1
|
Amodeo G, Magni G, Galimberti G, Riboldi B, Franchi S, Sacerdote P, Ceruti S. Neuroinflammation in osteoarthritis: From pain to mood disorders. Biochem Pharmacol 2024; 228:116182. [PMID: 38556026 DOI: 10.1016/j.bcp.2024.116182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Osteoarthritis (OA) is the most common form of musculoskeletal disease, and its prevalence is increasing due to the aging of the population. Chronic pain is the most burdensome symptom of OA that significantly lowers patients' quality of life, also due to its frequent association with emotional comorbidities, such as anxiety and depression. In recent years, both chronic pain and mood alterations have been linked to the development of neuroinflammation in the peripheral nervous system, spinal cord and supraspinal brain areas. Thus, mechanisms at the basis of the development of the neuroinflammatory process may indicate promising targets for novel treatment for pain and affective comorbidities that accompany OA. In order to assess the key role of neuroinflammation in the maintenance of chronic pain and its potential involvement in development of psychiatric components, the monoiodoacetate (MIA) model of OA in rodents has been used and validated. In the present commentary article, we aim to summarize up-to-date results achieved in this experimental model of OA, focusing on glia activation and cytokine production in the sciatic nerve, dorsal root ganglia (DRGs), spinal cord and brain areas. The association of a neuroinflammatory state with the development of pain and anxiety- and depression-like behaviors are discussed. Results suggest that cells and molecules involved in neuroinflammation may represent novel targets for innovative pharmacological treatments of OA pain and mood comorbidities.
Collapse
Affiliation(s)
- Giada Amodeo
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy
| | - Giulia Magni
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy
| | - Giulia Galimberti
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy
| | - Benedetta Riboldi
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy
| | - Silvia Franchi
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy
| | - Paola Sacerdote
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy
| | - Stefania Ceruti
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy.
| |
Collapse
|
2
|
Shahid A, Bhatia M. Hydrogen Sulfide: A Versatile Molecule and Therapeutic Target in Health and Diseases. Biomolecules 2024; 14:1145. [PMID: 39334911 PMCID: PMC11430449 DOI: 10.3390/biom14091145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, research has unveiled the significant role of hydrogen sulfide (H2S) in many physiological and pathological processes. The role of endogenous H2S, H2S donors, and inhibitors has been the subject of studies that have aimed to investigate this intriguing molecule. The mechanisms by which H2S contributes to different diseases, including inflammatory conditions, cardiovascular disease, viral infections, and neurological disorders, are complex. Despite noteworthy progress, several questions remain unanswered. H2S donors and inhibitors have shown significant therapeutic potential for various diseases. This review summarizes our current understanding of H2S-based therapeutics in inflammatory conditions, cardiovascular diseases, viral infections, and neurological disorders.
Collapse
Affiliation(s)
- Aqsa Shahid
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
3
|
Song Y, Wu S, Zhang R, Zhong Q, Zhang X, Sun X. Therapeutic potential of hydrogen sulfide in osteoarthritis development. Front Pharmacol 2024; 15:1336693. [PMID: 38370481 PMCID: PMC10869529 DOI: 10.3389/fphar.2024.1336693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
The pathological mechanisms and treatments of osteoarthritis (OA) are critical topics in medical research. This paper reviews the regulatory mechanisms of hydrogen sulfide (H2S) in OA and the therapeutic potential of H2S donors. The review highlights the importance of changes in the endogenous H2S pathway in OA development and systematically elaborates on the role of H2S as a third gaseous transmitter that regulates inflammation, oxidative stress, and pain associated with OA. It also explains how H2S can lessen bone and joint inflammation by inhibiting leukocyte adhesion and migration, reducing pro-inflammatory mediators, and impeding the activation of key inflammatory pathways such as nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK). Additionally, H2S is shown to mitigate mitochondrial dysfunction and endoplasmic reticulum stress, and to modulate Nrf2, NF-κB, PI3K/Akt, and MAPK pathways, thereby decreasing oxidative stress-induced chondrocyte apoptosis. Moreover, H2S alleviates bone and joint pain through the activation of Kv7, K-ATP, and Nrf2/HO-1-NQO1 pathways. Recent developments have produced a variety of H2S donors, including sustained-release H2S donors, natural H2S donors, and synthetic H2S donors. Understanding the role of H2S in OA can lead to the discovery of new therapeutic targets, while innovative H2S donors offer promising new treatments for patients with OA.
Collapse
Affiliation(s)
- Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyu Wu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qing Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuanming Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Amodeo G, Franchi S, D’Agnelli S, Galimberti G, Baciarello M, Bignami EG, Sacerdote P. Supraspinal neuroinflammation and anxio-depressive-like behaviors in young- and older- adult mice with osteoarthritis pain: the effect of morphine. Psychopharmacology (Berl) 2023; 240:2131-2146. [PMID: 37530884 PMCID: PMC10506934 DOI: 10.1007/s00213-023-06436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
RATIONALE Asteoarthritis (OA) is a leading cause of chronic pain in the elderly population and is often associated with emotional comorbidities such as anxiety and depression. Despite age is a risk factor for both OA and mood disorders, preclinical studies are mainly conducted in young adult animals. OBJECTIVES Here, using young adult (11-week-old) and older adult (20-month-old) mice, we evaluate in a monosodium-iodoacetate-(MIA)-induced OA model the development of anxio-depressive-like behaviors and whether brain neuroinflammation may underlie the observed changes. We also test whether an effective pain treatment may prevent behavioral and biochemical alterations. METHODS Mechanical allodynia was monitored throughout the experimental protocol, while at the end of protocol (14 days), anxio-depressive-like behaviors and cognitive dysfunction were assessed. Neuroinflammatory condition was evaluated in prefrontal cortex, hippocampus and hypothalamus. Serum IFNγ levels were also measured. Moreover, we test the efficacy of a 1-week treatment with morphine (2.5 mg/kg) on pain, mood alterations and neuroinflammation. RESULTS We observed that young adult and older adult controls (CTRs) mice had comparable allodynic thresholds and developed similar allodynia after MIA injection. Older adult CTRs were characterized by altered behavior in the tests used to assess the presence of depression and cognitive impairment and by elevated neuroinflammatory markers in brain areas compared to younger ones. The presence of pain induced depressive-like behavior and neuroinflammation in adult young mice, anxiety-like behavior in both age groups and worsened neuroinflammation in older adult mice. Morphine treatment counteracted pain, anxio-depressive behaviors and neuroinflammatory activation in both young adult and older adult mice. CONCLUSIONS Here, we demonstrated that the presence of chronic pain in young adult mice induces mood alterations and supraspinal biochemical changes and aggravates the alterations already evident in older adult animals. A treatment with morphine, counteracting the pain, prevents the development of anxio-depressive disorders and reduces neuroinflammation.
Collapse
Affiliation(s)
- Giada Amodeo
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Silvia Franchi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Simona D’Agnelli
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giulia Galimberti
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Marco Baciarello
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Elena Giovanna Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Paola Sacerdote
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| |
Collapse
|
5
|
Galimberti G, Amodeo G, Magni G, Riboldi B, Balboni G, Onnis V, Ceruti S, Sacerdote P, Franchi S. Prokineticin System Is a Pharmacological Target to Counteract Pain and Its Comorbid Mood Alterations in an Osteoarthritis Murine Model. Cells 2023; 12:2255. [PMID: 37759478 PMCID: PMC10526764 DOI: 10.3390/cells12182255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease associated with chronic pain. OA pain is often accompanied by mood disorders. We addressed the role of the Prokineticin (PK) system in pain and mood alterations in a mice OA model induced with monosodium iodoacetate (MIA). The effect of a PK antagonist (PC1) was compared to that of diclofenac. C57BL/6J male mice injected with MIA in the knee joint were characterized by allodynia, motor deficits, and fatigue. Twenty-eight days after MIA, in the knee joint, we measured high mRNA of PK2 and its receptor PKR1, pro-inflammatory cytokines, and MMP13. At the same time, in the sciatic nerve and spinal cord, we found increased levels of PK2, PKR1, IL-1β, and IL-6. These changes were in the presence of high GFAP and CD11b mRNA in the sciatic nerve and GFAP in the spinal cord. OA mice were also characterized by anxiety, depression, and neuroinflammation in the prefrontal cortex and hippocampus. In both stations, we found increased pro-inflammatory cytokines. In addition, PK upregulation and reactive astrogliosis in the hippocampus and microglia reactivity in the prefrontal cortex were detected. PC1 reduced joint inflammation and neuroinflammation in PNS and CNS and counteracted OA pain and emotional disturbances.
Collapse
Affiliation(s)
- Giulia Galimberti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (G.G.); (G.A.); (G.M.); (B.R.); (S.C.); (P.S.)
| | - Giada Amodeo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (G.G.); (G.A.); (G.M.); (B.R.); (S.C.); (P.S.)
| | - Giulia Magni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (G.G.); (G.A.); (G.M.); (B.R.); (S.C.); (P.S.)
| | - Benedetta Riboldi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (G.G.); (G.A.); (G.M.); (B.R.); (S.C.); (P.S.)
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (G.B.); (V.O.)
| | - Valentina Onnis
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (G.B.); (V.O.)
| | - Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (G.G.); (G.A.); (G.M.); (B.R.); (S.C.); (P.S.)
| | - Paola Sacerdote
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (G.G.); (G.A.); (G.M.); (B.R.); (S.C.); (P.S.)
| | - Silvia Franchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (G.G.); (G.A.); (G.M.); (B.R.); (S.C.); (P.S.)
| |
Collapse
|
6
|
Rodkin S, Nwosu C, Sannikov A, Raevskaya M, Tushev A, Vasilieva I, Gasanov M. The Role of Hydrogen Sulfide in Regulation of Cell Death following Neurotrauma and Related Neurodegenerative and Psychiatric Diseases. Int J Mol Sci 2023; 24:10742. [PMID: 37445920 DOI: 10.3390/ijms241310742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Injuries of the central (CNS) and peripheral nervous system (PNS) are a serious problem of the modern healthcare system. The situation is complicated by the lack of clinically effective neuroprotective drugs that can protect damaged neurons and glial cells from death. In addition, people who have undergone neurotrauma often develop mental disorders and neurodegenerative diseases that worsen the quality of life up to severe disability and death. Hydrogen sulfide (H2S) is a gaseous signaling molecule that performs various cellular functions in normal and pathological conditions. However, the role of H2S in neurotrauma and mental disorders remains unexplored and sometimes controversial. In this large-scale review study, we examined the various biological effects of H2S associated with survival and cell death in trauma to the brain, spinal cord, and PNS, and the signaling mechanisms underlying the pathogenesis of mental illnesses, such as cognitive impairment, encephalopathy, depression and anxiety disorders, epilepsy and chronic pain. We also studied the role of H2S in the pathogenesis of neurodegenerative diseases: Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, we reviewed the current state of the art study of H2S donors as neuroprotectors and the possibility of their therapeutic uses in medicine. Our study showed that H2S has great neuroprotective potential. H2S reduces oxidative stress, lipid peroxidation, and neuroinflammation; inhibits processes associated with apoptosis, autophagy, ferroptosis and pyroptosis; prevents the destruction of the blood-brain barrier; increases the expression of neurotrophic factors; and models the activity of Ca2+ channels in neurotrauma. In addition, H2S activates neuroprotective signaling pathways in psychiatric and neurodegenerative diseases. However, high levels of H2S can cause cytotoxic effects. Thus, the development of H2S-associated neuroprotectors seems to be especially relevant. However, so far, all H2S modulators are at the stage of preclinical trials. Nevertheless, many of them show a high neuroprotective effect in various animal models of neurotrauma and related disorders. Despite the fact that our review is very extensive and detailed, it is well structured right down to the conclusions, which will allow researchers to quickly find the proper information they are interested in.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Chizaram Nwosu
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Margarita Raevskaya
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Tushev
- Neurosurgical Department, Rostov State Medical University Clinic, 344022 Rostov-on-Don, Russia
| | - Inna Vasilieva
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Polyclinic Therapy, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| |
Collapse
|
7
|
Bai X, Batallé G, Martínez-Martel I, Pol O. Hydrogen Sulfide Interacting with Cannabinoid 2 Receptors during Sciatic Nerve Injury-Induced Neuropathic Pain. Antioxidants (Basel) 2023; 12:1179. [PMID: 37371911 DOI: 10.3390/antiox12061179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Hydrogen sulfide (H2S) donors make opioids more effective in inhibiting nociception during inflammatory and neuropathic pain. We examined whether the analgesic, anxiolytic and/or antidepressant actions of the cannabinoid 2 receptor (CB2R) agonist, JWH-133, might be improved by pretreatment with H2S donors, DADS and GYY4137 in mice with sciatic nerve injury-provoked neuropathy (CCI). The reversion of the antinociceptive effects of these treatments with the CB2R antagonist, AM630, and the regulatory actions of H2S in the phosphorylation of NF-κB inhibitor alpha (IKBα) and in the brain-derived neurotrophic factor (BDNF), CB2R, Nrf2 and heme oxygenase 1 (HO-1) levels in prefrontal cortex (PFC), ventral hippocampus (vHIP) and periaqueductal gray matter (PAG), were examined. Data showed that the analgesic effects of JWH-133, systemically and locally administered, were improved by the DADS or GYY4137 pretreatment. The co-treatment of GYY4137 with JWH-133 also stopped anxiodepressive-like activities that concur with neuropathy. Our data likewise showed that both H2S donors normalized the inflammatory (p-IKBα), neurotrophic (BDNF) variations caused by CCI, increased the expression of CB2R and activated the Nrf2/HO-1 antioxidant pathway in PFC, v-HIP and/or PAG of animals with neuropathic pain. In addition, the blockade of the analgesia produced by high doses of DADS and GYY4137 with AM630 indicated the contribution of the endocannabinoid system in the effects of H2S during neuropathic pain, thus supporting the positive interaction between H2S and CB2R. Therefore, this study demonstrates the potential use of CB2R agonists combined with H2S donors as a possible treatment for peripheral nerve injury-caused neuropathic pain and the associated emotional disturbances.
Collapse
Affiliation(s)
- Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
8
|
Martínez-Martel I, Bai X, Batallé G, Pol O. New Treatment for the Cognitive and Emotional Deficits Linked with Paclitaxel-Induced Peripheral Neuropathy in Mice. Antioxidants (Basel) 2022; 11:antiox11122387. [PMID: 36552595 PMCID: PMC9774817 DOI: 10.3390/antiox11122387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022] Open
Abstract
Chemotherapy-provoked peripheral neuropathy and its linked comorbidities severely reduce the quality of a patient's life. Its therapy is not completely resolved and has become an important clinical challenge. The protective actions of molecular hydrogen (H2) in many neurological disorders have been described, but its effects on memory and the emotional deficits accompanying neuropathic pain induced by chemotherapy remain unknown. In this study, using male mice injected with paclitaxel (PTX), we examined the effects of systemic treatment with hydrogen-rich water (HRW) in: (i) the mechanical and thermal allodynia provoked by PTX and the pathways involved; (ii) the memory deficits, anxiety- and depressive-like behaviors associated with PTX-induced peripheral neuropathy (PIPN); and (iii) the plasticity (p-extracellular signal-regulated protein kinase; p-ERK ½), nociceptive (p-protein kinase B, p-Akt), inflammatory (p-nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha; p-IKBα), and oxidative (4-hydroxynonenal: 4-HNE) alterations provoked by PIPN in the prefrontal cortex (PFC). The results revealed: (1) the antiallodynic actions of HRW administered at one or two times per day during 7 and 3 consecutive days; (2) the participation of Kv7 potassium channels and the Nrf2-heme oxygenase 1-NAD(P)H: quinone oxidoreductase 1 pathway in the painkiller effects of HRW; (3) the inhibition of memory deficits and the anxiodepressive-like behaviors related with PIPN induced by HRW; and (4) the normalization of p-ERK ½, p-Akt and 4-HNE up-regulation and the activation of antioxidant enzymes produced by this treatment in PFC. This study proposes HRW as a possible effective and safe therapy for PIPN and its associated cognitive and emotional deficits.
Collapse
Affiliation(s)
- Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-619-757-054
| |
Collapse
|
9
|
Trummer M, Galardon E, Mayer B, Steiner G, Stamm T, Kloesch B. Polysulfides derived from the hydrogen sulfide and persulfide donor P* inhibit IL-1β-mediated inducible nitric oxide synthase signaling in ATDC5 cells: are CCAAT/enhancer-binding proteins β and δ involved in the anti-inflammatory effects of hydrogen sulfide and polysulfides? Nitric Oxide 2022; 129:41-52. [DOI: 10.1016/j.niox.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
|
10
|
Coral-Pérez S, Martínez-Martel I, Martínez-Serrat M, Batallé G, Bai X, Leite-Panissi CRA, Pol O. Treatment with Hydrogen-Rich Water Improves the Nociceptive and Anxio-Depressive-like Behaviors Associated with Chronic Inflammatory Pain in Mice. Antioxidants (Basel) 2022; 11:2153. [PMID: 36358525 PMCID: PMC9686765 DOI: 10.3390/antiox11112153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 09/25/2023] Open
Abstract
Chronic inflammatory pain is manifested in many diseases. The potential use of molecular hydrogen (H2) as a new therapy for neurological disorders has been demonstrated. Recent studies prove its analgesic properties in animals with neuropathic pain, but the possible antinociceptive, antidepressant, and/or anxiolytic actions of H2 during persistent inflammatory pain have not been investigated. Therefore, using male mice with chronic inflammatory pain incited by the subplantar injection of complete Freud's adjuvant (CFA), we assessed the actions of hydrogen-rich water (HRW) systemically administered on: (1) the nociceptive responses and affective disorders associated and (2) the oxidative (4-hydroxy-2-nonenal; 4-HNE), inflammatory (phosphorylated-NF-kB inhibitor alpha; p-IKBα), and apoptotic (Bcl-2-like protein 4; BAX) changes provoked by CFA in the paws and amygdala. The role of the antioxidant system in the analgesia induced by HRW systemically and locally administered was also determined. Our results revealed that the intraperitoneal administration of HRW, besides reducing inflammatory pain, also inhibited the depressive- and anxiolytic-like behaviors associated and the over expression of 4-HNE, p-IKBα, and BAX in paws and amygdala. The contribution of the nuclear factor erythroid 2-related factor 2/heme oxygenase 1 and NAD(P)H: quinone oxidoreductase 1 pathway in the analgesic activities of HRW, systemically or locally administered, was also shown. These data revealed the analgesic, antidepressant, and anxiolytic actions of HRW. The protective, anti-inflammatory, and antioxidant qualities of this treatment during inflammatory pain were also demonstrated. Therefore, this study proposes the usage of HRW as a potential therapy for chronic inflammatory pain and linked comorbidities.
Collapse
Affiliation(s)
- Santiago Coral-Pérez
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Maria Martínez-Serrat
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Christie R. A. Leite-Panissi
- Department of Psychology, Faculty of Philosophy Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
11
|
Cazuza RA, Batallé G, Bai X, Leite-Panissi CRA, Pol O. Effects of treatment with a carbon monoxide donor and an activator of heme oxygenase 1 on the nociceptive, apoptotic and/or oxidative alterations induced by persistent inflammatory pain in the central nervous system of mice. Brain Res Bull 2022; 188:169-178. [PMID: 35952846 DOI: 10.1016/j.brainresbull.2022.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022]
Abstract
The activation of heme oxygenase 1 (HO-1)/carbon monoxide (CO) inhibits chronic inflammatory pain, but its role in the central nervous system (CNS) is not entirely known. We evaluated whether the treatment with an HO-1 inducer, cobalt protoporphyrin IX (CoPP), or a CO-releasing molecule, tricarbonyldichlororuthenium(II)dimer (CORM-2), modulates the nociceptive, apoptotic and/or oxidative responses provoked by persistent inflammatory pain in the CNS. In C57BL/6 male mice with peripheral inflammation caused by complete Freund's adjuvant (CFA), we assessed the effects of CORM-2 and CoPP on the expression of protein kinase B (Akt), the apoptotic protein BAX, and the antioxidant enzymes HO-1 and NADPH quinone oxidoreductase 1 (NQO1) in the periaqueductal gray matter (PAG), amygdala (AMG), ventral hippocampus (VHPC) and medial septal area (MSA). Our results showed that the increased expression of p-Akt caused by peripheral inflammation in the four analyzed brain areas was reversed by CORM-2 and CoPP therapies. Both treatments also normalized the upregulation of BAX induced by CFA on the VHPC and MSA. Oxidative stress, demonstrated with the decreased expression of HO-1 on the PAG and AMG, was normalized in CORM-2 and CoPP treated animals. CoPP also increased the expression of HO-1 on VHPC, and both treatments up-regulated the NQO1 levels on the PAG of CFA-injected animals. In conclusion, both CORM-2 and CoPP treatments inhibited the nociceptive and apoptotic responses generated by peripheral inflammation and/or potentiated the antioxidant responses in several brain areas revealing the new modulatory effects of these treatments in the CNS of animals with chronic inflammatory pain.
Collapse
Affiliation(s)
- Rafael A Cazuza
- Department of Psychology, Faculty of Philosophy Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Christie R A Leite-Panissi
- Department of Psychology, Faculty of Philosophy Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
12
|
Bai X, Batallé G, Balboni G, Pol O. Hydrogen Sulfide Increases the Analgesic Effects of µ- and δ-Opioid Receptors during Neuropathic Pain: Pathways Implicated. Antioxidants (Basel) 2022; 11:antiox11071321. [PMID: 35883812 PMCID: PMC9311550 DOI: 10.3390/antiox11071321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Recent studies have revealed that hydrogen sulfide (H2S) increases the analgesic actions of the δ-opioid receptor (DOR) in inflammatory pain. However, the possible improvement of the analgesia of μ-opioid receptor (MOR) and DOR agonists during neuropathic pain, through pretreatment with two slow-releasing H2S donors—DADS (diallyl disulfide) and GYY4137 (morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate dichloromethane complex)—is still unknown. In male C57BL/6J mice with neuropathic pain incited by chronic constriction of the sciatic nerve (CCI), we evaluated: (1) the influence of DADS (3.5 mg/kg) and GYY4137 (0.7 mg/kg) on the inhibition of the allodynia and hyperalgesia produced by the systemic or local administration of morphine (3 mg/kg or 65 µg) and UFP-512 (1 mg/kg or 12.5 µg); (2) the reversion of the antinociceptive actions of high doses of DADS (30 mg/kg) and GYY4137 (24 mg/kg) with MOR and DOR antagonists; and (3) the effects of H2S donors on oxidative stress, apoptotic responses, and MOR and DOR expression in the medial septum (MS) and dorsal root ganglia (DRG). The results revealed that both DADS and GYY4137 improved the antiallodynic effects of morphine and UFP-512, possibly by up-regulating MOR and DOR expression in DRG. The administration of MOR and DOR antagonists blocked the analgesic properties of DADS and GYY4137, revealing the feasible participation of the endogenous opioid system in H2S analgesic effects. Moreover, both H2S donors inhibited oxidative stress and apoptosis generated by CCI in the MS and/or DRG. This study suggests the co-treatment of H2S donors with MOR or DOR agonists as a potential therapy for neuropathic pain.
Collapse
Affiliation(s)
- Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (X.B.); (G.B.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (X.B.); (G.B.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gianfranco Balboni
- Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (X.B.); (G.B.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-619-757-054
| |
Collapse
|