protective effects on HIRI by attenuating liver injury, inflammatory response, oxidative stress and apoptosis in vivo and in vitro, and its mechanism may be related to down-regulation of NF-κB signaling.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Ping Zhang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xianqing Song
- Department of General Surgery, Ningbo Fourth Hospital, Ningbo, Zhejiang, China
| | - Hengguan Cui
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Weixing Shen
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
7
|
Oxidative Stress as a Main Contributor of Retinal Degenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11061190. [PMID: 35740087 PMCID: PMC9229683 DOI: 10.3390/antiox11061190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
|