1
|
Abdel-Hamid HA, Marey H, Fouli Gaber Ibrahim M. Hydrogen sulfide protects the endometrium in a rat model of type 1 diabetes via modulation of PPARγ/mTOR and Nrf-2/NF-κb pathways. Arch Physiol Biochem 2024; 130:909-920. [PMID: 38685691 DOI: 10.1080/13813455.2024.2347239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/25/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Diabetes is one of the leading causes of endometrial diseases in women. No study has addressed the influence of hydrogen sulphide (H2S) donors on endometrial injury on top of type 1 diabetes. This research was conducted to study either the effect of sodium hydrosulphide (NaHS), the H2S donor, or DL-propargylglycine (PAG), the inhibitor of endogenous H2S production, on the endometrium of diabetic rats. A total of 40 female Wistar rats were separated into control group, diabetic group, diabetic group treated with NaHS and diabetic group treated with PAG. Serum levels of insulin, glucose, total cholesterol (TC) and triglycerides (TG) were assessed. Uterine tissue markers of oxidative stress, inflammation, apoptosis and cell proliferation were analysed. Diabetes-induced endometrial overgrowth associated with oxidative stress, inflammation and inhibition of apoptosis. NaHS administration reversed the previous conditions while PAG administration got them worse. We concluded that H2S prevented endometrial overgrowth in a rat model of type 1 diabetes through modulation of PPARγ/mTOR and Nrf-2/NF-κB pathways.
Collapse
Affiliation(s)
- Heba A Abdel-Hamid
- Department of Medical Physiology, Faculty of Medicine, Minia University, Minia, Egypt
- Department of Medical Physiology, Faculty of Medicine, Al-Baha University, KSA
| | - Heba Marey
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | | |
Collapse
|
2
|
Ye Q, Ren M, Fan D, Mao Y, Zhu YZ. Identification and Validation of the miR/RAS/RUNX2 Autophagy Regulatory Network in AngII-Induced Hypertensive Nephropathy in MPC5 Cells Treated with Hydrogen Sulfide Donors. Antioxidants (Basel) 2024; 13:958. [PMID: 39199205 PMCID: PMC11351630 DOI: 10.3390/antiox13080958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
The balanced crosstalk between miRNAs and autophagy is essential in hypertensive nephropathy. Hydrogen sulfide donors have been reported to attenuate renal injury, but the mechanism is unclear. We aimed to identify and verify the miRNAs and autophagy regulatory networks in hypertensive nephropathy treated with hydrogen sulfide donors through bioinformatics analysis and experimental verification. From the miRNA dataset, autophagy was considerably enriched in mice kidney after angiotensin II (AngII) and combined hydrogen sulfide treatment (H2S_AngII), among which there were 109 differentially expressed miRNAs (DEMs) and 21 hub ADEGs (autophagy-related differentially expressed genes) in the AngII group and 70 DEMs and 13 ADEGs in the H2S_AngII group. A miRNA-mRNA-transcription factors (TFs) autophagy regulatory network was then constructed and verified in human hypertensive nephropathy samples and podocyte models. In the network, two DEMs (miR-98-5p, miR-669b-5p), some hub ADEGs (KRAS, NRAS), and one TF (RUNX2) were altered, accompanied by a reduction in autophagy flux. However, significant recovery occurred after treatment with endogenous or exogenous H2S donors, as well as an overexpression of miR-98-5p and miR-669b-5p. The miR/RAS/RUNX2 autophagy network driven by H2S donors was related to hypertensive nephropathy. H2S donors or miRNAs increased autophagic flux and reduced renal cell injury, which could be a potentially effective medical therapy.
Collapse
Affiliation(s)
- Qing Ye
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mi Ren
- The Department of Hepatobiliary Surgery and Liver Transplantation, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Di Fan
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yicheng Mao
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi-Zhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai 201203, China
- State Key Laboratory of Quality Research in Chinese Medicines, (R & D Center) Lab. for Drug Discovery from Natural Resource, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
3
|
Yang HX, Li YJ, He YL, Jin KK, Lyu LN, Ding HG. Hydrogen Sulfide Promotes Platelet Autophagy via PDGFR-α/PI3K/Akt Signaling in Cirrhotic Thrombocytopenia. J Clin Transl Hepatol 2024; 12:625-633. [PMID: 38993511 PMCID: PMC11233979 DOI: 10.14218/jcth.2024.00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/13/2024] Open
Abstract
Background and Aims The role of platelet autophagy in cirrhotic thrombocytopenia (CTP) remains unclear. This study aimed to investigate the impact of platelet autophagy in CTP and elucidate the regulatory mechanism of hydrogen sulfide (H2S) on platelet autophagy. Methods Platelets from 56 cirrhotic patients and 56 healthy individuals were isolated for in vitro analyses. Autophagy markers (ATG7, BECN1, LC3, and SQSTM1) were quantified using enzyme-linked immunosorbent assay, while autophagosomes were visualized through electron microscopy. Western blotting was used to assess the autophagy-related proteins and the PDGFR/PI3K/Akt/mTOR pathway following treatment with NaHS (an H2S donor), hydroxocobalamin (an H2S scavenger), or AG 1295 (a selective PDGFR-α inhibitor). A carbon tetrachloride-induced cirrhotic BALB/c mouse model was established. Cirrhotic mice with thrombocytopenia were randomly treated with normal saline, NaHS, or hydroxocobalamin for 15 days. Changes in platelet count and aggregation rate were observed every three days. Results Cirrhotic patients with thrombocytopenia exhibited significantly decreased platelet autophagy markers and endogenous H2S levels, alongside increased platelet aggregation, compared to healthy controls. In vitro, NaHS treatment of platelets from severe CTP patients elevated LC3-II levels, reduced SQSTM1 levels, and decreased platelet aggregation in a dose-dependent manner. H2S treatment inhibited PDGFR, PI3K, Akt, and mTOR phosphorylation. In vivo, NaHS significantly increased LC3-II and decreased SQSTM1 expressions in platelets of cirrhotic mice, reducing platelet aggregation without affecting the platelet count. Conclusions Diminished platelet autophagy potentially contributes to thrombocytopenia in cirrhotic patients. H2S modulates platelet autophagy and functions possibly via the PDGFR-α/PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Hua-Xiang Yang
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yang-Jie Li
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yang-Lan He
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ke-Ke Jin
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ling-Na Lyu
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Hui-Guo Ding
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Nishimura A, Tang X, Zhou L, Ito T, Kato Y, Nishida M. Sulfur metabolism as a new therapeutic target of heart failure. J Pharmacol Sci 2024; 155:75-83. [PMID: 38797536 DOI: 10.1016/j.jphs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/07/2024] [Accepted: 04/21/2024] [Indexed: 05/29/2024] Open
Abstract
Sulfur-based redox signaling has long attracted attention as critical mechanisms underlying the development of cardiac diseases and resultant heart failure. Especially, post-translational modifications of cysteine (Cys) thiols in proteins mediate oxidative stress-dependent cardiac remodeling including myocardial hypertrophy, senescence, and interstitial fibrosis. However, we recently revealed the existence of Cys persulfides and Cys polysulfides in cells and tissues, which show higher redox activities than Cys and substantially contribute to redox signaling and energy metabolism. We have established simple evaluation methods that can detect polysulfides in proteins and inorganic polysulfides in cells and revealed that polysulfides abundantly expressed in normal hearts are dramatically catabolized by exposure to ischemic/hypoxic and environmental electrophilic stress, which causes vulnerability of the heart to mechanical load. Accumulation of hydrogen sulfide, a nucleophilic catabolite of persulfides/polysulfides, may lead to reductive stress in ischemic hearts, and perturbation of polysulfide catabolism can improve chronic heart failure after myocardial infarction in mice. This review focuses on the (patho)physiological role of sulfur metabolism in hearts, and proposes that sulfur catabolism during ischemic/hypoxic stress has great potential as a new therapeutic strategy for the treatment of ischemic heart failure.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan.
| | - Xiaokang Tang
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Liuchenzi Zhou
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Tomoya Ito
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
5
|
Nag S, Mitra O, Maturi B, Kaur SP, Saini A, Nama M, Roy S, Samanta S, Chacko L, Dutta R, Sayana SB, Subramaniyan V, Bhatti JS, Kandimalla R. Autophagy and mitophagy as potential therapeutic targets in diabetic heart condition: Harnessing the power of nanotheranostics. Asian J Pharm Sci 2024; 19:100927. [PMID: 38948399 PMCID: PMC11214300 DOI: 10.1016/j.ajps.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 03/29/2024] [Accepted: 04/13/2024] [Indexed: 07/02/2024] Open
Abstract
Autophagy and mitophagy pose unresolved challenges in understanding the pathology of diabetic heart condition (DHC), which encompasses a complex range of cardiovascular issues linked to diabetes and associated cardiomyopathies. Despite significant progress in reducing mortality rates from cardiovascular diseases (CVDs), heart failure remains a major cause of increased morbidity among diabetic patients. These cellular processes are essential for maintaining cellular balance and removing damaged or dysfunctional components, and their involvement in the development of diabetic heart disease makes them attractive targets for diagnosis and treatment. While a variety of conventional diagnostic and therapeutic strategies are available, DHC continues to present a significant challenge. Point-of-care diagnostics, supported by nanobiosensing techniques, offer a promising alternative for these complex scenarios. Although conventional medications have been widely used in DHC patients, they raise several concerns regarding various physiological aspects. Modern medicine places great emphasis on the application of nanotechnology to target autophagy and mitophagy in DHC, offering a promising approach to deliver drugs beyond the limitations of traditional therapies. This article aims to explore the potential connections between autophagy, mitophagy and DHC, while also discussing the promise of nanotechnology-based theranostic interventions that specifically target these molecular pathways.
Collapse
Affiliation(s)
- Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Oishi Mitra
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Bhanu Maturi
- Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Simran Preet Kaur
- Department of Microbiology, University of Delhi (South Campus), Benito Juarez Road, New Delhi 110021, India
| | - Ankita Saini
- Department of Microbiology, University of Delhi (South Campus), Benito Juarez Road, New Delhi 110021, India
| | - Muskan Nama
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Soumik Roy
- Department of Biotechnology, Indian Institute of Technology, Hyderabad (IIT-H), Sangareddy, Telangana 502284, India
| | - Souvik Samanta
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, 1601 Research Blvd, Rockville, MD, USA
| | - Rohan Dutta
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Suresh Babu Sayana
- Department of Pharmacology, Government Medical College, Suryapet, Telangana, India
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India
| |
Collapse
|
6
|
Bi J, Witt E, McGovern MK, Cafi AB, Rosenstock LL, Pearson AB, Brown TJ, Karasic TB, Absler LC, Machkanti S, Boyce H, Gallo D, Becker SL, Ishida K, Jenkins J, Hayward A, Scheiflinger A, Bodeker KL, Kumar R, Shaw SK, Jabbour SK, Lira VA, Henry MD, Tift MS, Otterbein LE, Traverso G, Byrne JD. Oral Carbon Monoxide Enhances Autophagy Modulation in Prostate, Pancreatic, and Lung Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308346. [PMID: 38084435 PMCID: PMC10916612 DOI: 10.1002/advs.202308346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Indexed: 01/22/2024]
Abstract
Modulation of autophagy, specifically its inhibition, stands to transform the capacity to effectively treat a broad range of cancers. However, the clinical efficacy of autophagy inhibitors has been inconsistent. To delineate clinical and epidemiological features associated with autophagy inhibition and a positive oncological clinical response, a retrospective analysis of patients is conducted treated with hydroxychloroquine, a known autophagy inhibitor. A direct correlation between smoking status and inhibition of autophagy with hydroxychloroquine is identified. Recognizing that smoking is associated with elevated circulating levels of carbon monoxide (CO), it is hypothesized that supplemental CO can amplify autophagy inhibition. A novel, gas-entrapping material containing CO in a pre-clinical model is applied and demonstrated that CO can dramatically increase the cytotoxicity of autophagy inhibitors and significantly inhibit the growth of tumors when used in combination. These data support the notion that safe, therapeutic levels of CO can markedly enhance the efficacy of autophagy inhibitors, opening a promising new frontier in the quest to improve cancer therapies.
Collapse
|
7
|
Munteanu C, Iordan DA, Hoteteu M, Popescu C, Postoiu R, Onu I, Onose G. Mechanistic Intimate Insights into the Role of Hydrogen Sulfide in Alzheimer's Disease: A Recent Systematic Review. Int J Mol Sci 2023; 24:15481. [PMID: 37895161 PMCID: PMC10607039 DOI: 10.3390/ijms242015481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
In the rapidly evolving field of Alzheimer's Disease (AD) research, the intricate role of Hydrogen Sulfide (H2S) has garnered critical attention for its diverse involvement in both pathological substrates and prospective therapeutic paradigms. While conventional pathophysiological models of AD have primarily emphasized the significance of amyloid-beta (Aβ) deposition and tau protein hyperphosphorylation, this targeted systematic review meticulously aggregates and rigorously appraises seminal contributions from the past year elucidating the complex mechanisms of H2S in AD pathogenesis. Current scholarly literature accentuates H2S's dual role, delineating its regulatory functions in critical cellular processes-such as neurotransmission, inflammation, and oxidative stress homeostasis-while concurrently highlighting its disruptive impact on quintessential AD biomarkers. Moreover, this review illuminates the nuanced mechanistic intimate interactions of H2S in cerebrovascular and cardiovascular pathology associated with AD, thereby exploring avant-garde therapeutic modalities, including sulfurous mineral water inhalations and mud therapy. By emphasizing the potential for therapeutic modulation of H2S via both donors and inhibitors, this review accentuates the imperative for future research endeavors to deepen our understanding, thereby potentially advancing novel diagnostic and therapeutic strategies in AD.
Collapse
Affiliation(s)
- Constantin Munteanu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iași, Romania;
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
| | - Daniel Andrei Iordan
- Department of Individual Sports and Kinetotherapy, Faculty of Physical Education and Sport, ‘Dunarea de Jos’ University of Galati, 800008 Galati, Romania;
| | - Mihail Hoteteu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
| | - Cristina Popescu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| | - Ruxandra Postoiu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| | - Ilie Onu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iași, Romania;
| | - Gelu Onose
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| |
Collapse
|
8
|
Dogaru BG, Munteanu C. The Role of Hydrogen Sulfide (H 2S) in Epigenetic Regulation of Neurodegenerative Diseases: A Systematic Review. Int J Mol Sci 2023; 24:12555. [PMID: 37628735 PMCID: PMC10454626 DOI: 10.3390/ijms241612555] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
This review explores the emerging role of hydrogen sulfide (H2S) in modulating epigenetic mechanisms involved in neurodegenerative diseases. Accumulating evidence has begun to elucidate the multifaceted ways in which H2S influences the epigenetic landscape and, subsequently, the progression of various neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease. H2S can modulate key components of the epigenetic machinery, such as DNA methylation, histone modifications, and non-coding RNAs, impacting gene expression and cellular functions relevant to neuronal survival, inflammation, and synaptic plasticity. We synthesize recent research that positions H2S as an essential player within this intricate network, with the potential to open new therapeutic avenues for these currently incurable conditions. Despite significant progress, there remains a considerable gap in our understanding of the precise molecular mechanisms and the potential therapeutic implications of modulating H2S levels or its downstream targets. We conclude by identifying future directions for research aimed at exploiting the therapeutic potential of H2S in neurodegenerative diseases.
Collapse
Affiliation(s)
- Bombonica Gabriela Dogaru
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Clinical Rehabilitation Hospital, 400437 Cluj-Napoca, Romania
| | - Constantin Munteanu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
| |
Collapse
|
9
|
Iven V, Vanbuel I, Hendrix S, Cuypers A. The glutathione-dependent alarm triggers signalling responses involved in plant acclimation to cadmium. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3300-3312. [PMID: 36882948 DOI: 10.1093/jxb/erad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/28/2023] [Indexed: 06/08/2023]
Abstract
Cadmium (Cd) uptake from polluted soils inhibits plant growth and disturbs physiological processes, at least partly due to disturbances in the cellular redox environment. Although the sulfur-containing antioxidant glutathione is important in maintaining redox homeostasis, its role as an antioxidant can be overruled by its involvement in Cd chelation as a phytochelatin precursor. Following Cd exposure, plants rapidly invest in phytochelatin production, thereby disturbing the redox environment by transiently depleting glutathione concentrations. Consequently, a network of signalling responses is initiated, in which the phytohormone ethylene is an important player involved in the recovery of glutathione levels. Furthermore, these responses are intricately connected to organellar stress signalling and autophagy, and contribute to cell fate determination. In general, this may pave the way for acclimation (e.g. restoration of glutathione levels and organellar homeostasis) and plant tolerance in the case of mild stress conditions. This review addresses connections between these players and discusses the possible involvement of the gasotransmitter hydrogen sulfide in plant acclimation to Cd exposure.
Collapse
Affiliation(s)
- Verena Iven
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Isabeau Vanbuel
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
10
|
Advances of H2S in Regulating Neurodegenerative Diseases by Preserving Mitochondria Function. Antioxidants (Basel) 2023; 12:antiox12030652. [PMID: 36978900 PMCID: PMC10044936 DOI: 10.3390/antiox12030652] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Neurotoxicity is induced by different toxic substances, including environmental chemicals, drugs, and pathogenic toxins, resulting in oxidative damage and neurodegeneration in mammals. The nervous system is extremely vulnerable to oxidative stress because of its high oxygen demand. Mitochondria are the main source of ATP production in the brain neuron, and oxidative stress-caused mitochondrial dysfunction is implicated in neurodegenerative diseases. H2S was initially identified as a toxic gas; however, more recently, it has been recognized as a neuromodulator as well as a neuroprotectant. Specifically, it modulates mitochondrial activity, and H2S oxidation in mitochondria produces various reactive sulfur species, thus modifying proteins through sulfhydration. This review focused on highlighting the neuron modulation role of H2S in regulating neurodegenerative diseases through anti-oxidative, anti-inflammatory, anti-apoptotic and S-sulfhydration, and emphasized the importance of H2S as a therapeutic molecule for neurological diseases.
Collapse
|
11
|
Yang Z, Wang X, Feng J, Zhu S. Biological Functions of Hydrogen Sulfide in Plants. Int J Mol Sci 2022; 23:ijms232315107. [PMID: 36499443 PMCID: PMC9736554 DOI: 10.3390/ijms232315107] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Hydrogen sulfide (H2S), which is a gasotransmitter, can be biosynthesized and participates in various physiological and biochemical processes in plants. H2S also positively affects plants' adaptation to abiotic stresses. Here, we summarize the specific ways in which H2S is endogenously synthesized and metabolized in plants, along with the agents and methods used for H2S research, and outline the progress of research on the regulation of H2S on plant metabolism and morphogenesis, abiotic stress tolerance, and the series of different post-translational modifications (PTMs) in which H2S is involved, to provide a reference for future research on the mechanism of H2S action.
Collapse
Affiliation(s)
- Zhifeng Yang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271018, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Xiaoyu Wang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Jianrong Feng
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271018, China
- Correspondence:
| |
Collapse
|
12
|
Xuan L, Wu H, Li J, Yuan G, Huang Y, Lian C, Wang X, Yang T, Wang C. Hydrogen sulfide reduces cell death through regulating autophagy during submergence in Arabidopsis. PLANT CELL REPORTS 2022; 41:1531-1548. [PMID: 35507055 DOI: 10.1007/s00299-022-02872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen sulfide positively regulates autophagy and the expression of hypoxia response-related genes under submergence to enhance the submergence tolerance of Arabidopsis. Flooding seriously endangers agricultural production, and it is quite necessary to explore the mechanism of plant response to submergence for improving crop yield. Both hydrogen sulfide (H2S) and autophagy are involved in the plant response to submergence. However, the mechanisms by which H2S and autophagy interact and influence submergence tolerance have not been thoroughly elucidated. Here, we reported that exogenous H2S pretreatment increased the level of endogenous H2S and alleviated plant cell death under submergence. And transgenic lines decreased in the level of endogenous H2S, L-cysteine desulfurase 1 (des1) mutant and 35S::GFP-O-acetyl-L-serine(thiol)lyase A1 (OASA1)/des1-#56/#61, were sensitive to submergence, along with the lower transcript levels of hypoxia response genes, LOB DOMAIN 41 (LBD41) and HYPOXIA RESPONSIVE UNKNOWN PROTEIN 43 (HUP43). Submergence induced the formation of autophagosomes, and the autophagy-related (ATG) mutants (atg4a/4b, atg5, atg7) displayed sensitive phenotypes to submergence. Simultaneously, H2S pretreatment repressed the autophagosome producing under normal conditions, but enhanced this process under submergence by regulating the expression of ATG genes. Moreover, the mutation of DES1 aggravated the sensitivity of des1/atg5 to submergence by reducing the formation of autophagosomes under submergence. Taken together, our results demonstrated that H2S alleviated cell death through regulating autophagy and the expression of hypoxia response genes during submergence in Arabidopsis.
Collapse
Affiliation(s)
- Lijuan Xuan
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Haijun Wu
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jian Li
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Guoqiang Yuan
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yijun Huang
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chengfei Lian
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xinyu Wang
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Yang
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chongying Wang
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
13
|
Detection of protein persulfidation in plants by the dimedone switch method. Methods Enzymol 2022; 676:385-402. [DOI: 10.1016/bs.mie.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|