1
|
Liu Y, Cheng L, Lin S, Yang Y, He Y, Su C, Chen J, Lin Z, Hong G. Simple and rapid multicolor sensor for seminal plasma ROS detection based on synergistic catalytic etching of gold nanobipyramids dopped agarose composite gel. Talanta 2025; 282:127042. [PMID: 39406092 DOI: 10.1016/j.talanta.2024.127042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Excessive reactive oxygen species (ROS) in seminal plasma can trigger male infertility. Therefore, the development of simple and rapid ROS detection methods is urgently needed, particularly for the early self-screening of preconception couples. Herein, a gold nanobipyramid (Au NBP)-based colorimetric hydrogel for convenient and fast ROS detection is described. In the hydrogel, Au NBP is etched efficiently by ROS under the synergistic effect of Fe2+and I-, which finally causes color variations. Besides, agarose gel with the function of molecular sieve enables the separation of biomacromolecules, improving the interference resistance of the system and the stability of Au NBP. This chemical sensor can complete all the tests within 20 min, covering two detection range of 10-125 μM at relative low H2O2 concentration and 125-1000 μM at relative high H2O2 concentration, with the detection limits of 1.76 μM and 12.10 μM (S/N = 3) respectively. Furthermore, via visual observation of the color variations, it allows the initial interpretation of ROS concentration without any additional equipment. We applied this device to the detection of ROS in clinical seminal plasma samples and obtained promising results, demonstrating its potential for rapid and convenient detection in clinical applications.
Collapse
Affiliation(s)
- Yating Liu
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Lingjun Cheng
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Shaobin Lin
- Xiamen Key Laboratory of Reproduction and Genetics, Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, People's Republic of China
| | - Yuanyuan Yang
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Yinghao He
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Canping Su
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Jiaming Chen
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, People's Republic of China.
| | - Guolin Hong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| |
Collapse
|
2
|
Syed Mohamad SNA, Khatib A, Mat So'ad SZ, Ahmed QU, Ibrahim Z, Saiman MZ, Hariyadi DM, Susilo A, Samdani MS, Abbas SA, Kanakal MM, Khan A, Kashif M. New α-glucosidase inhibitors and antioxidants in optimized Psychotria malayana Jack leaves extract identified by gC-MS-based metabolomics and in silico molecular docking. Nat Prod Res 2024:1-7. [PMID: 39673736 DOI: 10.1080/14786419.2024.2440789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/28/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
Our earlier research demonstrated α-glucosidase inhibitory (AGI) and antioxidant activities of the optimised extract of Psychotria malayana leaves. It was reported having numerous compounds, although it was unclear which compounds exhibit the bioactivities as well as their binding interaction to the enzyme. This study aimed to identify the compounds possessing AGI and antioxidant activities in the extract utilising GC-MS-based metabolomics, and to analyse the ligand-enzyme binding interactions via in-silico molecular docking. A partial least square was employed to correlate the metabolite profile and bioactivities. The loading plot reveals the bioactive compounds in this extract. The AGI activity of 1-cyclohexene-1-carboxylic, propanoic, butanedioic and D-gluconic acid together with the antioxidant activity of some compounds were reported for the first time through this study. The docking study reveals that all compounds, except for 1-cyclohexene-1-carboxylic acid, exhibit binding to the enzyme's catalytic site. This discovery demonstrates the potential of this plant for diabetes therapy.
Collapse
Affiliation(s)
- Sharifah Nurul Akilah Syed Mohamad
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
- Department of Animal Product Technology, Faculty of Animal Sciences, Universitas Brawijaya, Malang, Indonesia
- Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
- Pharmacy Program, Medical Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | - Siti Zaiton Mat So'ad
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Qamar Uddin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Zalikha Ibrahim
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Mohd Zuwairi Saiman
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Agus Susilo
- Department of Animal Product Technology, Faculty of Animal Sciences, Universitas Brawijaya, Malang, Indonesia
| | | | - Syed Atif Abbas
- Faculty of Pharmacy, Quest International University, Ipoh, Malaysia
| | | | - Abdullah Khan
- Faculty of Pharmacy, Quest International University, Ipoh, Malaysia
| | - Mohammad Kashif
- Analytical Chemistry Section, Department of Chemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
3
|
Aitken RJ, Wilkins A, Harrison N, Kobarfard K, Lambourne S. Towards the Development of Novel, Point-of-Care Assays for Monitoring Different Forms of Antioxidant Activity: The RoXsta TM System. Antioxidants (Basel) 2024; 13:1379. [PMID: 39594521 PMCID: PMC11591381 DOI: 10.3390/antiox13111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/20/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
(1) Background: This study set out to develop a series of simple, novel, rapid methods for assessing different forms of antioxidant activity. (2) Methods: An ABTS platform was used to engineer: (i) an electrochemical post-activation assay to assess free radical scavenging activity; (ii) an electrochemical pre-activation strategy to assesses the suppression of free radical formation; (iii) a horseradish peroxidase-mediated oxidation system to monitor hydrogen peroxide scavenging activity and (iv) a cumene peroxide-hematin system to determine the ability of samples to scavenge the mixture of organic peroxides and peroxyl and alkoxyl radicals generated in the presence of these reagents. Each assay was assessed against a panel of candidate antioxidant compounds to determine their relative activities and specificities. In addition, human semen samples were analyzed to determine how the results of these antioxidant assays correlated with semen quality. (3) Results: All 4 assays revealed dose-dependent antioxidant activity on the part of vitamin C, N-acetyl cysteine, hypotaurine, BSA, melatonin, glutathione, resveratrol and epigallocatechin gallate. The other compounds tested either completely lacked antioxidant activity or were only active in one of the assays. Using unfractionated human semen as an exemplar of biological fluids rich in antioxidants, the outputs from the individual assays were found to reflect different aspects of semen quality. When the data from all 4 assays were combined, accurate predictions were generated reflecting the importance of oxidative stress in defining semen quality as reflected by sperm count, seminal lipid aldehyde content, sperm DNA damage and free radical generation by the sperm mitochondria. (4) Conclusions: The methodologies described in this paper constitute the basis for rapid, point-of-care assessments of oxidative stress.
Collapse
Affiliation(s)
- Robert J. Aitken
- Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia; (A.W.); (N.H.); (K.K.); (S.L.)
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Alexandra Wilkins
- Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia; (A.W.); (N.H.); (K.K.); (S.L.)
| | - Natasha Harrison
- Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia; (A.W.); (N.H.); (K.K.); (S.L.)
| | - Kimia Kobarfard
- Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia; (A.W.); (N.H.); (K.K.); (S.L.)
| | - Sarah Lambourne
- Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia; (A.W.); (N.H.); (K.K.); (S.L.)
| |
Collapse
|
4
|
Salehi P, Sheibak N, Amjadi F, Nejatbakhsh R, Zandieh Z. The effect of myo-inositol antioxidant activity on human sperm parameters and DNA damage in ultra-rapid and conventional freezing methods. Cryobiology 2024; 117:104978. [PMID: 39389224 DOI: 10.1016/j.cryobiol.2024.104978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Male fertility preservation is still challenged by cell damage induced during sperm cryopreservation and impaired sperm structure and function. Sperm ultra-rapid freezing, despite a higher protective effect compared to conventional freezing method, is still associated with suboptimal sperm cryosurvival and needs to be modified to increase its efficiency in sperm protection. Sperm freezing media supplemented with antioxidants can improve sperm parameters following freezing-warming process. In this study, we aimed to investigate the effect of employing ultra-rapid freezing and myo-inositol on sperm cryosurvival. Thirty semen samples with normal sperm parameters were collected and each one was divided into four portions to cryopreserve by conventional freezing, ultra-rapid freezing, conventional freezing + myo-inositol 2 mg/ml, and ultra-rapid freezing + myo-inositol 2 mg/ml. Sperm samples warmed after at least 24 h of freezing and sperm cryosurvival were analyzed by evaluation of sperm motility, viability, morphology and DNA fragmentation index (DFI). Freezing method had a significant influence on post-thaw sperm DFI and morphology (p < 0.05) and the interaction between freezing method and antioxidant supplementation significantly affected sperm morphology (p < 0.05). The highest percentage of sperm normal morphology and minimal DFI was achieved using ultra-rapid freezing supplemented by myo-inositol antioxidant compared to other groups (P < 0.05). The highest sperm DNA damage after freezing-warming was observed following the conventional freezing method. In conclusion, sperm freezing method was identified as factor strongly influencing sperm DFI and morphology after thawing/warming. Sperm samples can be rapidly frozen using the modified freezing media supplemented by myo-inositol without impacting sperm DNA and morphology.
Collapse
Affiliation(s)
- Parastoo Salehi
- Anatomy Department, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | - Nadia Sheibak
- Department of Anatomical Sciences, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fatemehsadat Amjadi
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Reza Nejatbakhsh
- Anatomy Department, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran.
| | - Zahra Zandieh
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Khorsandi L, Varaa N, Dadfar R, Vastegani SM, Yousef AF, Ahangarpour A, Keshavarz-Zarjani A. The protective effect of Ozone on the mice testicular damage induced by methotrexate. JBRA Assist Reprod 2024; 28:464-470. [PMID: 38801315 PMCID: PMC11349260 DOI: 10.5935/1518-0557.20240041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE Methotrexate (MTX) is widely administered for the treatment of various cancers. However, MTX induces male reproductive toxicity. In the current study, the effect of ozone therapy (OT) on reducing the toxic effects of MTX in the mouse testicles has been investigated. METHODS Twenty-four mice were divided into four groups: control, OT (4 mg/kg ozone), MTX (20 mg/kg), and MTX + OT. Testosterone levels, histological changes, and oxidative stress biomarkers were assessed to evaluate the protective effects of OT. RESULTS The results demonstrated that MTX disrupted germinal epithelium, reduced serum testosterone levels, and enhanced oxidative stress in testicular tissue. However, treatment with OT attenuated these adverse effects. OT effectively restored the levels of antioxidant enzymes, such as catalase (CAT), glutathione (GSH), and superoxide dismutase (SOD). OT reduced lipid peroxidation, as indicated by decreased malondialdehyde (MDA) levels. OT preserved normal spermatogenesis, improved morphometric parameters, and reduced histological changes by MTX. Moreover, OT effectively restored testosterone levels. CONCLUSIONS OT protects against MTX-induced testicular damage by suppressing oxidative stress.
Collapse
Affiliation(s)
- Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences
Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,
Iran
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz
Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Negar Varaa
- Department of Anatomical Sciences, Faculty of Medicine, Fasa
University of Medical Sciences, Fasa, Iran
| | - Reza Dadfar
- Department of Anatomical Sciences, Faculty of Medicine, AJA
University of Medical Sciences, Tehran, Iran
| | - Sadegh Moradi Vastegani
- Department of physiology, faculty of medicine, physiology
research center, Ahvaz jundishapur university of Medical Sciences, Ahvaz,
Iran
| | - Asadi-Fard Yousef
- Department of Anatomical Sciences, Faculty of Medicine, Arak
University of Medical Sciences, Arak, Iran
| | - Akram Ahangarpour
- Department of physiology, faculty of medicine, physiology
research center, Ahvaz jundishapur university of Medical Sciences, Ahvaz,
Iran
| | - Amirhesam Keshavarz-Zarjani
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz
Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of
Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Zhang H, Li N, Zhang Y, Xu Y, Lu F, Lin D, Lin S, Li M, Yang B. Ganoderma lucidum Polysaccharide Peptide Alleviates Cyclophosphamide-Induced Male Reproductive Injury by Reducing Oxidative Stress and Apoptosis. Biomedicines 2024; 12:1632. [PMID: 39200097 PMCID: PMC11351902 DOI: 10.3390/biomedicines12081632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Chemotherapy is an important factor leading to male infertility. It is crucial to discover safe and effective treatments to prevent male reproductive injury caused by chemotherapy. The Ganoderma lucidum polysaccharide peptide (GLPP) has multiple pharmacological activities. The purpose of this study was to determine whether GLPP could protect the male sperm production from chemotherapeutic injury using a mouse model, with testicular damage induced by cyclophosphamide (CP). CP (50 mg/kg/day) was injected intraperitoneally into male ICR mice gavaged with different doses of GLPP at certain spermatogenic stages. The experimental results showed that GLPP alleviated the CP-induced reduction in reproductive organ coefficients and sperm parameters and reduced the morphological damage of testicular tissues in a dose-dependent manner. GLPP significantly improved the reproductive index, sperm-related parameters, sex hormone levels, and histological testis architecture at different spermatogenic stages. Furthermore, GLPP significantly increased superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), Nrf2, and HO-1, and decreased malondialdehyde (MDA) and Keap-1 in the testicular tissue, indicating reduced oxidative stress. In addition, GLPP limited CP-induced apoptosis via a reduction in Bax expression and increase in Bcl-2 expression. This study suggests that GLPP plays a protective role in spermatogenesis by reducing chemotherapeutic injury and might be developed into drug for male patients receiving chemotherapy.
Collapse
Affiliation(s)
- Hang Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Nannan Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Yukun Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Yue Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Feng Lu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Dongmei Lin
- China National Engineering Research Center on JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuqian Lin
- China National Engineering Research Center on JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Min Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Baoxue Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| |
Collapse
|
7
|
Abdelnaby EA, Fathi M, Salem NY, Ramadan ES, Yehia SG, Emam IA, Salama A, Samir H, El-Sherbiny HR. Outcomes of dietary alpha-lipoic acid on testicular vascularization, steroid hormones, and seminal quality in aged Baladi bucks. BMC Vet Res 2024; 20:293. [PMID: 38969980 PMCID: PMC11225370 DOI: 10.1186/s12917-024-04134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/12/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Senescence is accompanied by a progressive decrease in male reproductive performance, mainly due to oxidative stress and endothelial dysfunction. Alpha lipoic acid (ALA) is a potent antioxidant, that diffuses freely in aqueous and lipid phases, possessing anti-inflammatory and anti-apoptotic properties. This study aimed to examine the effects of supplemental dietary ALA on testicular hemodynamics (TH), circulating hormones, and semen quality in aged goats. Twelve Baladi bucks were divided into two groups (n = 6 each); the first fed a basic ration and served as a control group (CON), while the second received the basic ration supplemented with 600 mg ALA/ kg daily for consecutive eight weeks (ALA). RESULTS There were improvements in testicular blood flow in the ALA group evidenced by a lower resistance index (RI) and pulsatility index (PI) concurrent with higher pampiniform-colored areas/pixel (W3-W6). There were increases in testicular volume and decreases in echogenicity (W3-W5; ALA vs. CON). Compared to the CON, ALA-bucks had higher serum concentrations of testosterone, estradiol, and nitric oxide (W3-W5). There were enhancements in semen traits (progressive motility, viability, morphology, and concentration, alanine aminotransferase enzyme) and oxidative biomarkers (catalase, total antioxidant capacity, and malondialdehyde). CONCLUSIONS ALA dietary supplementation (600 mg/kg diet) improved aged bucks' reproductive performance by enhancing the testicular volume, testicular hemodynamics, sex steroids, and semen quality.
Collapse
Affiliation(s)
- Elshymaa A Abdelnaby
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Fathi
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Noha Y Salem
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Eman S Ramadan
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Shimaa G Yehia
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ibrahim A Emam
- Department of Surgery, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ali Salama
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Haney Samir
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hossam R El-Sherbiny
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Abu-Risha SE, Sokar SS, Elzorkany KE, Elsisi AE. Donepezil and quercetin alleviate valproate-induced testicular oxidative stress, inflammation and apoptosis: Imperative roles of AMPK/SIRT1/ PGC-1α and p38-MAPK/NF-κB/ IL-1β signaling cascades. Int Immunopharmacol 2024; 134:112240. [PMID: 38744177 DOI: 10.1016/j.intimp.2024.112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The mounting evidence of valproate-induced testicular damage in clinical settings is alarming, especially for men taking valproate (VPA) for long-term or at high doses. Both donepezil (DON) and quercetin (QUE) have promising antioxidant, anti-inflammatory, and anti-apoptotic effects. Therefore, this study aimed to determine whether DON, QUE, and their combination could mitigate VPA-induced testicular toxicity and unravel the mechanisms underlying their protective effect. In this study, male albino rats were randomly categorized into six equal groups: control, VPA (500 mg/kg, I.P., for 14 days), DON (3 and 5 mg/kg), QUE (50 mg/kg), and DON 3 + QUE combination groups. The DON and QUE treatments were administered orally for 7 consecutive days before VPA administration and then concomitantly with VPA for 14 days. VPA administration disrupted testicular function by altering testicular architecture, ultrastructure, reducing sperm count, viability, and serum testosterone levels. Additionally, VPA triggered oxidative damage, inflammatory, and apoptotic processes and suppressed the AMPK/SIRT1/PGC-1α signaling cascade. Pretreatment with DON, QUE, and their combination significantly alleviated histological and ultrastructure damage caused by VPA and increased the serum testosterone level, sperm count, and viability. They also suppressed the oxidative stress by reducing testicular MDA content and elevating SOD activity. In addition, they reduced the inflammatory response by suppressing IL-1β level, NF-κB, and the p38-MAPK expression as well as inhibiting apoptosis by diminishing caspase-3 and increasing Bcl-2 expression. These novel protective effects were mediated by upregulating AMPK/SIRT1/PGC-1α signaling cascade. In conclusion, these findings suggest that DON, QUE, and their combination possess potent protective effects against VPA-induced testicular toxicity.
Collapse
Affiliation(s)
- Sally E Abu-Risha
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Samia S Sokar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Kawthar E Elzorkany
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Alaa E Elsisi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
9
|
Raoofi A, Gholami O, Mokhtari H, Bagheri F, Rustamzadeh A, Nasiry D, Ghaemi A. Caffeine attenuates spermatogenic disorders in mice with induced chronic scrotal hyperthermia. Clin Exp Reprod Med 2024; 51:28-41. [PMID: 38433013 PMCID: PMC10914498 DOI: 10.5653/cerm.2023.06142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/20/2023] [Accepted: 09/19/2023] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE Chronic scrotal hyperthermia (SHT) can lead to serious disorders of the male reproductive system, with oxidative stress playing a key role in the onset of these dysfunctions. Thus, we evaluated the impact of caffeine, a potent antioxidant, on cellular and tissue disorders in mice with chronic SHT. METHODS In this experimental study, 56 adult male NMRI mice were allocated into seven equal groups. Apart from the non-treated control group, all were exposed to heat stress. Two groups, termed "preventive" and "curative," were orally administered caffeine. The preventive mice began receiving caffeine immediately prior to heat exposure, while for the curative group, a caffeine regimen was initiated 15 consecutive days following cessation of heat exposure. Each treated group was subdivided based on pairing with a positive control (Pre/curative [Cur]+PC) or a vehicle (Pre/Cur+vehicle). Upon conclusion of the study, we assessed sperm characteristics, testosterone levels, stereological parameters, apoptosis, antioxidant and oxidant levels, and molecular markers. RESULTS Sperm parameters, testosterone levels, stereological parameters, biochemical factors (excluding malondialdehyde [MDA]), and c-kit gene expression were significantly elevated in the preventive and curative groups, especially the former, relative to the other groups. Conversely, expression levels of the heat shock protein 72 (HSP72) and nuclear factor kappa beta (NF-κβ) genes, MDA levels, and apoptotic cell density were markedly lower in both caffeine-treated groups relative to the other groups, with more pronounced differences observed in the preventive group. CONCLUSION Overall, caffeine attenuated cellular and molecular abnormalities induced by heat stress in the testis, particularly in the mice treated under the preventive condition.
Collapse
Affiliation(s)
- Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Omid Gholami
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hossein Mokhtari
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sar, Iran
| | - Fatemeh Bagheri
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Auob Rustamzadeh
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Nasiry
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sar, Iran
| | - Alireza Ghaemi
- Department of Basic Sciences and Nutrition, Health Sciences Research Center, Faculty of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
10
|
Nasim I, Ghani N, Nawaz R, Irfan A, Arshad M, Nasim M, Raish M, Irshad MA, Ghumman SA, Ahmad A, Bin Jardan YA. Investigating the Impact of Carbon Nanotube Nanoparticle Exposure on Testicular Oxidative Stress and Histopathological Changes in Swiss albino Mice. ACS OMEGA 2024; 9:6731-6740. [PMID: 38371818 PMCID: PMC10870293 DOI: 10.1021/acsomega.3c07919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/20/2024]
Abstract
Carbon nanotubes (CNTs) possess remarkable properties that make them valuable for various industrial applications. However, concerns have arisen regarding their potential adverse health effects, particularly in occupational settings. The main aim of this research was to examine the effects of short-term exposure to multiwalled carbon nanotube nanoparticles (MWCNT-NPs) on testicular oxidative stress in Swiss albino mice, taking into account various factors such as dosage, duration of exposure, and particle size of MWCNT-NP. In this study, 20 mice were used and placed into six different groups randomly. Four of these groups comprised four repetitions each, while the two groups served as the vehicle control with two repetitions each. The experimental groups received MWCNT-NP treatment, whereas the control group remained untreated. The mice in the experimental groups were exposed to MWCNT-NP for either 7 days or 14 days. Through oral administration, the MWCNT-NP solution was introduced at two distinct dosages: 0.45 and 0.90 μg, whereas the control group was subjected to distilled water rather than the MWCNT-NP solution. The investigation evaluated primary oxidative balance indicators-glutathione (GSH) and glutathione disulfide (GSSG)-in response to MWCNT-NP exposure. Significantly, a noticeable reduction in GSH levels and a concurrent increase in GSSG concentrations were observed in comparison to the control group. To better understand and explore the assessment of the redox status, the Nernst equation was used to calculate the redox potential. Intriguingly, the calculated redox potential exhibited a negative value, signifying an imbalance in the oxidative state in the testes. These findings suggest that short-term exposure to MWCNT-NP can lead to the initiation of testicular oxidative stress and may disrupt the male reproductive system. This is evident from the alterations observed in the levels of GSH and GSSG, as well as the negative redox potential. The research offers significant insights into the reproductive effects of exposure to MWCNTs and emphasizes the necessity of assessing oxidative stress in nanomaterial toxicity studies.
Collapse
Affiliation(s)
- Iqra Nasim
- Department
of Environmental Science, Lahore College
for Women University, Lahore 54000, Pakistan
- Department
of Environmental Sciences, The University
of Lahore, Lahore 54000, Pakistan
| | - Nadia Ghani
- Department
of Environmental Science, Lahore College
for Women University, Lahore 54000, Pakistan
| | - Rab Nawaz
- Department
of Environmental Sciences, The University
of Lahore, Lahore 54000, Pakistan
- Faculty
of Engineering and Quantity Surveying, INTI
International University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Ali Irfan
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Arshad
- Department
of Agriculture and Food Technology, Karakoram
International University, Gilgit 15100, Pakistan
| | - Maryam Nasim
- Institute
of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore 54000, Pakistan
- Department
of Allied Health Sciences, Riphah International
University, Islamabad 46000, Pakistan
| | - Mohammad Raish
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Atif Irshad
- Department
of Environmental Sciences, The University
of Lahore, Lahore 54000, Pakistan
| | | | - Ajaz Ahmad
- Department
of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A. Bin Jardan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Syed Mohamad SNA, Khatib A, So’ad SZM, Ahmed QU, Ibrahim Z, Nipun TS, Humaryanto H, AlAjmi MF, Khalifa SAM, El-Seedi HR. In Vitro Anti-Diabetic, Anti-Inflammatory, Antioxidant Activities and Toxicological Study of Optimized Psychotria malayana Jack Leaves Extract. Pharmaceuticals (Basel) 2023; 16:1692. [PMID: 38139818 PMCID: PMC10747829 DOI: 10.3390/ph16121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Psychotria malayana Jack (Family: Rubiaceae, local name: Salung) is a traditional herb used to treat diabetes. A previous study by our research group demonstrated that P. malayana methanolic and water extract exhibits significant potential as an effective agent for managing diabetes. Further research has been performed on the extraction optimization of this plant to enhance its inhibitory activity against α-glucosidase, a key enzyme associated with diabetes, and to reduce its toxicity. The objectives of this study are to evaluate the anti-diabetic, anti-inflammatory, and antioxidant properties of the optimized P. malayana leaf extract (OE), to evaluate its toxicity using a zebrafish embryo/larvae model, and to analyze its metabolites. The anti-diabetic effects were assessed by investigating α-glucosidase inhibition (AGI), while the inflammation inhibitory activity was performed using the soybean lipoxygenase inhibitory (SLOXI) test. The assessment of antioxidant activity was performed utilizing FRAP and DPPH assays. The toxicology study was conducted using the zebrafish embryo/larvae (Danio rerio) model. The metabolites present in the extracts were analyzed using GC-MS and LC-MS. OE demonstrated significant AGI and SLOXI activities, represented as 2.02 and 4.92 µg/mL for IC50 values, respectively. It exhibited potent antioxidant activities as determined by IC50 values of 13.08 µg/mL (using the DPPH assay) and 95.44 mmol TE/mg DW (using the FRAP assay), and also demonstrated an LC50 value of 224.29 µg/mL, which surpasses its therapeutic index of 111.03. OE exhibited a higher therapeutic index compared to that of the methanol extract (13.84) stated in the previous state of the art. This suggests that OE exhibits a lower level of toxicity, making it safer for use, and has the potential to be highly effective in its anti-diabetic activity. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) demonstrated the presence of several constituents in this extract. Among them, several compounds, such as propanoic acid, succinic acid, D-tagatose, myo-inositol, isorhamnetin, moracin M-3'-O-β-D-glucopyranoside, procyanidin B3, and leucopelargonidin, have been reported as possessing anti-diabetic and antioxidant activities. This finding offers great potential for future research in diabetes treatment.
Collapse
Affiliation(s)
- Sharifah Nurul Akilah Syed Mohamad
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
- Central Research and Animal Facility, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia
- Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia
| | - Siti Zaiton Mat So’ad
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Qamar Uddin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Zalikha Ibrahim
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Tanzina Sharmin Nipun
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh;
| | | | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Shaden A. M. Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden;
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing 210024, China
| |
Collapse
|
12
|
Lettieri G, Marinaro C, Brogna C, Montano L, Lombardi M, Trotta A, Troisi J, Piscopo M. A Metabolomic Analysis to Assess the Responses of the Male Gonads of Mytilus galloprovincialis after Heavy Metal Exposure. Metabolites 2023; 13:1168. [PMID: 38132850 PMCID: PMC10744773 DOI: 10.3390/metabo13121168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
In recent years, metabolomics has become a valuable new resource in environmental monitoring programs based on the use of bio-indicators such as Mytilus galloprovincialis. The reproductive system is extremely susceptible to the effects of environmental pollutants, and in a previous paper, we showed metabolomic alterations in mussel spermatozoa exposed to metal chlorides of copper, nickel, and cadmium, and the mixture with these metals. In order to obtain a better overview, in the present work, we evaluated the metabolic changes in the male gonad under the same experimental conditions used in the previous work, using a metabolomic approach based on GC-MS analysis. A total of 248 endogenous metabolites were identified in the male gonads of mussels. Statistical analyses of the data, including partial least squares discriminant analysis, enabled the identification of key metabolites through the use of variable importance in projection scores. Furthermore, a metabolite enrichment analysis revealed complex and significant interactions within different metabolic pathways and between different metabolites. Particularly significant were the results on pyruvate metabolism, glycolysis, and gluconeogenesis, and glyoxylate and dicarboxylate metabolism, which highlighted the complex and interconnected nature of these biochemical processes in mussel gonads. Overall, these results add new information to the understanding of how certain pollutants may affect specific physiological functions of mussel gonads.
Collapse
Affiliation(s)
- Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Carmela Marinaro
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Carlo Brogna
- Department of Research, Craniomed Group Facility S.r.l., 20091 Bresso, Italy
| | - Luigi Montano
- Andrology Unit and Service of LifeStyle Medicine in Uro-Andrology, Local Health Authority (ASL) Salerno, 84084 Salerno, Italy
| | - Martina Lombardi
- Theoreo S.r.l.—Spin-off Company, University of Salerno, 84084 Salerno, Italy
| | - Alessio Trotta
- Theoreo S.r.l.—Spin-off Company, University of Salerno, 84084 Salerno, Italy
| | - Jacopo Troisi
- Theoreo S.r.l.—Spin-off Company, University of Salerno, 84084 Salerno, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| |
Collapse
|
13
|
Makris A, Alevra AI, Exadactylos A, Papadopoulos S. The Role of Melatonin to Ameliorate Oxidative Stress in Sperm Cells. Int J Mol Sci 2023; 24:15056. [PMID: 37894737 PMCID: PMC10606652 DOI: 10.3390/ijms242015056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
It is widely accepted that oxidative stress (OS) coming from a wide variety of causes has detrimental effects on male fertility. Antioxidants could have a significant role in the treatment of male infertility, and the current systematic review on the role of melatonin to ameliorate OS clearly shows that improvement of semen parameters follows melatonin supplementation. Although melatonin has considerable promise, further studies are needed to clarify its ability to preserve or restore semen quality under stress conditions in varied species. The present review examines the actions of melatonin via receptor subtypes and its function in the context of OS across male vertebrates.
Collapse
Affiliation(s)
| | | | | | - Serafeim Papadopoulos
- Hydrobiology-Ichthyology Laboratory, Department of Ichthyology and Aquatic Environment, University of Thessaly, Fytokou Str., 38446 Volos, Greece; (A.M.); (A.I.A.); (A.E.)
| |
Collapse
|
14
|
Romano M, Cirillo F, Spadaro D, Busnelli A, Castellano S, Albani E, Levi-Setti PE. High sperm DNA fragmentation: do we have robust evidence to support antioxidants and testicular sperm extraction to improve fertility outcomes? a narrative review. Front Endocrinol (Lausanne) 2023; 14:1150951. [PMID: 37867514 PMCID: PMC10585152 DOI: 10.3389/fendo.2023.1150951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/01/2023] [Indexed: 10/24/2023] Open
Abstract
To date, infertility affects 10% to 15% of couples worldwide. A male factor is estimated to account for up to 50% of cases. Oral supplementation with antioxidants could be helpful to improve sperm quality by reducing oxidative damage. At the same time, there is a growing interest in the literature on the use of testicular sperm in patients with high DNA fragmentation index (DFI). This narrative review aims to evaluate the effectiveness of supplementation of oral antioxidants in infertile men with high DFI compared to testicular sperm retrieval. The current evidence is non-conclusive because of serious risk of bias due to small sample sizes and statistical methods. Further large well-designed randomised placebo-controlled trials are still required to clarify the exact role of these to different therapeutic approaches.
Collapse
Affiliation(s)
- Massimo Romano
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Federico Cirillo
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Daria Spadaro
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Andrea Busnelli
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Stefano Castellano
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elena Albani
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Paolo Emanuele Levi-Setti
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
15
|
Kaltsas A. Oxidative Stress and Male Infertility: The Protective Role of Antioxidants. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1769. [PMID: 37893487 PMCID: PMC10608597 DOI: 10.3390/medicina59101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Oxidative stress is a significant factor in male infertility, compromising sperm function and overall reproductive health. As male infertility garners increasing attention, effective therapeutic interventions become paramount. This review investigates the therapeutic role of antioxidants in addressing male infertility. A detailed examination was conducted on antioxidants such as vitamin C, E, B12, D, coenzyme Q10, zinc, folic acid, selenium, l-carnitine, l-arginine, inositols, and alpha-lipoic acid. This analysis examines the methodologies, outcomes, and constraints of current clinical studies. Antioxidants show notable potential in counteracting the negative effects of oxidative stress on sperm. Based on the evidence, these antioxidants, individually or synergistically, can enhance sperm health and reproductive outcomes. However, certain limitations in the studies call for careful interpretation. Antioxidants are integral in tackling male infertility attributed to oxidative stress. The current findings underscore their therapeutic value, yet there's a pressing need for deeper, comprehensive research. Future studies should focus on refining dosage guidelines, identifying potential side effects, and discerning the most efficacious antioxidant combinations for male infertility solutions.
Collapse
Affiliation(s)
- Aris Kaltsas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
16
|
Osman R, Lee S, Almubarak A, Han JI, Yu IJ, Jeon Y. Antioxidant Effects of Myo-Inositol Improve the Function and Fertility of Cryopreserved Boar Semen. Antioxidants (Basel) 2023; 12:1673. [PMID: 37759976 PMCID: PMC10525680 DOI: 10.3390/antiox12091673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
During cryopreservation, sperm undergoes structural and molecular changes such as ice crystal formation, DNA fragmentation, and reactive oxygen species (ROS) production, leading to decreased sperm quality after thawing. Antioxidants play a crucial role in preventing these damages, both in vivo and in vitro. One potent antioxidant is myo-inositol, known for its protective effects on sperm against ROS. This study aimed to investigate the protective effect of myo-inositol on cryopreserved boar semen. The semen was diluted, cooled, and cryopreserved using a BF5 extender. It was then divided into five groups: control and different concentrations of myo-inositol (0.5, 1, 1.5, and 2 mg/mL). The post-thaw evaluation included assessments of motility, viability, acrosome integrity, mitochondrial membrane potential (MMP), caspase activity, gene expression, ROS levels, apoptosis, and IVF with treated semen. Results showed that myo-inositol at 0.5 mg/mL improved motility, acrosome integrity, and fertilization ability. It also reduced the expression of pro-apoptotic genes and increased SMCP expression. Lower concentrations also demonstrated improved viability and reduced apoptosis and ROS levels. In conclusion, myo-inositol treatment during cryopreservation improved sperm quality, reduced apoptosis and ROS levels, and enhanced fertility rates in boar semen.
Collapse
Affiliation(s)
- Rana Osman
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
| | - Seongju Lee
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
| | - Areeg Almubarak
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, P.O. Box 204, Hilat Kuku, Khartoum North 11111, Sudan
| | - Jae-Ik Han
- Laboratory of Wildlife Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea;
| | - Il-Jeoung Yu
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
| | - Yubyeol Jeon
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
| |
Collapse
|
17
|
Jawad A, Oh D, Choi H, Kim M, Cai L, Lee J, Hyun SH. Myo-inositol improves the viability of boar sperm during liquid storage. Front Vet Sci 2023; 10:1150984. [PMID: 37565079 PMCID: PMC10411888 DOI: 10.3389/fvets.2023.1150984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Liquid preservation of boar semen is a highly preferred method for semen preservation in pig production. However, oxidative stress is the main challenge during the liquid preservation of boar semen in a time dependent manner. Therefore, supplementation of sperm with antioxidants during storage to protect them from oxidative stress has been the focus of recent research. Myo-inositol (Myo-Ins), the most active form of inositol, which belongs to the vitamin (Vit.) (B1 group has been shown to improve semen quality) (1). This study aimed to investigate whether Myo-Ins supplementation protects boar sperm in liquid preservation against oxidative stress and determine the appropriate concentration of Myo-Ins to be used in this regard. Methods Boar sperm was diluted with a semen extender with different concentrations of Myo-Ins (2, 4, 6, and 8 mg/mL) depending on the previous studies (1, 24). Sperm motility and viability, plasma membrane and acrosome integrity, mitochondrial membrane potential (MMP), semen time survival, and gene expression were measured and analyzed on days 0, 1, 3, 5, and 7 for the different samples. Results Different concentrations of Myo-Ins exerted different protective effects on the boar sperm quality. The addition of 2 mg/mL Myo-Ins resulted in higher sperm motility and viability, plasma membrane and acrosome integrity, MMP, and effective survival time. Investigation of mRNA expression patterns via qRT-PCR suggested that the 2 mg/mL Myo-Ins sample had increased expression of antioxidative genes. Conclusion The addition of Myo-Ins to semen extender improved the boar semen quality by decreasing the effects of oxidative stress during liquid preservation at 17°C. Additionally, 2 mg/mL is the optimum inclusion concentration of Myo-Ins for semen preservation.
Collapse
Affiliation(s)
- Ali Jawad
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| | - Joohyeong Lee
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
18
|
Walke G, Gaurkar SS, Prasad R, Lohakare T, Wanjari M. The Impact of Oxidative Stress on Male Reproductive Function: Exploring the Role of Antioxidant Supplementation. Cureus 2023; 15:e42583. [PMID: 37641770 PMCID: PMC10460465 DOI: 10.7759/cureus.42583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
Male reproductive function is highly susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production and antioxidant defense mechanisms. Oxidative stress can significantly impair sperm quality, including count, motility, morphology, and DNA integrity, leading to male infertility. Antioxidants play a crucial role in maintaining reproductive health by neutralizing ROS and protecting sperm cells from oxidative damage. This review article explores the impact of oxidative stress on male reproductive function and investigates the potential benefits of antioxidant supplementation in mitigating its detrimental effects. A comprehensive literature search was conducted to gather relevant studies examining the effects of oxidative stress on male fertility and the outcomes of antioxidant supplementation. The findings reveal that antioxidant supplementation can improve sperm quality, DNA integrity, and fertility outcomes in some individuals. However, conflicting research findings and limitations in study design highlight the need for further investigation. Factors such as individual variations, underlying causes of infertility, dosage, and duration of supplementation should be carefully considered. Lifestyle modifications, including a healthy diet and exercise, are crucial in reducing oxidative stress and optimizing male reproductive health. This review article provides valuable insights into the complex relationship between oxidative stress and male reproductive function, emphasizing the potential role of antioxidant supplementation as a supportive strategy. Further research is warranted to establish optimal protocols, identify specific subgroups that may benefit the most, and explore advancements in antioxidant therapies to improve male fertility outcomes.
Collapse
Affiliation(s)
- Gireeja Walke
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sagar S Gaurkar
- Department of Otolaryngology - Head and Neck Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Roshan Prasad
- Department of Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tejaswee Lohakare
- Department of Child Health Nursing, Smt. Radhikabai Meghe Memorial College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Mayur Wanjari
- Department of Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
19
|
Kooshesh L, Nateghian Z, Aliabadi E. Evaluation of L-Carnitine Potential in Improvement of Male Fertility. J Reprod Infertil 2023; 24:69-84. [PMID: 37547570 PMCID: PMC10402461 DOI: 10.18502/jri.v24i2.12491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/29/2022] [Indexed: 08/08/2023] Open
Abstract
L-carnitine, through its antioxidant potential, plays a significant role in reducing ROS production in male genital tract; therefore, fundamental improvements in spermatogenesis process and sperm structural and functional parameters in seminal plasma can be observed by treatment with L-carnitine. A literature search was performed using PubMed (including Medline) from the database earliest inception to 2021. Eligibility criteria included studies on protective effects of L-carnitine against damages to the male reproductive system. Based on the findings of the current study, L-carnitine has an effective potential to protect testis and improve conventional and functional sperm parameters against ROS-induced damages by sperm cryopreservation, busulfan treatment, and radiation.
Collapse
Affiliation(s)
- Leila Kooshesh
- Department of Genetics, Fars Academic Center for Education, Culture and Research, ACECR, Shiraz, Iran
| | - Zohre Nateghian
- Islamic Azad University of Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Elham Aliabadi
- Department of Anatomy, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Shi L, Yu XT, Li H, Wu GS, Luo HR. D-chiro-inositol increases antioxidant capacity and longevity of Caenorhabditis elegans via activating Nrf-2/SKN-1 and FOXO/DAF-16. Exp Gerontol 2023; 175:112145. [PMID: 36921677 DOI: 10.1016/j.exger.2023.112145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/26/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
D-chiro-inositol (DCI) is an isomer of inositol, abundant in many foods, such as beans and buckwheat, with insulin-sensitizing, anti-inflammatory, and antioxidant effects. DCI has been used to relieve insulin resistance in diabetes and polycystic ovary syndrome in combination with inositol or D-pinitol. Here, we investigated the effect of DCI on aging and stress resistance in C. elegans. We found that DCI could prolong the lifespan of C. elegans by up to 29.6 %. DCI significantly delayed the onset of neurodegenerative diseases in models of C. elegans. DCI decreased the accumulation of Aβ1-42, alpha-synuclein, and poly-glutamine, the pathological causes of Alzheimer's, Parkinson's, and Huntington's diseases, respectively. DCI significantly increased the stress resistances against pathogens, oxidants and heat shock. Moreover, D-chiro-inositol reduced the content of ROS and malondialdehyde by increasing the total antioxidant capacity and the activity of superoxide dismutase and catalase. Above effects of DCI requires the transcription factors FOXO/DAF-16 and Nrf-2/SKN-1. DCI also increased the expression of downstream genes regulated by FOXO/DAF-16 and Nrf-2/SKN-1. In conclusion, DCI enhanced the antioxidant capacity and healthy lifespan of C. elegans by activating DAF-16, SKN-1, and HSF-1. Our results showed that DCI could be a promising antiaging agent that is worth further research on the mechanism and health supplemental application of DCI.
Collapse
Affiliation(s)
- Lin Shi
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Dazhou Vocational College of Chinese Medicine, Dazhou, Sichuan 635000, China; Department of Pharmacy, the People's Hospital of Zhongjiang, Deyang, Sichuan 618100, China
| | - Xin-Tian Yu
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Han Li
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Gui-Sheng Wu
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China.
| | - Huai-Rong Luo
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Dazhou Vocational College of Chinese Medicine, Dazhou, Sichuan 635000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
21
|
Sadeghi N, Boissonneault G, Tavalaee M, Nasr-Esfahani MH. Oxidative versus reductive stress: a delicate balance for sperm integrity. Syst Biol Reprod Med 2023; 69:20-31. [PMID: 36215401 DOI: 10.1080/19396368.2022.2119181] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Despite the long-standing notion of "oxidative stress," as the main mediator of many diseases including male infertility induced by increased reactive oxygen species (ROS), recent evidence suggests that ROS levels are also increased by "reductive stress," due to over-accumulation of reductants. Damaging mechanisms, like guanidine oxidation followed by DNA fragmentation, could be observed following reductive stress. Excessive accumulation of the reductants may arise from excess dietary supplementation over driving the one-carbon cycle and transsulfuration pathway, overproduction of NADPH through the pentose phosphate pathway (PPP), elevated levels of GSH leading to impaired mitochondrial oxidation, or as a result NADH accumulation. In addition, lower availability of oxidized reductants like NAD+, oxidized glutathione (GSSG), and oxidized thioredoxins (Trx-S2) induce electron leakage leading to the formation of hydrogen peroxide (H2O2). In addition, a lower level of NAD+ impairs poly (ADP-ribose) polymerase (PARP)-regulated DNA repair essential for proper chromatin integrity of sperm. Because of the limited studies regarding the possible involvement of reductive stress, antioxidant therapy remains a central approach in the treatment of male infertility. This review put forward the concept of reductive stress and highlights the potential role played by reductive vs oxidative stress at pre-and post-testicular levels and considering dietary supplementation.
Collapse
Affiliation(s)
- Niloofar Sadeghi
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Guylain Boissonneault
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
22
|
Myo-Inositol Supplementation Alleviates Cisplatin-Induced Acute Kidney Injury via Inhibition of Ferroptosis. Cells 2022; 12:cells12010016. [PMID: 36611810 PMCID: PMC9818458 DOI: 10.3390/cells12010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Myo-inositol, a carbocyclic sugar, is believed to be relevant to renal pathobiology since the kidney is the major site for its catabolism. Its role in acute kidney injury (AKI) has not been fully investigated. Ferroptosis, a unique form of regulated cell death, is involved in various types of renal injuries. The relevance of myo-inositol with respect to the process of ferroptosis has not been explored either. Herein, our current exploratory studies revealed that supplementation of myo-inositol attenuates cisplatin-induced injury in cultured Boston University mouse proximal tubular (BUMPT) cells and renal tubules in vivo. Moreover, our studies unraveled that metabolic parameters pertaining to ferroptosis were disrupted in cisplatin-treated proximal tubular cells, which were seemingly remedied by the administration of myo-inositol. Mechanistically, we noted that cisplatin treatment led to the up-regulation of NOX4, a key enzyme relevant to ferroptosis, which was normalized by the administration of myo-inositol. Furthermore, we observed that changes in the NOX4 expression induced by cisplatin or myo-inositol were modulated by carboxy-terminus of Hsc70-interacting protein (CHIP), an E3 ubiquitin ligase. Taken together, our investigation suggests that myo-inositol promotes CHIP-mediated ubiquitination of NOX4 to decelerate the process of ferroptosis, leading to the amelioration of cisplatin-induced AKI.
Collapse
|
23
|
Li N, Dong X, Fu S, Wang X, Li H, Song G, Huang D. C-Type Natriuretic Peptide (CNP) Could Improve Sperm Motility and Reproductive Function of Asthenozoospermia. Int J Mol Sci 2022; 23:ijms231810370. [PMID: 36142279 PMCID: PMC9499393 DOI: 10.3390/ijms231810370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
This study is to analyze the effect of C-type natriuretic peptide (CNP) on sperm motility of asthenozoospermia and explore the influence mechanism of CNP on the reproductive system and sperm motility. Our results showed that the concentration of CNP in asthenospermia patients’ semen was lower than in normal people’s. The motility of sperm could be improved markedly by CNP and 8-Br-cGMP, while the effect of CNP was inhibited by NPR-B antagonist and KT5823. In the asthenozoospermia mouse model induced by CTX, CNP injection could improve sperm motility in the epididymis, alleviate tissue damage in the testes and epididymis, and increase testosterone levels. The asthenospermia mouse model showed high activity of MDA and proinflammatory factors (TNF-α, IL-6), as well as low expression of antioxidants (SOD, GSH-Px, CAT) in the testis and epididymis, but this situation could be significantly ameliorated after being treated with CNP. Those studies indicated that the concentration of CNP in the semen of asthenospermia patients is lower than in normal people and could significantly promote sperm motility through the NPR-B/cGMP pathway. In the asthenospermia mouse model induced by CTX, CNP can alleviate the damage of cyclophosphamide to the reproductive system and sperm motility. The mechanism may involve increasing testosterone and reducing ROS and proinflammatory factors to damage the tissue and sperm.
Collapse
Affiliation(s)
- Na Li
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinyi Dong
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sen Fu
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyan Wang
- Reproductive Center, Qingdao Women and Children’s Hospital Affiliated to Qingdao University, Qingdao 266034, China
| | - Huaibiao Li
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ge Song
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou 510006, China
- Correspondence: (G.S.); (D.H.); Tel.: +86-13570493366 (G.S.); +86-18872262607 (D.H.)
| | - Donghui Huang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Huazhong University of Science and Technology, Shenzhen 518109, China
- Correspondence: (G.S.); (D.H.); Tel.: +86-13570493366 (G.S.); +86-18872262607 (D.H.)
| |
Collapse
|
24
|
Weston E, Pangilinan F, Eaton S, Orford M, Leung KY, Copp AJ, Mills JL, Molloy AM, Brody LC, Greene NDE. Investigating Genetic Determinants of Plasma Inositol Status in Adult Humans. J Nutr 2022; 152:2333-2342. [PMID: 36774100 PMCID: PMC9644178 DOI: 10.1093/jn/nxac204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Myo-inositol (MI) is incorporated into numerous biomolecules, including phosphoinositides and inositol phosphates. Disturbance of inositol availability or metabolism is associated with various disorders, including neurological conditions and cancers, whereas supplemental MI has therapeutic potential in conditions such as depression, polycystic ovary syndrome, and congenital anomalies. Inositol status can be influenced by diet, synthesis, transport, utilization, and catabolism. OBJECTIVES We aimed to investigate potential genetic regulation of circulating MI status and to evaluate correlation of MI concentration with other metabolites. METHODS GC-MS was used to determine plasma MI concentration of >2000 healthy, young adults (aged 18-28 y) from the Trinity Student Study. Genotyping data were used to test association of plasma MI with single nucleotide polymorphisms (SNPs) in candidate genes, encoding inositol transporters and synthesizing enzymes, and test for genome-wide association. We evaluated potential correlation of plasma MI with d-chiro-inositol (DCI), glucose, and other metabolites by Spearman rank correlation. RESULTS Mean plasma MI showed a small but significant difference between males and females (28.5 and 26.9 μM, respectively). Candidate gene analysis revealed several nominally significant associations with plasma MI, most notably for SLC5A11 (solute carrier family 5 member 11), encoding a sodium-coupled inositol transporter, also known as SMIT2 (sodium-dependent myo-inositol transporter 2). However, these did not survive correction for multiple testing. Subsequent testing for genome-wide association with plasma MI did not identify associations of genome-wide significance (P < 5 × 10-8). However, 8 SNPs exceeded the threshold for suggestive significant association with plasma MI concentration (P < 1 × 10-5), 3 of which were located within or close to genes: MTDH (metadherin), LAPTM4B (lysosomal protein transmembrane 4 β), and ZP2 (zona pellucida 2). We found significant positive correlation of plasma MI concentration with concentration of dci and several other biochemicals including glucose, methionine, betaine, sarcosine, and tryptophan. CONCLUSIONS Our findings suggest potential for modulation of plasma MI in young adults by variation in SLC5A11, which is worthy of further investigation.
Collapse
Affiliation(s)
- Eleanor Weston
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Faith Pangilinan
- Genetics and Environment Interaction Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Simon Eaton
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Michael Orford
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Kit-Yi Leung
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Andrew J Copp
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - James L Mills
- Epidemiology Branch, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anne M Molloy
- Department of Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland
| | - Lawrence C Brody
- Genetics and Environment Interaction Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
25
|
Satarug S, Gobe GC, Vesey DA. Multiple Targets of Toxicity in Environmental Exposure to Low-Dose Cadmium. TOXICS 2022; 10:toxics10080472. [PMID: 36006151 PMCID: PMC9412446 DOI: 10.3390/toxics10080472] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 05/06/2023]
Abstract
Dietary assessment reports and population surveillance programs show that chronic exposure to low levels of environmental cadmium (Cd) is inevitable for most people, and adversely impacts the health of children and adults. Based on a risk assessment model that considers an increase in the excretion of β2-microglobulin (β2M) above 300 μg/g creatinine to be the "critical" toxicity endpoint, the tolerable intake level of Cd was set at 0.83 µg/kg body weight/day, and a urinary Cd excretion rate of 5.24 µg/g creatinine was considered to be the toxicity threshold level. The aim of this review is to draw attention to the many other toxicity endpoints that are both clinically relevant and more appropriate to derive Cd exposure limits than a β2M endpoint. In the present review, we focus on a reduction in the glomerular filtration rate and diminished fecundity because chronic exposure to low-dose Cd, reflected by its excretion levels as low as 0.5 µg/g creatinine, have been associated with dose-dependent increases in risk of these pathological symptoms. Some protective effects of the nutritionally essential elements selenium and zinc are highlighted. Cd-induced mitochondrial dysfunction is discussed as a potential mechanism underlying gonadal toxicities and infertility.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
- Correspondence:
| | - Glenda C. Gobe
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia
| | - David A. Vesey
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane 4075, Australia
| |
Collapse
|
26
|
Abdelnour SA, Swelum AA, Sindi RA, Barkat RA, Khalifa NE, Amin AA, El-Raghi AA, Tufarelli V, Losacco C, Abd El-Hack ME. Responses of sperm mitochondria functionality in animals to thermal stress: The mitigating effects of dietary natural antioxidants. Reprod Domest Anim 2022; 57:1101-1112. [PMID: 35754099 DOI: 10.1111/rda.14193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
The reproductive consequences of global warming representing heat stress (HS) have been widely received more attention in the last decades. HS induced significant influence on the male reproductive cell, especially sperm functionally. Reduction in the sperm function induced by HS leads to failure of fertility potential. The main effects of HS on sperm are reducing sperm motility, increased abnormalities and changes in the fluidity of the membrane as well as cell morphology. Moreover, the destruction of mitochondrial function could be the result of adverse influences of HS. The protein contents and enzymes of mitochondria were lowered after the exposure of sperm to HS. Some natural antioxidants were used for improving sperm mitochondrial function under HS conditions. In this review, it was highlighted the potential influences of HS on sperm function through reduction in ATP Synthesis yield, mitochondrial activity, mitochondrial protein contents and mitochondrial enzymes, which involves the interference of mitochondrial remodelling in sperm of animals.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.,Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| | - Ramya A Sindi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rasha A Barkat
- Department of Physiology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Fuka, Matrouh University, Matrouh, Egypt
| | - Ahmed A Amin
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ali Ali El-Raghi
- Department of Animal Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Vincenzo Tufarelli
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari 'Aldo Moro', Valenzano, Italy
| | - Caterina Losacco
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari 'Aldo Moro', Valenzano, Italy
| | | |
Collapse
|
27
|
Alghobary M, Mostafa T. Addiction and human male fertility: A systematic review and a critical appraisal. Andrology 2022; 10:1073-1095. [PMID: 35588397 DOI: 10.1111/andr.13196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Addiction is a global problem that has many negative consequences on human health as well as the quality of life. OBJECTIVES This review aimed to assess the effect of addiction on human male fertility. METHODS A systematic review was conducted on various electronic sites. RESULTS The initial literature search identified a total of 5239 articles in all searched databases. After removing duplicates and application of inclusion/exclusion criteria,177 were potential articles, 112 were omitted because no direct relevance was encountered. Finally, 65 studies were retained for review. They were classified according to the type of addiction into; opioids and cannabinoids (18 articles), alcohol (7 articles), cocaine (2 articles), Androgenic Anabolic steroids AAS (15 articles), tobacco (10 articles) and caffeine (13 articles). Most of these recruited articles demonstrated a negative impact of the addressed substance on male fertility with variable levels of evidence. CONCLUSIONS It was concluded that addiction harms human male fertility that should be put into consideration. More future studies are needed after a proper methodological and statistical approach, including logistic regression analysis, to predict the effect of a specific substance on human male fertility. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Moheiddin Alghobary
- Department of Dermatology, Andrology & STIs, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Taymour Mostafa
- Department of Andrology, Sexology & STIs, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
28
|
Condorelli RA, Cannarella R, Crafa A, Barbagallo F, Gusmano C, Avola O, Mongioì LM, Basile L, Calogero AE, La Vignera S. Advances in non-hormonal pharmacotherapy for the treatment of male infertility: the role of inositols. Expert Opin Pharmacother 2022; 23:1081-1090. [PMID: 35348407 DOI: 10.1080/14656566.2022.2060076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Several antioxidants are available for the treatment of male infertility. Although the benefit of myo-inositol (MYO) and D-chiro-inositol (DCI) for female infertility is recognized, their role in male infertility is a matter of debate. AREAS COVERED The authors review the impact that treatment with MYO and/or DCI may have on conventional and bio-functional sperm parameters [mitochondrial membrane potential (MMP), sperm chromatin compactness, and sperm DNA fragmentation (SDF)], seminal oxidative stress (OS) and pregnancy, miscarriage, and live birth rates, and the possible mechanisms involved. Furthermore, the authors gather evidence on the effects of MYO and/or DCI on sperm function in vitro. EXPERT OPINION MYO can improve sperm count, motility, capacitation, acrosome reaction, and MMP. No data are currently available on the effects of DCI in vivo. Both MYO and DCI ameliorate sperm motility and MMP in vitro. Therefore, the use of inositols should be preferred in patients with idiopathic asthenozoospermia, especially in case of impaired sperm mitochondrial function. Due to their insulin-sensitizing action, a role for these molecules may be envisaged for the treatment of infertility caused by carbohydrate metabolism derangement.
Collapse
Affiliation(s)
- Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Federica Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carmelo Gusmano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Ottavia Avola
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura M Mongioì
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Livia Basile
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
29
|
Ayad B, Omolaoye TS, Louw N, Ramsunder Y, Skosana BT, Oyeipo PI, Du Plessis SS. Oxidative Stress and Male Infertility: Evidence From a Research Perspective. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:822257. [PMID: 36303652 PMCID: PMC9580735 DOI: 10.3389/frph.2022.822257] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Male fertility potential can be influenced by a variety of conditions that frequently coincide. Spermatozoa are particularly susceptible to oxidative damage due to their limited antioxidant capacity and cell membrane rich in polyunsaturated fatty acids (PUFAs). The role of oxidative stress (OS) in the etiology of male infertility has been the primary focus of our Stellenbosch University Reproductive Research Group (SURRG) over the last 10 years. This review aims to provide a novel insight into the impact of OS on spermatozoa and male reproductive function by reviewing the OS-related findings from a wide variety of studies conducted in our laboratory, along with those emerging from other investigators. We will provide a concise overview of the production of reactive oxygen species (ROS) and the development of OS in the male reproductive tract along with the physiological and pathological effects thereof on male reproductive functions. Recent advances in methods and techniques used for the assessment of OS will also be highlighted. We will furthermore consider the current evidence regarding the association between OS and ejaculatory abstinence period, as well as the potential mechanisms involved in the pathophysiology of various systemic diseases such as obesity, insulin resistance, hypertension, and certain mental health disorders which have been shown to cause OS induced male infertility. Finally, special emphasis will be placed on the potential for transferring and incorporating research findings emanating from different experimental studies into clinical practice.
Collapse
Affiliation(s)
- Bashir Ayad
- Department of Physiology, Faculty of Medicine, Misurata University, Misrata, Libya
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Temidayo S. Omolaoye
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nicola Louw
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Yashthi Ramsunder
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Bongekile T. Skosana
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Peter I. Oyeipo
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Physiology, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Stefan S. Du Plessis
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
30
|
Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. BIOLOGY 2022; 11:biology11020239. [PMID: 35205105 PMCID: PMC8869745 DOI: 10.3390/biology11020239] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The research outlined in this review paper discusses potential health benefits associated with a diet enriched with tomatoes and tomato products. This includes details of previous studies investigating the anticancer properties of tomatoes, protection against cardiovascular and neurodegenerative diseases and diabetes, maintenance of a healthy gut microbiome, and improved skin health, fertility, immune response, and exercise recovery. The specific parts of a tomato fruit that contribute these health benefits are also outlined. The potential disadvantages to a tomato-rich diet are detailed, especially the consumption of supplements that contain compounds found in tomatoes, such as lycopene. This review also discusses how the cultivation of tomato plants can affect the nutritional value of the fruit harvested. Different environmental growing conditions such as light intensity, growing media, and temperature are explained in terms of the impact they have on the quality of fruit, its nutrient content, and hence the potential health benefits acquired from eating the fruit. Abstract This review outlines the health benefits associated with the regular consumption of tomatoes and tomato products. The first section provides a detailed account of the horticultural techniques that can impact the quality of the fruit and its nutritional properties, including water availability, light intensity, temperature, and growing media. The next section provides information on the components of tomato that are likely to contribute to its health effects. The review then details some of the health benefits associated with tomato consumption, including anticancer properties, cardiovascular and neurodegenerative diseases and skin health. This review also discusses the impact tomatoes can have on the gut microbiome and associated health benefits, including reducing the risk of inflammatory bowel diseases. Other health benefits of eating tomatoes are also discussed in relation to effects on diabetes, the immune response, exercise recovery, and fertility. Finally, this review also addresses the negative effects that can occur as a result of overconsumption of tomato products and lycopene supplements.
Collapse
|
31
|
Guerriero G, D’Errico G. Effect of Oxidative Stress on Reproduction and Development. Antioxidants (Basel) 2022; 11:antiox11020312. [PMID: 35204195 PMCID: PMC8868121 DOI: 10.3390/antiox11020312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Giulia Guerriero
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia 6, 80126 Naples, Italy
- Correspondence: (G.G.); (G.D.)
| | - Gerardino D’Errico
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia 4, 80126 Naples, Italy
- Correspondence: (G.G.); (G.D.)
| |
Collapse
|
32
|
Madhu NR, Sarkar B, Slama P, Jha NK, Ghorai SK, Jana SK, Govindasamy K, Massanyi P, Lukac N, Kumar D, Kalita JC, Kesari KK, Roychoudhury S. Effect of Environmental Stressors, Xenobiotics, and Oxidative Stress on Male Reproductive and Sexual Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:33-58. [PMID: 36472815 DOI: 10.1007/978-3-031-12966-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article examines the environmental factor-induced oxidative stress (OS) and their effects on male reproductive and sexual health. There are several factors that induce OS, i.e. radition, metal contamination, xenobiotic compounds, and cigarette smoke and lead to cause toxicity in the cells through metabolic or bioenergetic processes. These environmental factors may produce free radicals and enhance the reactive oxygen species (ROS). Free radicals are molecules that include oxygen and disbalance the amount of electrons that can create major chemical chains in the body and cause oxidation. Oxidative damage to cells may impair male fertility and lead to abnormal embryonic development. Moreover, it does not only cause a vast number of health issues such as ageing, cancer, atherosclerosis, insulin resistance, diabetes mellitus, cardiovascular diseases, ischemia-reperfusion injury, and neurodegenerative disorders but also decreases the motility of spermatozoa while increasing sperm DNA damage, impairing sperm mitochondrial membrane lipids and protein kinases. This chapter mainly focuses on the environmental stressors with further discussion on the mechanisms causing congenital impairments due to poor sexual health and transmitting altered signal transduction pathways in male gonadal tissues.
Collapse
Affiliation(s)
- Nithar Ranjan Madhu
- Department of Zoology, Acharya Prafulla Chandra College, New Barrackpore, Kolkata, West Bengal, India
| | - Bhanumati Sarkar
- Department of Botany, Acharya Prafulla Chandra College, New Barrackpore, Kolkata, West Bengal, India
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | | | - Sandip Kumar Jana
- Department of Zoology, Bajkul Milani Mahavidyalaya, Purba Medinipur, West Bengal, India
| | - Kadirvel Govindasamy
- Animal Production Division, ICAR Research Complex for NEH Region, Indian Council of Agricultural Research, Umiam, Meghalaya, India
| | - Peter Massanyi
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Norbert Lukac
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, India
| | - Jogen C Kalita
- Department of Zoology, Gauhati University, Guwahati, India
| | | | | |
Collapse
|
33
|
Keyser S, van der Horst G, Maree L. Progesterone, Myo-Inositol, Dopamine and Prolactin Present in Follicular Fluid Have Differential Effects on Sperm Motility Subpopulations. Life (Basel) 2021; 11:1250. [PMID: 34833125 PMCID: PMC8617736 DOI: 10.3390/life11111250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Considering the challenges surrounding causative factors in male infertility, rather than relying on standard semen analysis, the assessment of sperm subpopulations and functional characteristics essential for fertilization is paramount. Furthermore, the diagnostic value of sperm interactions with biological components in the female reproductive tract may improve our understanding of subfertility and provide applications in assisted reproductive techniques. We investigated the response of two sperm motility subpopulations (mimicking the functionality of potentially fertile and sub-fertile semen samples) to biological substances present in the female reproductive tract. Donor semen was separated via double density gradient centrifugation, isolated into high (HM) and low motile (LM) sperm subpopulations and incubated in human tubal fluid (HTF), capacitating HTF, HD-C medium, progesterone, myo-inositol, dopamine and prolactin. Treated subpopulations were evaluated for vitality, motility percentages and kinematic parameters, hyperactivation, positive reactive oxygen species (ROS), intact mitochondrial membrane potential (MMP) and acrosome reaction (AR). While all media had a significantly positive effect on the LM subpopulation, dopamine appeared to significantly improve both subpopulations' functional characteristics. HD-C, progesterone and myo-inositol resulted in increased motility, kinematic and hyperactivation parameters, whereas prolactin and myo-inositol improved the LM subpopulations' MMP intactness and reduced ROS. Furthermore, progesterone, myo-inositol and dopamine improved the HM subpopulations' motility parameters and AR. Our results suggest that treatment of sub-fertile semen samples with biological substances present in follicular fluid might assist the development of new strategies for IVF treatment.
Collapse
Affiliation(s)
| | | | - Liana Maree
- Comparative Spermatology Laboratory, Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (S.K.); (G.v.d.H.)
| |
Collapse
|
34
|
Dinicola S, Unfer V, Facchinetti F, Soulage CO, Greene ND, Bizzarri M, Laganà AS, Chan SY, Bevilacqua A, Pkhaladze L, Benvenga S, Stringaro A, Barbaro D, Appetecchia M, Aragona C, Bezerra Espinola MS, Cantelmi T, Cavalli P, Chiu TT, Copp AJ, D’Anna R, Dewailly D, Di Lorenzo C, Diamanti-Kandarakis E, Hernández Marín I, Hod M, Kamenov Z, Kandaraki E, Monastra G, Montanino Oliva M, Nestler JE, Nordio M, Ozay AC, Papalou O, Porcaro G, Prapas N, Roseff S, Vazquez-Levin M, Vucenik I, Wdowiak A. Inositols: From Established Knowledge to Novel Approaches. Int J Mol Sci 2021; 22:10575. [PMID: 34638926 PMCID: PMC8508595 DOI: 10.3390/ijms221910575] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Myo-inositol (myo-Ins) and D-chiro-inositol (D-chiro-Ins) are natural compounds involved in many biological pathways. Since the discovery of their involvement in endocrine signal transduction, myo-Ins and D-chiro-Ins supplementation has contributed to clinical approaches in ameliorating many gynecological and endocrinological diseases. Currently both myo-Ins and D-chiro-Ins are well-tolerated, effective alternative candidates to the classical insulin sensitizers, and are useful treatments in preventing and treating metabolic and reproductive disorders such as polycystic ovary syndrome (PCOS), gestational diabetes mellitus (GDM), and male fertility disturbances, like sperm abnormalities. Moreover, besides metabolic activity, myo-Ins and D-chiro-Ins deeply influence steroidogenesis, regulating the pools of androgens and estrogens, likely in opposite ways. Given the complexity of inositol-related mechanisms of action, many of their beneficial effects are still under scrutiny. Therefore, continuing research aims to discover new emerging roles and mechanisms that can allow clinicians to tailor inositol therapy and to use it in other medical areas, hitherto unexplored. The present paper outlines the established evidence on inositols and updates on recent research, namely concerning D-chiro-Ins involvement into steroidogenesis. In particular, D-chiro-Ins mediates insulin-induced testosterone biosynthesis from ovarian thecal cells and directly affects synthesis of estrogens by modulating the expression of the aromatase enzyme. Ovaries, as well as other organs and tissues, are characterized by a specific ratio of myo-Ins to D-chiro-Ins, which ensures their healthy state and proper functionality. Altered inositol ratios may account for pathological conditions, causing an imbalance in sex hormones. Such situations usually occur in association with medical conditions, such as PCOS, or as a consequence of some pharmacological treatments. Based on the physiological role of inositols and the pathological implications of altered myo-Ins to D-chiro-Ins ratios, inositol therapy may be designed with two different aims: (1) restoring the inositol physiological ratio; (2) altering the ratio in a controlled way to achieve specific effects.
Collapse
Affiliation(s)
- Simona Dinicola
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
| | - Vittorio Unfer
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
| | - Fabio Facchinetti
- Obstetrics and Gynecology Unit, Mother-Infant and Adult Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Christophe O. Soulage
- CarMeN Lab, INSA-Lyon, INSERM U1060, INRA, University Claude Bernard Lyon 1, 69100 Villeurbanne, France;
| | - Nicholas D. Greene
- Newlife Birth Defects Research Centre and Developmental Biology and Cancer Programme, Institute of Child Health, University College London, London WC1E 6BT, UK; (N.D.G.); (A.J.C.)
| | - Mariano Bizzarri
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, Hospital “Filippo Del Ponte”, University of Insubria, 21100 Varese, Italy;
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Arturo Bevilacqua
- Department of Dynamic, Clinical Psychology and Health Studies, Sapienza University, 00161 Rome, Italy;
| | - Lali Pkhaladze
- Zhordania and Khomasuridze Institute of Reproductology, Tbilisi 0112, Georgia;
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy;
| | - Daniele Barbaro
- U.O. Endocrinology in Livorno Hospital, USL Nordovest Toscana, 57100 Livorno, Italy;
| | - Marialuisa Appetecchia
- Oncological Endocrinology Unit, Regina Elena National Cancer Institute, IRCCS, 00161 Rome, Italy;
| | - Cesare Aragona
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
| | | | - Tonino Cantelmi
- Institute for Interpersonal Cognitive Therapy, 00100 Rome, Italy;
| | - Pietro Cavalli
- Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | | | - Andrew J. Copp
- Newlife Birth Defects Research Centre and Developmental Biology and Cancer Programme, Institute of Child Health, University College London, London WC1E 6BT, UK; (N.D.G.); (A.J.C.)
| | - Rosario D’Anna
- Department of Human Pathology, University of Messina, 98122 Messina, Italy;
| | - Didier Dewailly
- Faculty of Medicine, University of Lille, 59000 Lille, France;
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, 04100 Latina, Italy;
| | - Evanthia Diamanti-Kandarakis
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Marousi, 15123 Athens, Greece; (E.D.-K.); (E.K.); (O.P.)
| | - Imelda Hernández Marín
- Human Reproduction Department, Hospital Juárez de México, Universidad Nacional Autónoma de México (UNAM), Mexico City 07760, Mexico;
| | - Moshe Hod
- Department of Obstetrics and Gynecology Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel;
| | - Zdravko Kamenov
- Department of Internal Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Eleni Kandaraki
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Marousi, 15123 Athens, Greece; (E.D.-K.); (E.K.); (O.P.)
| | - Giovanni Monastra
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
| | | | - John E. Nestler
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | | | - Ali C. Ozay
- Department of Obstetrics and Gynecology, Near East University Hospital, Nicosia 99138, Cyprus;
| | - Olga Papalou
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Marousi, 15123 Athens, Greece; (E.D.-K.); (E.K.); (O.P.)
| | | | - Nikos Prapas
- IAKENTRO, Infertility Treatment Center, 54250 Thessaloniki, Greece;
| | - Scott Roseff
- Reproductive Endocrinology and Infertility, South Florida Institute for Reproductive Medicine (IVFMD), Boca Raton, FL 33458, USA;
| | - Monica Vazquez-Levin
- Instituto de Biología y Medicina Experimental (IBYME, CONICET-FIBYME), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Buenos Aires 2490, Argentina;
| | - Ivana Vucenik
- Department of Medical & Research Technology and Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Artur Wdowiak
- Diagnostic Techniques Unit, Medical University of Lublin, 20-081 Lublin, Poland;
| |
Collapse
|