1
|
B J, R R. A critical review on pharmacological properties of sulfated polysaccharides from marine macroalgae. Carbohydr Polym 2024; 344:122488. [PMID: 39218536 DOI: 10.1016/j.carbpol.2024.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
The marine ecosystem contains an assorted range of organisms, among which macroalgae stands out marine resources as an invaluable reservoir of structurally diverse bioactive compounds. Marine macroalgae are considered as primary consumers have gained more attention for their bioactive components. Sulfated polysaccharides (SPs) are complex polymers found in macroalgae that play a crucial role in their cell wall composition. This review consolidates high-tech methodologies employed in the extraction of macroalgal SPs, offering a valuable resource for researchers focuses in the pharmacological relevance of marine macromolecules. The pharmacological activities of SPs, focusing on their therapeutic action by encompassing diverse study models are summarized. Furthermore, in silico docking studies facilitates a comprehensive understanding of SPs interactions with their binding sites providing a valuable insight for future endeavors. The biological properties of algal SPs, along with a brief reference to mode of action based on different targets are presented. This review utilizes up-to-date research discoveries across various study models to elucidate the biological functions of SPs, focusing on their molecular-level mechanisms and offering insights for prospective investigations. Besides, the significance of SPs from seaweeds is highlighted, showcasing their potential beneficial applications in promoting human health. With promising biomedical prospects, this review explores the extensive uses and experimental evidence supporting the important roles of SPs in various fields.
Collapse
Affiliation(s)
- Jegadeshwari B
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Rajaram R
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
2
|
Guo L, Li S, Cheng D, Lu X, Gao X, Zhang L, Lu J. Integrated proteome and pangenome analysis revealed the variation of microalga Isochrysis galbana and associated bacterial community to 2,6-Di-tert-butyl-p-cresol (BHT) stress. World J Microbiol Biotechnol 2024; 40:364. [PMID: 39446252 DOI: 10.1007/s11274-024-04171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
The phenolic antioxidant 2,6-Di-tert-butyl-p-cresol (BHT) has been detected in various environments and is considered a potential threat to aquatic organisms. Algal-bacterial interactions are crucial for maintaining ecosystem balance and elemental cycling, but their response to BHT remains to be investigated. This study analyzed the physiological and biochemical responses of the microalga Isochrysis galbana and the changes of associated bacterial communities under different concentrations of BHT stress. Results showed that the biomass of I. galbana exhibited a decreasing trend with increasing BHT concentrations up to 40 mg/L. The reduction in chlorophyll, carotenoid, and soluble protein content of microalgal cells was also observed under BHT stress. The production of malondialdehyde and the activities of superoxide dismutase, peroxidase, and catalase were further determined. Scanning electron microscopy analysis revealed that BHT caused surface rupture of the algal cells and loss of intracellular nutrients. Proteomic analysis demonstrated the upregulation of photosynthesis and citric acid cycle pathways as a response to BHT stress. Additionally, BHT significantly increased the relative abundance of specific bacteria in the phycosphere, including Marivita, Halomonas, Marinobacter, and Alteromonas. Further experiments confirmed that these bacteria had the ability to utilize BHT as the sole carbon resource for growth, and genes related to the degradation of phenolic compounds were detected through pangenome analysis.
Collapse
Affiliation(s)
- Linke Guo
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Shuangwei Li
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Dongle Cheng
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Xiao Lu
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Xinying Gao
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Linlin Zhang
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China.
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China.
| | - Jianjiang Lu
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China.
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China.
| |
Collapse
|
3
|
Silva M, Avni D, Varela J, Barreira L. The Ocean's Pharmacy: Health Discoveries in Marine Algae. Molecules 2024; 29:1900. [PMID: 38675719 PMCID: PMC11055030 DOI: 10.3390/molecules29081900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Non-communicable diseases (NCDs) represent a global health challenge, constituting a major cause of mortality and disease burden in the 21st century. Addressing the prevention and management of NCDs is crucial for improving global public health, emphasizing the need for comprehensive strategies, early interventions, and innovative therapeutic approaches to mitigate their far-reaching consequences. Marine organisms, mainly algae, produce diverse marine natural products with significant therapeutic potential. Harnessing the largely untapped potential of algae could revolutionize drug development and contribute to combating NCDs, marking a crucial step toward natural and targeted therapeutic approaches. This review examines bioactive extracts, compounds, and commercial products derived from macro- and microalgae, exploring their protective properties against oxidative stress, inflammation, cardiovascular, gastrointestinal, metabolic diseases, and cancer across in vitro, cell-based, in vivo, and clinical studies. Most research focuses on macroalgae, demonstrating antioxidant, anti-inflammatory, cardioprotective, gut health modulation, metabolic health promotion, and anti-cancer effects. Microalgae products also exhibit anti-inflammatory, cardioprotective, and anti-cancer properties. Although studies mainly investigated extracts and fractions, isolated compounds from algae have also been explored. Notably, polysaccharides, phlorotannins, carotenoids, and terpenes emerge as prominent compounds, collectively representing 42.4% of the investigated compounds.
Collapse
Affiliation(s)
- Mélanie Silva
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
| | - Dorit Avni
- MIGAL Galilee Institute, Kiryat Shmona 1106000, Israel;
| | - João Varela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
- Green Colab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Luísa Barreira
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
- Green Colab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
4
|
Pedrosa LDF, de Vos P, Fabi JP. Nature's soothing solution: Harnessing the potential of food-derived polysaccharides to control inflammation. Curr Res Struct Biol 2023; 6:100112. [PMID: 38046895 PMCID: PMC10692654 DOI: 10.1016/j.crstbi.2023.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Reducing inflammation by diet is a major goal for prevention or lowering symptoms of a variety of diseases, such as auto-immune reactions and cancers. Natural polysaccharides are increasingly gaining attention due to their potential immunomodulating capacity. Structures of those molecules are highly important for their effects on the innate immune system, cytokine production and secretion, and enzymes in immune cells. Such polysaccharides include β-glucans, pectins, fucoidans, and fructans. To better understand the potential of these immunomodulatory molecules, it is crucial to enhance dedicated research in the area. A bibliometric analysis was performed to set a starting observation point. Major pillars of inflammation, such as pattern recognition receptors (PRRs), enzymatic production of inflammatory molecules, and involvement in specific pathways such as Nuclear-factor kappa-B (NF-kB), involved in cell transcription, survival, and cytokine production, and mitogen-activated protein kinase (MAPK), a regulator of genetic expression, mitosis, and cell differentiation. Therefore, the outcomes from polysaccharide applications in those scenarios are discussed.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (ForC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
| |
Collapse
|
5
|
Nurkolis F, Kurniawan R, Kurniatanty I, Park MN, Moon M, Fatimah S, Gunawan WB, Surya R, Taslim NA, Song H, Kim B. New Insight on In Vitro Biological Activities of Sulfated Polysaccharides from Ulvophyte Green Algae. Molecules 2023; 28:molecules28114531. [PMID: 37299007 DOI: 10.3390/molecules28114531] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Green algae are natural bioresources that have excellent bioactive potential, partly due to sulfated polysaccharides (SPs) which are still rarely explored for their biological activities. There is currently an urgent need for studies exploring the anticancer biological activity of SPs extracted from two Indonesian ulvophyte green algae: the sulfated polysaccharide of Caulerpa racemosa (SPCr) and the sulfated polysaccharide of Caulerpa lentillifera (SPCl). The method of isolating SPs and their assessment of biological activities in this study were based on previous and similar studies. The highest yield sulfate/total sugar ratio was presented by SPCr than that of SPCl. Overall, SPCr exhibits a strong antioxidant activity, as indicated by smaller EC50 values obtained from a series of antioxidant activity assays compared to the EC50 values of Trolox (control). As an anti-obesity and antidiabetic, the overall EC50 value of both SPs was close to the EC50 of the positive control (orlistat and acarbose). Even more interesting was that SPCl displayed wide-ranging anticancer effects on colorectal, hepatoma, breast cancer cell lines, and leukemia. Finally, this study reveals new insights in that SPs from two Indonesian green algae have the potential to be promising nutraceuticals as novel antioxidative actors, and to be able to fight obesity, diabetes, and even cancer.
Collapse
Affiliation(s)
- Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia
| | - Rudy Kurniawan
- Alumnus of Internal Medicine, Faculty of Medicine, University of Indonesia-Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| | - Isma Kurniatanty
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Myunghan Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Siti Fatimah
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia
| | - William Ben Gunawan
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
| | - Reggie Surya
- Department of Food Technology, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Hangyul Song
- Nneul 365 Korean Medical Clinic, Incheon 22397, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Sulfated Polysaccharides from Macroalgae-A Simple Roadmap for Chemical Characterization. Polymers (Basel) 2023; 15:polym15020399. [PMID: 36679279 PMCID: PMC9861475 DOI: 10.3390/polym15020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
The marine environment presents itself as a treasure chest, full of a vast diversity of organisms yet to be explored. Among these organisms, macroalgae stand out as a major source of natural products due to their nature as primary producers and relevance in the sustainability of marine ecosystems. Sulfated polysaccharides (SPs) are a group of polymers biosynthesized by macroalgae, making up part of their cell wall composition. Such compounds are characterized by the presence of sulfate groups and a great structural diversity among the different classes of macroalgae, providing interesting biotechnological and therapeutical applications. However, due to the high complexity of these macromolecules, their chemical characterization is a huge challenge, driving the use of complementary physicochemical techniques to achieve an accurate structural elucidation. This review compiles the reports (2016-2021) of state-of-the-art methodologies used in the chemical characterization of macroalgae SPs aiming to provide, in a simple way, a key tool for researchers focused on the structural elucidation of these important marine macromolecules.
Collapse
|
7
|
Bibliometric Analysis of Marine Traditional Chinese Medicine in Pharmacopoeia of the People's Republic of China: Development, Differences, and Trends Directions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3971967. [PMID: 36605100 PMCID: PMC9810416 DOI: 10.1155/2022/3971967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022]
Abstract
Background Marine traditional Chinese medicine (MTCM) is a class of traditional medicine that has antitumor, anti-inflammatory, and antiviral properties. Bibliometric approaches were used in this study to conduct systematic research in order to gain a complete picture of MTCM research around the world. Methods CiteSpace and NoteExpress software were utilized as tools to examine the information about authors, sources, keywords, etc. Chinese publications were collected from the CNKI, VIP, and WANFANG databases; English publications were collected from the Web of Science database. Results A total of 10080 publications were screened, and the search volume of Chinese literature is greater than that of English literature; Nanjing University of Chinese Medicine, China, and Jeju National University, South Korea, published a greater number of articles than other institutions; the scholars Zhaohui-Zhang and Youjin-Jeon have published the highest number of articles in the world. MTCM of shells was often researched for inorganic elements, and data mining methods were applied frequently; MTCM of animals was commonly used for antifatigue and was taken authenticity identification owing to the scarcity of resources; scholars conducted the most research on MTCM of plants, this category usually for antitumor, anti-inflammatory, and antioxidant purposes, and the mechanisms of action were studied in depth. The Chinese literature has undertaken a multifaceted research study based on the theories of processing and the nature of TCM. In the English literature, in-depth studies have been done from the perspectives of the mechanism of action, the extraction and purification of active substances, etc. Conclusions According to the analysis of keywords, different medicinal parts present their own special research directions, and different research hotspots have also emerged under different medical theories. The development of MTCM is moving in the direction of standardization and modernization, thanks to the development of cross-disciplinary research as well as the use of several new technologies and statistical techniques.
Collapse
|
8
|
Arias A, Feijoo G, Moreira MT. Macroalgae biorefineries as a sustainable resource in the extraction of value-added compounds. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Lee MK, Ryu H, Lee JY, Jeong HH, Baek J, Van JY, Kim MJ, Jung WK, Lee B. Potential Beneficial Effects of Sargassum spp. in Skin Aging. Mar Drugs 2022; 20:540. [PMID: 36005543 PMCID: PMC9410049 DOI: 10.3390/md20080540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Seaweeds are receiving much attention as a rich source of bioactive compounds with cosmeceutical potential. Recent studies have revealed that Sargassum spp., a genus of brown algae in the family Sargassaceae, has multiple functions in preventing and improving skin aging. Sargassum spp. contains many bioactive compounds, such as fucoidan, fucoxanthin, terpenoids, flavonoids, and meroterpenoids. These Sargassum spp. extracts and derivative compounds have excellent potential for skincare, as they exhibit skin health-promoting properties, including antioxidants, anti-inflammation, whitening, skin barrier repair, and moisturizing. Therefore, searching for bioactive compounds in marine resources such as Sargassum spp. could be an attractive approach to preventing and improving skin aging. The current review focused on the various biological abilities of Sargassum extracts or derived compounds for anti-skin aging.
Collapse
Affiliation(s)
- Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Heeyeon Ryu
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Ji Yun Lee
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Hyeon Hak Jeong
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Jiwon Baek
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Ji Yun Van
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Myeong-Jin Kim
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Won-Kyo Jung
- Division of Biomedical Engineering and Research Center for Marine Integrated Bionics Technology, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| |
Collapse
|
10
|
Oliyaei N, Moosavi-Nasab M, Mazloomi SM. Therapeutic activity of fucoidan and carrageenan as marine algal polysaccharides against viruses. 3 Biotech 2022; 12:154. [PMID: 35765662 PMCID: PMC9233728 DOI: 10.1007/s13205-022-03210-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/21/2022] [Indexed: 12/19/2022] Open
|
11
|
Zayed A, Avila-Peltroche J, El-Aasr M, Ulber R. Sulfated Galactofucans: An Outstanding Class of Fucoidans with Promising Bioactivities. Mar Drugs 2022; 20:412. [PMID: 35877705 PMCID: PMC9319086 DOI: 10.3390/md20070412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Fucoidans encompass versatile and heterogeneous sulfated biopolysaccharides of marine origin, specifically brown algae and marine invertebrates. Their chemistry and bioactivities have been extensively investigated in the last few decades. The reported studies revealed diverse chemical skeletons in which l-fucose is the main sugar monomer. However, other sugars, i.e., galactose, mannose, etc., have been identified to be interspersed, forming several heteropolymers, including galactofucans/fucogalactans (G-fucoidans). Particularly, sulfated galactofucans are associated with rich chemistry contributing to more promising bioactivities than fucans and other marine polysaccharides. The previous reports in the last 20 years showed that G-fucoidans derived from Undaria pinnatifida were the most studied; 21 bioactivities were investigated, especially antitumor and antiviral activities, and unique biomedical applications compared to other marine polysaccharides were demonstrated. Hence, the current article specifically reviews the biogenic sources, chemistry, and outstanding bioactivities of G-fucoidans providing the opportunity to discover novel drug candidates.
Collapse
Affiliation(s)
- Ahmed Zayed
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany;
- Department of Pharmacognosy, College of Pharmacy, Tanta University, El-Guish Street (Medical Campus), Tanta 31527, Egypt;
| | | | - Mona El-Aasr
- Department of Pharmacognosy, College of Pharmacy, Tanta University, El-Guish Street (Medical Campus), Tanta 31527, Egypt;
| | - Roland Ulber
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany;
| |
Collapse
|
12
|
Lin P, Chen S, Zhong S. Nutritional and Chemical Composition of Sargassum zhangii and the Physical and Chemical Characterization, Binding Bile Acid, and Cholesterol-Lowering Activity in HepG2 Cells of Its Fucoidans. Foods 2022; 11:foods11121771. [PMID: 35741969 PMCID: PMC9223202 DOI: 10.3390/foods11121771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fucoidan is a marine sulfated polysaccharide that is rich in Sargassum and has a wide range of biological activities. In this study, the chemical composition and bile acid binding ability of six crude fucoidans were compared, the nutrition and chemical composition of Sargassum zhangii were analyzed, and fucoidan from Sargassum zhangii was extracted and purified. The purified fractions (ZF1, ZF2, and ZF3) were analyzed by physicochemical characterization, and the ability of binding bile acid and cholesterol lowering in HepG2 cells were evaluated. The results showed that the contents of sulfate in crude fucoidan from Sargassum Zhangii (ZF) was as high as13.63%. Its ability of binding bile acid was better than other five crude fucoidans. Sargassum zhangii was a kind of brown seaweed with high carbohydrate, and low fat and rich in minerals. The sulfate content of ZF1, ZF2, and ZF3 was 3.29%, 19.39%, and 18.89% respectively, and the molecular weight (Mw) was 4.026 × 105, 2.893 × 105, and 3.368 × 105, respectively. Three fucoidans all contained the characteristic absorption bands of polysaccharides and sulfate groups and were rich in fucose. Three fucoidans can bind to bile acid, and ZF2 showed the best binding capability. In vitro experiments showed that ZF1, ZF2, and ZF3 could reduce intracellular total cholesterol (TC) content in HepG2 cells without affecting their viability. ZF2 showed the best ability to reduce TC.
Collapse
Affiliation(s)
- Peichun Lin
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Suhua Chen
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China;
- Correspondence: ; Tel.: +86-759-239-6026
| | - Siyan Zhong
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China;
| |
Collapse
|
13
|
Chemical characterization of extracts of leaves of Kadsua coccinea (Lem.) A.C. Sm. by UHPLC-Q-Exactive Orbitrap Mass spectrometry and assessment of their antioxidant and anti-inflammatory activities. Biomed Pharmacother 2022; 149:112828. [PMID: 35339830 DOI: 10.1016/j.biopha.2022.112828] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Abstract
Kadsua coccinea (K. coccinea) has long been used as a fruit and folk medicine; however, the composition of its leaves and the activities of its constituents have been seldom studied. A total of 98 chemical constituents, including 53 phenolic acids, 41 flavonoids, and 4 lignans, were identified from the plant of kadsua coccinea by UHPLC-Q-Exactive Orbitrap Mass spectrometry. All these chemicals were reported for the first time in leaves, and 95 of them have been reported for the first time in the plant of kadsua coccinea. The biological potential of extracts of K. coccinea leaves (EKL) was evaluated by in vitro antioxidant assay and anti-inflammatory assay. EKL are composed of polysaccharides (60%), polyphenols (26%), and proteins (11%). EKL present decent potent •OH and DPPH scavenging abilities and Fe2+ chelating ability. They also inhibit the secretion of NO, reduce the level of Cox2 in proteins, inhibit the secretion of pro-inflammatory cytokines, such as IL-2 and IL-6, and promote the secretion of anti-inflammatory cytokine IL-10. These results displayed significant antioxidant and anti-inflammatory activities of EKL, which will be very beneficial for further development and investigation of kadsua coccinea leaves.
Collapse
|
14
|
Zammuto V, Rizzo MG, Spanò A, Spagnuolo D, Di Martino A, Morabito M, Manghisi A, Genovese G, Guglielmino S, Calabrese G, Capparucci F, Gervasi C, Nicolò MS, Gugliandolo C. Effects of crude polysaccharides from marine macroalgae on the adhesion and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
LUO J, LIU XQ, LEE GH, YOOK CS. Inhibition of LPS-induced expression of iNOS and COX-2 on extracts of Acanthopanax leucorrhizus (Oliv.) Harms stems. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.06122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Jiao LUO
- Hunan University of Chinese Medicine, China
| | | | | | | |
Collapse
|
16
|
Xia D, Qiu W, Wang X, Liu J. Recent Advancements and Future Perspectives of Microalgae-Derived Pharmaceuticals. Mar Drugs 2021; 19:703. [PMID: 34940702 PMCID: PMC8703604 DOI: 10.3390/md19120703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
Microalgal cells serve as solar-powered factories that produce pharmaceuticals, recombinant proteins (vaccines and drugs), and valuable natural byproducts that possess medicinal properties. The main advantages of microalgae as cell factories can be summarized as follows: they are fueled by photosynthesis, are carbon dioxide-neutral, have rapid growth rates, are robust, have low-cost cultivation, are easily scalable, pose no risk of human pathogenic contamination, and their valuable natural byproducts can be further processed. Despite their potential, there are many technical hurdles that need to be overcome before the commercial production of microalgal pharmaceuticals, and extensive studies regarding their impact on human health must still be conducted and the results evaluated. Clearly, much work remains to be done before microalgae can be used in the large-scale commercial production of pharmaceuticals. This review focuses on recent advancements in microalgal biotechnology and its future perspectives.
Collapse
Affiliation(s)
- Donghua Xia
- State Key Laboratory of Food Science and Technology, The Engineering Research Center for Biomass Conversion, Nanchang University, Nanchang 330047, China;
| | - Wen Qiu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Xianxian Wang
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany;
| | - Junying Liu
- State Key Laboratory of Food Science and Technology, The Engineering Research Center for Biomass Conversion, Nanchang University, Nanchang 330047, China;
- Pharmaceutical Manufacturing Technology Centre (PMTC), Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| |
Collapse
|