1
|
Raut S, Singh K, Sanghvi S, Loyo-Celis V, Varghese L, Singh E, Gururaja Rao S, Singh H. Chloride ions in health and disease. Biosci Rep 2024; 44:BSR20240029. [PMID: 38573803 PMCID: PMC11065649 DOI: 10.1042/bsr20240029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024] Open
Abstract
Chloride is a key anion involved in cellular physiology by regulating its homeostasis and rheostatic processes. Changes in cellular Cl- concentration result in differential regulation of cellular functions such as transcription and translation, post-translation modifications, cell cycle and proliferation, cell volume, and pH levels. In intracellular compartments, Cl- modulates the function of lysosomes, mitochondria, endosomes, phagosomes, the nucleus, and the endoplasmic reticulum. In extracellular fluid (ECF), Cl- is present in blood/plasma and interstitial fluid compartments. A reduction in Cl- levels in ECF can result in cell volume contraction. Cl- is the key physiological anion and is a principal compensatory ion for the movement of the major cations such as Na+, K+, and Ca2+. Over the past 25 years, we have increased our understanding of cellular signaling mediated by Cl-, which has helped in understanding the molecular and metabolic changes observed in pathologies with altered Cl- levels. Here, we review the concentration of Cl- in various organs and cellular compartments, ion channels responsible for its transportation, and recent information on its physiological roles.
Collapse
Affiliation(s)
- Satish K. Raut
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Kulwinder Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Shridhar Sanghvi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
- Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, U.S.A
| | - Veronica Loyo-Celis
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Liyah Varghese
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Ekam R. Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | | | - Harpreet Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
- Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, U.S.A
| |
Collapse
|
2
|
Manzotti A, Panisi C, Pivotto M, Vinciguerra F, Benedet M, Brazzoli F, Zanni S, Comassi A, Caputo S, Cerritelli F, Chiera M. An in-depth analysis of the polyvagal theory in light of current findings in neuroscience and clinical research. Dev Psychobiol 2024; 66:e22450. [PMID: 38388187 DOI: 10.1002/dev.22450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 09/04/2023] [Accepted: 12/01/2023] [Indexed: 02/24/2024]
Abstract
The polyvagal theory has led to the understanding of the functions of the autonomic nervous system in biological development in humans, since the vagal system, a key structure within the polyvagal theory, plays a significant role in addressing challenges of the mother-child dyad. This article aims to summarize the neurobiological aspects of the polyvagal theory, highlighting some of its strengths and limitations through the lens of new evidence emerging in several research fields-including comparative anatomy, embryology, epigenetics, psychology, and neuroscience-in the 25 years since the theory's inception. Rereading and incorporating the polyvagal idea in light of modern scientific findings helps to interpret the role of the vagus nerve through the temporal dimension (beginning with intrauterine life) and spatial dimension (due to the numerous connections of the vagus with various structures and systems) in the achievement and maintenance of biopsychosocial well-being, from the uterus to adulthood.
Collapse
Affiliation(s)
- Andrea Manzotti
- Division of Neonatology, "V. Buzzi" Children's Hospital, ASST-FBF-Sacco, Milan, Italy
- RAISE Lab, Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Cristina Panisi
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Micol Pivotto
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | | | - Matteo Benedet
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | | | - Silvia Zanni
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Alberto Comassi
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Sara Caputo
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Francesco Cerritelli
- RAISE Lab, Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
| | - Marco Chiera
- RAISE Lab, Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
| |
Collapse
|
3
|
Fang W, Liu L, Yin B, Ke L, Su Y, Liu F, Ma X, Di Q. Heat exposure intervention, anxiety level, and multi-omic profiles: A randomized crossover study. ENVIRONMENT INTERNATIONAL 2023; 181:108247. [PMID: 37871510 DOI: 10.1016/j.envint.2023.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Climate change has led to the frequent occurrence of high-temperature weather, which has various adverse effects on health, ranging from blood metabolism to systemic organ function. In particular, the sequelae of heat stress injury in most people are related to the nervous system. However, the mechanisms between heat stress and mental health conditions, especially heat stress and anxiety, remain unclear. OBJECTIVE We attempted to elucidate the effect of heat exposure intervention on anxiety levels in the population and its mechanism. METHODS We first carried out a randomized controlled trial in 20 college students in Beijing, China, to observe the results of the effects of heat exposure intervention on human anxiety. Then, we collected blood samples before and after heat exposure experiment and used metabolomic and transcriptomic approaches to quantify serum metabolites and ELISA measurements to explore the underlying mechanisms. RESULTS We found that even 1.5-hour heat exposure intervention significantly increased anxiety levels. Heat stress-induced anxiety was mediated by the activation of the HPA axis, inflammation, oxidative stress, and subsequently unbalanced neurotransmitters. Metabolites such as BDNF, GABA, and glucocorticoids released by the adrenal glands are biomarkers of heat stress-induced anxiety. CONCLUSIONS We have demonstrated a causal link between heat stress and anxiety, explored possible biological pathway between heat stress and anxiety. Heat stress can cause the activation of the HPA axis and lead to changes in the body's metabolism, resulting in a series of changes such as inflammation and oxidative stress, leading to anxiety. This study reveals hidden health cost of climate change that has been underexplored, and also reminds us the importance of immediate climate actions.
Collapse
Affiliation(s)
- Wen Fang
- Division of Sports Science & Physical Education, Tsinghua University, Beijing, China
| | - Linfeng Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Bo Yin
- School of Medicine, Tsinghua University, Beijing, China
| | - Limei Ke
- School of Medicine, Tsinghua University, Beijing, China
| | - Yao Su
- National Protein Science Facility, School of Life Science Tsinghua University, Beijing China
| | - Fang Liu
- National Protein Science Facility, School of Life Science Tsinghua University, Beijing China
| | - Xindong Ma
- Division of Sports Science & Physical Education, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Zinellu A, Sedda S, Mangoni AA. Paraoxonase/Arylesterase Activity of Serum Paraoxonase-1 and Schizophrenia: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2023; 12:1484. [PMID: 37627479 PMCID: PMC10451270 DOI: 10.3390/antiox12081484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
The presence of a pro-oxidant state in patients with schizophrenia may account for the increased risk of atherosclerosis and cardiovascular disease in this group and supports the potential utility of circulating biomarkers of oxidative stress for risk stratification and management. We investigated this issue by conducting a systematic review and meta-analysis of the association between the circulating concentrations of paraoxonase-1, an antioxidant calcium-dependent high-density lipoprotein (HDL)-associated esterase, with paraoxonase and arylesterase activity in schizophrenia. We searched electronic databases from inception to 31 May 2023 for studies investigating paraoxonase-1 in patients with schizophrenia and healthy controls and assessed the risk of bias and the certainty of evidence (PROSPERO registration number: CRD42023435442). Thirteen studies were identified for analysis. There were no significant between-group differences in paraoxonase (standard mean difference, SMD = 0.12, 95% CI -0.23 to 0.48, p = 0.50; extremely low certainty of evidence) or arylesterase activity (SMD = -0.08, 95% CI -0.39 to 0.23, p = 0.61; very low certainty of evidence). However, in meta-regression and subgroup analysis we observed significant associations between the SMD of paraoxonase and age (p = 0.003), HDL-cholesterol (p = 0.029), and study country (p = 0.04), and the SMD of arylesterase and age (p = 0.007), body mass index (p = 0.012), HDL-cholesterol (p = 0.002), and pharmacological treatment for schizophrenia (p < 0.001). In the absence of overall between-group differences, our systematic review and meta-analysis suggests that alterations in paraoxonase-1 may reflect a pro-oxidant state in specific subgroups of patients with schizophrenia that require further assessment in appropriately designed studies.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.Z.); (S.S.)
| | - Stefania Sedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.Z.); (S.S.)
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia
| |
Collapse
|
5
|
Shirey KA, Lai W, Sunday ME, Cuttitta F, Blanco JCG, Vogel SN. Novel neuroendocrine role of γ-aminobutyric acid and gastrin-releasing peptide in the host response to influenza infection. Mucosal Immunol 2023; 16:302-311. [PMID: 36965691 PMCID: PMC10330014 DOI: 10.1016/j.mucimm.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Gastrin-releasing peptide (GRP), an evolutionarily conserved neuropeptide, significantly contributes to influenza-induced lethality and inflammation in rodent models. Because GRP is produced by pulmonary neuroendocrine cells (PNECs) in response to γ-aminobutyric acid (GABA), we hypothesized that influenza infection promotes GABA release from PNECs that activate GABAB receptors on PNECs to secrete GRP. Oxidative stress was increased in the lungs of influenza A/PR/8/34 (PR8)-infected mice, as well as serum glutamate decarboxylase 1, the enzyme that converts L-glutamic acid into GABA. The therapeutic administration of saclofen, a GABAB receptor antagonist, protected PR8-infected mice, reduced lung proinflammatory gene expression of C-C chemokine receptor type 2 (Ccr2), cluster of differentiation 68 (Cd68), and Toll like receptor 4 (Tlr4) and decreased the levels of GRP and high-mobility group box 1 (HMGB1) in sera. Conversely, baclofen, a GABAB receptor agonist, significantly increased the lethality and inflammatory responses. The GRP antagonist, NSC77427, as well as the GABAB antagonist, saclofen, blunted the PR8-induced monocyte infiltration into the lung. Together, these data provide the first report of neuroregulatory control of influenza-induced disease.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA.
| | - Wendy Lai
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Mary E Sunday
- Duke University Medical Center, Durham, North Carolina, USA
| | - Frank Cuttitta
- Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | | | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
NKCC1 Deficiency in Forming Hippocampal Circuits Triggers Neurodevelopmental Disorder: Role of BDNF-TrkB Signalling. Brain Sci 2022; 12:brainsci12040502. [PMID: 35448033 PMCID: PMC9030861 DOI: 10.3390/brainsci12040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022] Open
Abstract
The time-sensitive GABA shift from excitatory to inhibitory is critical in early neural circuits development and depends upon developmentally regulated expression of cation-chloride cotransporters NKCC1 and KCC2. NKCC1, encoded by the SLC12A2 gene, regulates neuronal Cl− homeostasis by chloride import working opposite KCC2. The high NKCC1/KCC2 expression ratio decreases in early neural development contributing to GABA shift. Human SLC12A2 loss-of-function mutations were recently associated with a multisystem disorder affecting neural development. However, the multisystem phenotype of rodent Nkcc1 knockout models makes neurodevelopment challenging to study. Brain-Derived Neurotrophic Factor (BDNF)-NTRK2/TrkB signalling controls KCC2 expression during neural development, but its impact on NKCC1 is still controversial. Here, we discuss recent evidence supporting BDNF-TrkB signalling controlling Nkcc1 expression and the GABA shift during hippocampal circuit formation. Namely, specific deletion of Ntrk2/Trkb from immature mouse hippocampal dentate granule cells (DGCs) affects their integration and maturation in the hippocampal circuitry and reduces Nkcc1 expression in their target region, the CA3 principal cells, leading to premature GABA shift, ultimately influencing the establishment of functional hippocampal circuitry and animal behaviour in adulthood. Thus, immature DGCs emerge as a potential therapeutic target as GABAergic transmission is vital for specific neural progenitors generating dentate neurogenesis in early development and the mature brain.
Collapse
|
7
|
Akter A, Islam F, Bepary S, Al-Amin M, Begh MZA, Islam MAFU, Ashraf GM, Baeesa SS, Ullah MF. CNS depressant activities of Averrhoa carambola leaves extract in thiopental-sodium model of Swiss albino mice: implication for neuro-modulatory properties. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01057-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Panisi C, Marini M. Dynamic and Systemic Perspective in Autism Spectrum Disorders: A Change of Gaze in Research Opens to A New Landscape of Needs and Solutions. Brain Sci 2022; 12:250. [PMID: 35204013 PMCID: PMC8870276 DOI: 10.3390/brainsci12020250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/21/2022] Open
Abstract
The first step for a harmonious bio-psycho-social framework in approaching autism spectrum disorders (ASD) is overcoming the conflict between the biological and the psychosocial perspective. Biological research can provide clues for a correct approach to clinical practice, assuming that it would lead to the conceptualization of a pathogenetic paradigm able to account for epidemiologic and clinical findings. The upward trajectory in ASD prevalence and the systemic involvement of other organs besides the brain suggest that the epigenetic paradigm is the most plausible one. The embryo-fetal period is the crucial window of opportunity for keeping neurodevelopment on the right tracks, suggesting that women's health in pregnancy should be a priority. Maladaptive molecular pathways beginning in utero, in particular, a vicious circle between the immune response, oxidative stress/mitochondrial dysfunction, and dysbiosis-impact neurodevelopment and brain functioning across the lifespan and are the basis for progressive multisystemic disorders that account for the substantial health loss and the increased mortality in ASD. Therefore, the biological complexity of ASD and its implications for health requires the enhancement of clinical skills on these topics, to achieve an effective multi-disciplinary healthcare model. Well-balanced training courses could be a promising starting point to make a change.
Collapse
Affiliation(s)
- Cristina Panisi
- Fondazione Istituto Sacra Famiglia ONLUS, Cesano Boscone, 20090 Milan, Italy
| | - Marina Marini
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
9
|
Sutkowy P, Woźniak A, Mila-Kierzenkowska C, Szewczyk-Golec K, Wesołowski R, Pawłowska M, Nuszkiewicz J. Physical Activity vs. Redox Balance in the Brain: Brain Health, Aging and Diseases. Antioxidants (Basel) 2021; 11:antiox11010095. [PMID: 35052600 PMCID: PMC8773223 DOI: 10.3390/antiox11010095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
It has been proven that physical exercise improves cognitive function and memory, has an analgesic and antidepressant effect, and delays the aging of the brain and the development of diseases, including neurodegenerative disorders. There are even attempts to use physical activity in the treatment of mental diseases. The course of most diseases is strictly associated with oxidative stress, which can be prevented or alleviated with regular exercise. It has been proven that physical exercise helps to maintain the oxidant–antioxidant balance. In this review, we present the current knowledge on redox balance in the organism and the consequences of its disruption, while focusing mainly on the brain. Furthermore, we discuss the impact of physical activity on aging and brain diseases, and present current recommendations and directions for further research in this area.
Collapse
|
10
|
Palaniyappan L, Park MTM, Jeon P, Limongi R, Yang K, Sawa A, Théberge J. Is There a Glutathione Centered Redox Dysregulation Subtype of Schizophrenia? Antioxidants (Basel) 2021; 10:1703. [PMID: 34829575 PMCID: PMC8615159 DOI: 10.3390/antiox10111703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia continues to be an illness with poor outcome. Most mechanistic changes occur many years before the first episode of schizophrenia; these are not reversible after the illness onset. A developmental mechanism that is still modifiable in adult life may center on intracortical glutathione (GSH). A large body of pre-clinical data has suggested the possibility of notable GSH-deficit in a subgroup of patients with schizophrenia. Nevertheless, studies of intracortical GSH are not conclusive in this regard. In this review, we highlight the recent ultra-high field magnetic resonance spectroscopic studies linking GSH to critical outcome measures across various stages of schizophrenia. We discuss the methodological steps required to conclusively establish or refute the persistence of GSH-deficit subtype and clarify the role of the central antioxidant system in disrupting the brain structure and connectivity in the early stages of schizophrenia. We propose in-vivo GSH quantification for patient selection in forthcoming antioxidant trials in psychosis. This review offers directions for a promising non-dopaminergic early intervention approach in schizophrenia.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Min Tae M. Park
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
| | - Peter Jeon
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Roberto Limongi
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.Y.); (A.S.)
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.Y.); (A.S.)
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jean Théberge
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|