1
|
Zhang W, Wu Y, Yuan Y, Wang L, Yu B, Li X, Yao Z, Liang B. Identification of key biomarkers for predicting atherosclerosis progression in polycystic ovary syndrome via bioinformatics analysis and machine learning. Comput Biol Med 2024; 183:109239. [PMID: 39396400 DOI: 10.1016/j.compbiomed.2024.109239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is one of the most significant cardiovascular risk factors, playing vital roles in various cardiovascular diseases such as atherosclerosis (AS). This study attempted to explore key biomarkers for predicting AS in patients with PCOS and to investigate the role of immune cell infiltration in this process. METHODS We downloaded the expression matrix of AS (GSE100927, GSE28829) and PCOS (GSE54248) from the Gene Expression Omnibus (GEO) database. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were used to identify PCOS-related genes in AS. Functional enrichment analysis was employed to reveal underlying mechanisms. Then, Protein-protein interaction (PPI) and three machine learning algorithms were used to screen the hub genes, including the Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Random Forest (RF). Moreover, the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were applied to evaluate the diagnostic value of the nomogram model. Finally, we performed immune cell infiltration and single-gene GSEA. RESULTS A total of 41 genes were identified as PCOS-related genes in AS, with functional analysis indicating that the potential pathogenesis lies in inflammatory and immune responses. Furthermore, we identified two hub genes (MMP9 and P2RY13) by three machine learning algorithms. The nomogram model based on MMP9 and P2RY13 can be used as a new diagnostic model to differentiate AS in PCOS women (AUC>0.9). The calibration curves and DCA curves demonstrated the excellent discriminative ability and clinical practicality of this nomogram. Finally, immune infiltration analysis revealed the disorder of immunocytes in AS. The two gene expressions were negatively correlated with Monocyte and Macrophages M1, while positively correlated with Macrophages M0. Single gene GSEA analysis suggested that the MMP9 and P2RY13 might be involved in the metabolism and inflammation responses. CONCLUSION We identified MMP9 and P2RY13 as the biomarkers and developed a new nomogram for early diagnosing AS based on them in PCOS patients. Our findings may provide new insights into the diagnosis, prevention, and treatment targets of PCOS-associated AS.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Yalin Wu
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Yalin Yuan
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Leigang Wang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Bing Yu
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Xin Li
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Zhong Yao
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Bin Liang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China.
| |
Collapse
|
2
|
Pu C, Wang Y, Xiang H, He J, Sun Q, Yong Y, Chen L, Jiang K, Yang H, Li Y. Zinc-based Polyoxometalate Nanozyme Functionalized Hydrogels for optimizing the Hyperglycemic-Immune Microenvironment to Promote Diabetic Wound Regeneration. J Nanobiotechnology 2024; 22:611. [PMID: 39380018 PMCID: PMC11462698 DOI: 10.1186/s12951-024-02840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/07/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND In diabetic wounds, hyperglycemia-induced cytotoxicity and impaired immune microenvironment plasticity directly hinder the wound healing process. Regulation of the hyperglycemic microenvironment and remodeling of the immune microenvironment are crucial. RESULTS Here, we developed a nanozymatic functionalized regenerative microenvironmental regulator (AHAMA/CS-GOx@Zn-POM) for the effective repair of diabetic wounds. This novel construct integrated an aldehyde and methacrylic anhydride-modified hyaluronic acid hydrogel (AHAMA) and chitosan nanoparticles (CS NPs) encapsulating zinc-based polymetallic oxonate nanozyme (Zn-POM) and glucose oxidase (GOx), facilitating a sustained release of release of both enzymes. The GOx catalyzed glucose to gluconic acid and (H₂O₂), thereby alleviating the effects of the hyperglycemic microenvironment on wound healing. Zn-POM exhibited catalase and superoxide dismutase activities to scavenge reactive oxygen species and H₂O₂, a by-product of glucose degradation. Additionally, Zn-POM induced M1 macrophage reprogramming to the M2 phenotype by inhibiting the MAPK/IL-17 signaling diminishing pro-inflammatory cytokines, and upregulating the expression of anti-inflammatory mediators, thus remodeling the immune microenvironment and enhancing angiogenesis and collagen regeneration within wounds. In a rat diabetic wound model, the application of AHAMA/CS-GOx@Zn-POM enhanced neovascularization and collagen deposition, accelerating the wound healing process. CONCLUSIONS Therefore, the regenerative microenvironment regulator AHAMA/CS-GOx@Zn-POM can achieve the effective conversion of a pathological microenvironment to regenerative microenvironment through integrated control of the hyperglycemic-immune microenvironment, offering a novel strategy for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Chaoyu Pu
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
- Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Yong Wang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Honglin Xiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Jiangtao He
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Qiyuan Sun
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Yuan Yong
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P.R. China
| | - Lu Chen
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Ke Jiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China.
| | - Hanfeng Yang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China.
- Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China.
| | - Yuling Li
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China.
- Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China.
| |
Collapse
|
3
|
Qin P, Zhou P, Huang Y, Long B, Gao R, Zhang S, Zhu B, Li YQ, Li Q. Upregulation of rate-limiting enzymes in cholesterol metabolism by PKCδ mediates endothelial apoptosis in diabetic wound healing. Cell Death Discov 2024; 10:263. [PMID: 38811564 PMCID: PMC11137154 DOI: 10.1038/s41420-024-02030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Diabetic foot ulcer (DFU) is a prevalent complication of diabetes that poses significant challenges in terms of treatment and management. It is characterized by heightened endothelial apoptosis and impaired angiogenesis. In this study, we aimed to investigate the role of protein kinase Cδ (PKCδ) in regulating endothelial apoptosis in diabetic wounds by promoting cholesterol biosynthesis. The expression of PKCδ was increased in human umbilical vascular endothelial cells (HUVECs) cultivated in high glucose medium and skin tissue isolated from diabetic mice. High glucose-induced HUVECs apoptosis was reduced by PKCδ inhibition with siRNA or rottlerin. RNA-seq identified two enzymes, 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), as the downstream of PKCδ. PKCδ knockdown or inhibition suppressed the expression of HMGCS1 and HMGCR and lowered free cholesterol (FC) levels. Cholesterol restored high glucose-induced apoptosis in siRNA- or rottlerin-treated HUVECs. In vivo use of rosuvastatin calcium, an inhibitor of HMGCR, downregulated free cholesterol levels and accelerated the wound healing process. In conclusion, PKCδ expression in endothelial cells was activated by high glucose, which subsequently upregulates the expression of two enzymes catalyzing cholesterol biosynthesis, HMGCS1 and HMGCR. Enhanced cholesterol biosynthesis raises free cholesterol levels, promotes endothelial apoptosis, and finally delays wound healing.
Collapse
Affiliation(s)
- Peiliang Qin
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Zhou
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yating Huang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Binbin Long
- General Surgery Department, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei, China
| | - Ruikang Gao
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shan Zhang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingjie Zhu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi-Qing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Arellano Barcenas A. Clinical application of calcium dobesilate in acute and sub-acute COVID-19: Two case reports. SAGE Open Med Case Rep 2024; 12:2050313X241236148. [PMID: 38495732 PMCID: PMC10943701 DOI: 10.1177/2050313x241236148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
The pathophysiology of the virus causing coronavirus disease 2019, the cytokine storm and severe vasculitis is well known. Diabetic patients and those with microcirculation issues are at risk of complications when diagnosed with coronavirus disease 2019. Calcium dobesilate has been used extensively for microangiopathy, diabetic retinopathy, chronic venous insufficiency, hemorrhoidal and post-thrombotic syndromes. We administered calcium dobesilate to several patients in our coronavirus disease hospital; documenting disease progression outcomes relating to cessation of disease worsening, reduction in glucocorticoid dose and oxygen. We present two case reports: patient 1 with acute and patient 2 with sub-acute coronavirus disease 2019; both patients received standard of care plus calcium dobesilate. Patient 1 achieved clinical, radiographic and laboratory improvements. Patient 2 derived calcium dobesilate benefits during the acute phase of coronavirus disease 2019 negating the need for supplemental oxygen and dose increases of dexamethasone. Further research is required to support the use of calcium dobesilate in coronavirus disease 2019 patients.
Collapse
|
5
|
Zhang W, Jiang H, Wu G, Huang P, Wang H, An H, Liu S, Zhang W. The pathogenesis and potential therapeutic targets in sepsis. MedComm (Beijing) 2023; 4:e418. [PMID: 38020710 PMCID: PMC10661353 DOI: 10.1002/mco2.418] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is defined as "a life-threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection." At present, sepsis continues to pose a grave healthcare concern worldwide. Despite the use of supportive measures in treating traditional sepsis, such as intravenous fluids, vasoactive substances, and oxygen plus antibiotics to eradicate harmful pathogens, there is an ongoing increase in both the morbidity and mortality associated with sepsis during clinical interventions. Therefore, it is urgent to design specific pharmacologic agents for the treatment of sepsis and convert them into a novel targeted treatment strategy. Herein, we provide an overview of the molecular mechanisms that may be involved in sepsis, such as the inflammatory response, immune dysfunction, complement deactivation, mitochondrial damage, and endoplasmic reticulum stress. Additionally, we highlight important targets involved in sepsis-related regulatory mechanisms, including GSDMD, HMGB1, STING, and SQSTM1, among others. We summarize the latest advancements in potential therapeutic drugs that specifically target these signaling pathways and paramount targets, covering both preclinical studies and clinical trials. In addition, this review provides a detailed description of the crosstalk and function between signaling pathways and vital targets, which provides more opportunities for the clinical development of new treatments for sepsis.
Collapse
Affiliation(s)
- Wendan Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Honghong Jiang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Gaosong Wu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Pengli Huang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Haonan Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Huazhasng An
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghaiChina
- The Research Center for Traditional Chinese MedicineShanghai Institute of Infectious Diseases and BiosecurityShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
6
|
Qin P, He C, Ye P, Li Q, Cai C, Li Y. PKCδ regulates the vascular biology in diabetic atherosclerosis. Cell Commun Signal 2023; 21:330. [PMID: 37974282 PMCID: PMC10652453 DOI: 10.1186/s12964-023-01361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Diabetes mellitus, known for its complications, especially vascular complications, is becoming a globally serious social problem. Atherosclerosis has been recognized as a common vascular complication mechanism in diabetes. The diacylglycerol (DAG)-protein kinase C (PKC) pathway plays an important role in atherosclerosis. PKCs can be divided into three subgroups: conventional PKCs (cPKCs), novel PKCs (nPKCs), and atypical PKCs (aPKCs). The aim of this review is to provide a comprehensive overview of the role of the PKCδ pathway, an isoform of nPKC, in regulating the function of endothelial cells, vascular smooth muscle cells, and macrophages in diabetic atherosclerosis. In addition, potential therapeutic targets regarding the PKCδ pathway are summarized. Video Abstract.
Collapse
Affiliation(s)
- Peiliang Qin
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Changhuai He
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pin Ye
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Qiu L, Wang Y, Wang Y, Liu F, Deng S, Xue W, Wang Y. Ursolic Acid Ameliorated Neuronal Damage by Restoring Microglia-Activated MMP/TIMP Imbalance in vitro. Drug Des Devel Ther 2023; 17:2481-2493. [PMID: 37637267 PMCID: PMC10460164 DOI: 10.2147/dddt.s411408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023] Open
Abstract
Purpose The oxygen and glucose deprivation-reoxygenation (OGDR) model is widely used to evaluate ischemic stroke and cerebral ischemia-reperfusion (I/R) injury in vitro. Excessively activated microglia produce pro-inflammatory mediators such as matrix metalloproteinases [MMPs] and their specific inhibitors, tissue inhibitors of metalloproteinases [TIMPs], causing neuronal damage. Ursolic acid (UA) acts as a neuroprotective agent in the rat middle cerebral artery occlusion/reperfusion (MCAO/R) model keeping the MMP/TIMP balance with underlying mechanisms unclear. Our study used OGDR model to determine whether and how UA reduces neuronal damage by reversing MMP/TIMP imbalance caused by microglia in I/R injury in vitro. Methods SH-SY5Y cells were first cultured with 95% N2 and 5% CO2 and then cultivated regularly for OGDR model. Cell viability was tested for a proper UA dose. We established a co-culture system with SH-SY5Y cells and microglia-conditioned medium (MCM) stimulated by lipopolysaccharide (LPS) and interferon-gamma (IFNγ). MMP9 and TIMP1 levels were measured with ELISA assay to confirm the UA effect. We added recombinant MMP9 (rMMP9) and TIMP1 neutralizing antibody (anti-TIMP1) for reconfirmation. Transmission electron microscopy was used to observe cell morphology, and flow cytometry and Annexin V-FITC and PI labeling for apoptotic conditions. We further measured the calcium fluorescence intensity in SH-SY5Y cells. Results The MCM significantly reduced cell viability of SH-SY5Y cells after OGDR (p<0.01), which was restored by UA (0.25 µM) (p<0.05), whereas lactate dehydrogenase activity, intraneuronal Ca2+ concentration, and apoptosis-related indexes were showed significant improvement after UA treatment (p<0.01). UA corrected the MMP/TIMP imbalance by decreasing MMP9 expression and increasing TIMP1 expression in the co-culture system (p<0.01) and the effects of UA on SH-SY5Y cells were mitigated by the administration of rMMP9 and anti-TIMP1 (p<0.01). Conclusion We demonstrated that UA inhibited microglia-induced neuronal cell death in an OGDR model of ischemic reperfusion injury by stabilizing the MMP9/TIMP1 imbalance.
Collapse
Affiliation(s)
- Luying Qiu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yaxuan Wang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yuye Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
- Department of Neurology, China-Japan Friendship Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Fang Liu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Shumin Deng
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Weishuang Xue
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yanzhe Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
8
|
Li C, Xu B, Song H, Xu Y, Shi LZ, Chen XQ, Song ZC. Calcium dobesilate prevents PLD-induced hand-foot syndrome by alleviating capillary endothelial tight junction injury via the HA/CD44 pathway. Am J Cancer Res 2023; 13:3234-3245. [PMID: 37559988 PMCID: PMC10408487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023] Open
Abstract
Pegylated liposomal doxorubicin (PLD) has excellent therapeutic efficacy in the treatment of cancers, but can cause serious adverse reactions such as hand-foot syndrome (HFS). Our previous research suggests that both PLD-induced HFS may be associated with injury to tight junctions (TJs) in the skin and that calcium dobesilate (CaD) can alleviate HFS. However, the underlying molecular mechanism is not well understood. Here, we created an in vitro PLD-treated model using Human Microvascular Endothelial Cell line-1 (HMEC-1) and an in vivo HFS rat model to investigate the underlying pathways. Treatment with PLD increased the expression of HYAL-1, CD44, and hyaluronic acid (HA) concentration, while reducing ZO-1 and Claudin-5 expression. Moreover, PLD treatment induced the degradation of higher molecular weight HA to its lower molecular weight counterpart, elevating the permeability of both HEMC-1 cell membranes and rat paw skin capillaries. AD-01 (CD44 inhibitor) inhibited the effect of PLD on the expression of ZO-1 and Claudin-5. Furthermore, CaD treatment suppressed the expression of HYAL-1 and CD44, mitigated HA degradation, and enhanced the expression of ZO-1 and Claudin-5. This resulted in decreased permeability in HEMC-1 cells and rat skin capillaries. In summary, our data suggest that PLD may promote the destruction of TJs via the HA/CD44 pathway, thereby leading to HFS through increased skin permeability and exacerbated doxorubicin extravasation. Moreover, CaD can inhibit this pathway, offering a potential therapeutic avenue to alleviate HFS.
Collapse
Affiliation(s)
- Chao Li
- Department of Breast Center, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, P. R. China
| | - Bin Xu
- Department of Breast Center, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, P. R. China
| | - Heng Song
- Department of Breast Center, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, P. R. China
| | - Yu Xu
- Department of Breast Center, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, P. R. China
| | - Ling-Zi Shi
- Department of Breast Center, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, P. R. China
| | - Xiao-Qing Chen
- Department of Breast Center, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, P. R. China
| | - Zhen-Chuan Song
- Department of Breast Center, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, P. R. China
- Key Laboratory for Breast Cancer Molecular Medicine of Hebei ProvinceShijiazhuang 050000, Hebei, P. R. China
| |
Collapse
|
9
|
Yu D, Chang Z, Liu X, Chen P, Zhang H, Qin Y. Macrophage-derived exosomes regulate gastric cancer cell oxaliplatin resistance by wrapping circ 0008253. Cell Cycle 2023; 22:705-717. [PMID: 36416404 PMCID: PMC9980452 DOI: 10.1080/15384101.2022.2146839] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/02/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Oxaliplatin (OXA) is a first-line chemotherapy drug for gastric cancer. We aimed to investigate the effect of circ 0008253, contained in M2 polarized macrophage-derived exosomes, on OXA resistance of gastric carcinoma cells. Flow cytometry was performed to detect the differentiation of macrophages and cell apoptosis. Cell Counting Kit-8 assay was conducted to examine the cell viability. Transmission electron microscopy, Nanoparticle Tracking Analysis, Western bolt, and Immunofluorescence were carried out. Cell proliferation was detected with a colony formation experiment. Levels of CD206, Arg1, IL-10, and TGF-β were increased in M2 polarized macrophages. Cell viability was decreased gradually with the increase of time and OXA concentration. Apoptosis of gastric carcinoma cells was decreased after co-culture with M2-polarized macrophages. Exosomes isolated from M2-polarized macrophages (M2-Exos) could be co-located with gastric carcinoma cells. M2-Exos enhanced drug resistance, reduced apoptosis and OXA resistance. Bioinformatics analysis showed that circ 0008253 could be transferred from M2-Exos to gastric carcinoma cells. Overexpressing circ 0008253 increased cell viability, tumor size, and ABCG2 levels, decreased OXA sensitivity. Circ 0008253, contained in M2-Exos, was directly transferred from tumor-associated macrophage to gastric carcinoma cells, finally enhancing OXA resistance.
Collapse
Affiliation(s)
- Dandan Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Zhiwei Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Xiaolei Liu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Pengfei Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Huixian Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
10
|
Shu S, Wang H, Zhu J, Fu Y, Cai J, Chen A, Tang C, Dong Z. Endoplasmic reticulum stress contributes to cisplatin-induced chronic kidney disease via the PERK-PKCδ pathway. Cell Mol Life Sci 2022; 79:452. [PMID: 35895146 PMCID: PMC11072288 DOI: 10.1007/s00018-022-04480-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cisplatin is an effective chemotherapeutic drug, but it may induce both acute and chronic kidney problems. The pathogenesis of chronic kidney disease (CKD) associated with cisplatin chemotherapy remains largely unclear. METHODS Mice and renal tubular cells were subjected to repeated low-dose cisplatin (RLDC) treatment to induce CKD and related pathological changes. The roles of endoplasmic reticulum (ER) stress, PERK, and protein kinase C-δ (PKCδ) were determined using pharmacological inhibitors and genetic manipulation. RESULTS ER stress was induced by RLDC in kidney tubular cells in both in vivo and in vitro models. ER stress inhibitors given immediately after RLDC attenuated kidney dysfunction, tubular atrophy, kidney fibrosis, and inflammation in mice. In cultured renal proximal tubular cells, inhibitors of ER stress or its signaling kinase PERK also suppressed RLDC-induced fibrotic changes and the expression of inflammatory cytokines. Interestingly, RLDC-induced PKCδ activation, which was blocked by ER stress or PERK inhibitors, suggesting PKCδ may act downstream of PERK. Indeed, suppression of PKCδ with a kinase-dead PKCδ (PKCδ-KD) or Pkcδ-shRNA attenuated RLDC-induced fibrotic and inflammatory changes. Moreover, the expression of active PKCδ-catalytic fragment (PKCδ-CF) diminished the beneficial effects of PERK inhibitor in RLDC-treated cells. Co-immunoprecipitation assay further suggested PERK binding to PKCδ. CONCLUSION These results indicate that ER stress contributes to chronic kidney pathologies following cisplatin chemotherapy via the PERK-PKCδ pathway.
Collapse
Affiliation(s)
- Shaoqun Shu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jiefu Zhu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Fu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Juan Cai
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Anqun Chen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Chengyuan Tang
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Zheng Dong
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
11
|
Yin B, Wang YB, Li X, Hou XW. β‑aminoisobutyric acid ameliorates hypertensive vascular remodeling via activating the AMPK/SIRT1 pathway in VSMCs. Bioengineered 2022; 13:14382-14401. [PMID: 36694438 PMCID: PMC9995136 DOI: 10.1080/21655979.2022.2085583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) play a fundamental role in the pathogenesis of hypertension-related vascular remodeling. β-aminoisobutyric acid (BAIBA) is a nonprotein β-amino acid with multiple pharmacological actions. Recently, BAIBA has been shown to attenuate salt‑sensitive hypertension, but the role of BAIBA in hypertension-related vascular remodeling has yet to be fully clarified. This study examined the potential roles and underlying mechanisms of BAIBA in VSMC proliferation and migration induced by hypertension. Primary VSMCs were cultured from the aortas of Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Our results showed that BAIBA pretreatment obviously alleviated the phenotypic transformation, proliferation, and migration of SHR-derived VSMCs. Exogenous BAIBA significantly inhibited the release of inflammatory cytokines by diminishing phosphorylation and nuclear translocation of p65 NFκB, retarding IκBα phosphorylation and degradation, as well as erasing STAT3 phosphorylation in VSMCs. Supplementation of BAIBA triggered Nrf2 dissociation from Keap1 and inhibited oxidative stress in VSMCs from SHR. Mechanistically, activation of the AMPK/sirtuin 1 (SIRT1) axis was required for BAIBA to cube hypertension-induced VSMC proliferation, migration, oxidative damage and inflammatory response. Most importantly, exogenous BAIBA alleviated hypertension, ameliorated vascular remodeling and fibrosis, abated vascular oxidative burst and inflammation in SHR, an effect that was abolished by deficiency of AMPKα1 and SIRT1. BAIBA might serve as a novel therapeutic agent to prevent vascular remodeling in the context of hypertension.
Collapse
Affiliation(s)
- Bo Yin
- Department of General Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yu-Bin Wang
- Department of General Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiang Li
- Department of General Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xu-Wei Hou
- Department of Human Anatomy, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|