1
|
Liu C, Qin M, Jiang L, Shan J, Sun Y. Mitochondria-Targetable Cyclometalated Iridium(III) Complex-Based Luminescence Probe for Monitoring and Assessing Treatment Response of Ferroptosis-Mediated Hepatic Ischemia-Reperfusion Injury. Inorg Chem 2024; 63:21627-21636. [PMID: 39473350 DOI: 10.1021/acs.inorgchem.4c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Ferroptosis plays an essential role in the pathological progression of hepatic ischemia-reperfusion injury (HIRI), which is closely related to iron-dependent lipid peroxidation. Since mitochondria are thought to be the major site of reactive oxygen species (ROS) production and iron storage, monitoring the variations of mitochondrial hypochlorous acid (HClO) (an important member of ROS) has important implications for the assessment of ferroptosis status, as well as the formulation of treatment strategies for HIRI. However, reliable imaging tools for the visualization of mitochondrial HClO and monitoring its dynamic changes in ferroptosis-mediated HIRI are still lacking. Herein, in this work, an HClO-activated near-infrared (NIR) cyclometalated iridium(III) complex-based probe, named NIR-Ir-HClO, was developed for the visual monitoring of the mitochondrial HClO fluxes in ferroptosis-mediated HIRI. The newly prepared probe showed fast response (<30 s), good sensitivity, excellent selectivity, good cell biocompatibility, and satisfactory mitochondrial-targeting performance, making it suitable for accurate monitoring of mitochondrial HClO in living cells. Moreover, visualization of the variations of mitochondrial HClO in ferroptosis-mediated HIRI and monitoring of the treatment response of ferroptosis-mediated HIRI to the ferroptosis inhibitors were achieved for the first time. All these show that probe NIR-Ir-HClO can be utilized as a reliable imaging tool for revealing the pathological mechanism of mitochondrial HClO in ferroptosis-mediated HIRI, as well as for the formulation of new treatment strategies for HIRI.
Collapse
Affiliation(s)
- Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Meichun Qin
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lin Jiang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Jiongchen Shan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| |
Collapse
|
2
|
Zhang Y, Liu X, Xie L, Hong J, Zhuang Q, Ren L, Li X, Zhang C. Overexpression of Nfs1 Cysteine Desulphurase Relieves Sevoflurane-Induced Neurotoxicity and Cognitive Dysfunction in Neonatal Mice Via Suppressing Oxidative Stress and Ferroptosis. J Biochem Mol Toxicol 2024; 38:e70051. [PMID: 39488760 DOI: 10.1002/jbt.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/03/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Clinical evidence suggests that multiple exposures to sevoflurane in young people may be detrimental to cognitive development. Iron accumulation in the hippocampus is associated with sevoflurane-induced neurotoxicity and cognitive deficits. The cysteine desulphurase, Nfs1, the rate-limiting enzyme for the biosynthesis of iron-sulphur clusters, plays a role in cellular iron homeostasis. However, the impact of Nfs1-mediated ferroptosis on sevoflurane-induced neurotoxicity and cognitive impairments in neonatal mice remains undetermined. Neonatal mice at postnatal Day 6 received 3% sevoflurane daily for 3 consecutive days. Cognitive function was assessed using the Morris water maze test, and neurotoxicity was evaluated through terminal deoxynucleotidyl transferase dUTP nick end labeling and immunofluorescence staining. Here, HT22 hippocampal neurons were employed for in-vitro experiments, and Fe2+ accumulation was measured. Ferroptosis-related genes, including glutathione peroxidase 4 (GPX4), transferrin receptor 1 (TFR1) and ferritin, in the hippocampus and HT22 cells were observed, along with oxidative stress-related indicators such as reactive oxygen species (ROS), methionine adenosyltransferase (MAT), glutathione (GSH) and lipid peroxidation (LPO). Transmission electron microscopy was utilized to examine the mitochondrial microstructure. Sevoflurane exposure significantly decreased Nfs1 expression in the hippocampus of mice and HT22 cells. This exposure resulted in cognitive impairments and neuronal damage in the hippocampus, which were alleviated by overexpression of Nfs1. Intracellular and mitochondrial iron accumulation occurred in HT22 cells following sevoflurane treatment. Sevoflurane exposure also significantly reduced GSH levels and increased levels of malondialdehyde, ROS and LPO in the hippocampus or HT22 cells. Additionally, sevoflurane exposure decreased GPX4 expression but increased TFR1 and ferritin expression in the hippocampus or HT22 cells. Overexpression of Nfs1 reversed the sevoflurane-induced alterations in ferroptosis-related genes and oxidative stress-related indicators. Furthermore, overexpression of Nfs1 alleviated sevoflurane-induced mitochondrial dysfunction. However, Nfs1 knockdown alone did not result in cognitive impairments, ferroptosis or oxidative stress. The overexpression of Nfs1 mitigated sevoflurane-induced neurotoxicity and cognitive impairment by modulating oxidative stress and ferroptosis through the regulation of iron metabolism and transport.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xinru Liu
- Department of Anesthesia, Bengbu Medical University, Bengbu, China
| | - Lijuan Xie
- Department of Anesthesia, Bengbu Medical University, Bengbu, China
| | - Jin Hong
- Department of Anesthesia, Bengbu Medical University, Bengbu, China
| | - Qin Zhuang
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Li Ren
- Department of Clinical Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Xiaohong Li
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Congli Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
3
|
Wang L, Sun S, Liu H, Zhang Q, Meng Y, Sun F, Zhang J, Liu H, Xu W, Ye Z, Zhang J, Sun B, Xu J. Thioredoxin reductase inhibition and glutathione depletion mediated by glaucocalyxin A promote intracellular disulfide stress in gastric cancer cells. FEBS J 2024. [PMID: 39434427 DOI: 10.1111/febs.17301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/25/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
Thioredoxin reductase 1 (TXNRD1) has been identified as one of the promising chemotherapeutic targets in cancer cells. Therefore, a novel TXNRD1 inhibitor could accelerate chemotherapy in clinical anticancer research. In this study, glaucocalyxin A (GlauA), a natural diterpene extracted from Rabdosia japonica var. glaucocalyx, was identified as a novel inhibitor of TXNRD1. We found that GlauA effectively inhibited recombinant TXNRD1 and reduced its activity in gastric cancer cells without affecting the enzyme's expression level. Mechanistically, the selenocysteine residue (U498) of TXNRD1 was irreversibly modified by GlauA through a Michael addition. Additionally, GlauA formed a covalent adduct with glutathione (GSH) and disrupted cellular redox balance by depleting cellular GSH. The inhibition of TXNRD1 and depletion of GSH by GlauA conferred its cytotoxic effects in spheroid culture and Transwell assays in AGS cells. The disulfide stress induced cytotoxicity of GlauA could be mitigated by adding reducing agents, such as DTT and β-ME. Furthermore, the FDA-approval drug auranofin, a TXNRD1 inhibitor, triggered oligomerization of the cytoskeletal protein Talin-1 in AGS cells, indicating that inhibiting TXNRD1 triggered disulfide stress. In conclusion, this study uncovered GlauA as an efficient inhibitor of TXNRD1 and demonstrated the potential of TXNRD1 inhibition as an effective anticancer strategy by disrupting redox homeostasis and inducing disulfide stress.
Collapse
Affiliation(s)
- Ling Wang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Shibo Sun
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Haowen Liu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Qiuyu Zhang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Yao Meng
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Fan Sun
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute, Dalian University of Technology, Shenyang, China
| | - Jianjun Zhang
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute, Dalian University of Technology, Shenyang, China
| | - Haiyan Liu
- College of Chemistry and Environmental Engineering, Yingkou Institute of Technology, China
| | - Weiping Xu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Zhiwei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Jianqiang Xu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| |
Collapse
|
4
|
Sun S, Liu H, Shi W, Zhou H, Wu H, Xu W, Xu J. Protocol for assaying irreversible inhibitors of thioredoxin reductase 1. STAR Protoc 2024; 5:103235. [PMID: 39116197 PMCID: PMC11362751 DOI: 10.1016/j.xpro.2024.103235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/15/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Selenoprotein thioredoxin reductase 1 (TXNRD1) is a promising therapeutic target, with several inhibitors reported to inhibit TXNRD1 activity. These inhibitors have the potential for applications such as anti-tumor medications. Here, we present a protocol for assessing irreversible inhibitors of TXNRD1. We describe four assays covering cellular TXNRD activity measurement, recombinant enzyme-based activity determination, differential scanning fluorimetry (DSF), and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. This protocol will facilitate the screening and development of potential small-molecule inhibitors of TXNRD1.
Collapse
Affiliation(s)
- Shibo Sun
- School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Haowen Liu
- School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Wuyang Shi
- School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Hanziyi Zhou
- School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Hao Wu
- School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Weiping Xu
- School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China.
| | - Jianqiang Xu
- School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
5
|
Zhang Z, Li L, Fu W, Fu Z, Si M, Wu S, Shou Y, Pei X, Yan X, Zhang C, Wang T, Liu F. Therapeutic effects of natural compounds against diabetic complications via targeted modulation of ferroptosis. Front Pharmacol 2024; 15:1425955. [PMID: 39359249 PMCID: PMC11445066 DOI: 10.3389/fphar.2024.1425955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Diabetes mellitus, a chronic metabolic disorder, can result in serious tissue and organ damage due to long-term metabolic dysfunction, leading to various complications. Therefore, exploring the pathogenesis of diabetic complications and developing effective prevention and treatment drugs is crucial. The role of ferroptosis in diabetic complications has emerged as a significant area of research in recent years. Ferroptosis, a recently discovered form of regulated cell death closely linked to iron metabolism imbalance and lipid peroxidation, has garnered increasing attention in studies exploring the potential role of natural products in its regulation. This review provides an overview of the mechanisms underlying ferroptosis, outlines detection methods, and synthesizes information from natural product databases. It also summarizes current research on how natural products may regulate ferroptosis in diabetic complications. Studies have shown that these products can modulate the ferroptosis process by influencing iron ion balance and combating oxidative stress. This highlights the potential of natural products in treating diabetic complications by regulating ferroptosis, offering a new strategy for managing such complications.
Collapse
Affiliation(s)
- Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Wei Fu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Zhengchao Fu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Mahang Si
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Siyu Wu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Yueying Shou
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xinyu Pei
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaoyi Yan
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Chenguang Zhang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Tong Wang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Fei Liu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
6
|
Zhang S, Guo L, Tao R, Liu S. Ferroptosis-targeting drugs in breast cancer. J Drug Target 2024:1-18. [PMID: 39225187 DOI: 10.1080/1061186x.2024.2399181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In 2020, breast cancer surpassed lung cancer as the most common cancer in the world for the first time. Due to the resistance of some breast cancer cell lines to apoptosis, the therapeutic effect of anti-breast cancer drugs is limited. According to recent report, the susceptibility of breast cancer cells to ferroptosis affects the progress, prognosis and drug resistance of breast cancer. For instance, roblitinib induces ferroptosis of trastuzumab-resistant human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells by diminishing fibroblast growth factor receptor 4 (FGFR4) expression, thereby augmenting the susceptibility of these cells to HER2-targeted therapies. In tamoxifen-resistant breast cancer cells, Fascin exacerbates their resistance by repressing solute carrier family 7 member 11 (SLC7A11) expression, which in turn heightens their responsiveness to tamoxifen. In recent years, Chinese herbs extracts and therapeutic drugs have been demonstrated to elicit ferroptosis in breast cancer cells by modulating a spectrum of regulatory factors pertinent to ferroptosis, including SLC7A11, glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long chain family member 4 (ACSL4), and haem oxygenase 1 (HO-1). Here, we review the roles and mechanisms of Chinese herbal extracts and therapeutic drugs in regulating ferroptosis in breast cancer, providing potential therapeutic options for anti-breast cancer.
Collapse
Affiliation(s)
- Shuxian Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Lijuan Guo
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Ran Tao
- Department of Anatomy, Medical College, Dalian University, Dalian, China
| | - Shuangping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| |
Collapse
|
7
|
Seitz R, Tümen D, Kunst C, Heumann P, Schmid S, Kandulski A, Müller M, Gülow K. Exploring the Thioredoxin System as a Therapeutic Target in Cancer: Mechanisms and Implications. Antioxidants (Basel) 2024; 13:1078. [PMID: 39334737 PMCID: PMC11428833 DOI: 10.3390/antiox13091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Cells constantly face the challenge of managing oxidants. In aerobic organisms, oxygen (O2) is used for energy production, generating reactive oxygen species (ROS) as byproducts of enzymatic reactions. To protect against oxidative damage, cells possess an intricate system of redox scavengers and antioxidant enzymes, collectively forming the antioxidant defense system. This system maintains the redox equilibrium and enables the generation of localized oxidative signals that regulate essential cellular functions. One key component of this defense is the thioredoxin (Trx) system, which includes Trx, thioredoxin reductase (TrxR), and NADPH. The Trx system reverses oxidation of macromolecules and indirectly neutralizes ROS via peroxiredoxin (Prx). This dual function protects cells from damage accumulation and supports physiological cell signaling. However, the Trx system also shields tumors from oxidative damage, aiding their survival. Due to elevated ROS levels from their metabolism, tumors often rely on the Trx system. In addition, the Trx system regulates critical pathways such as proliferation and neoangiogenesis, which tumors exploit to enhance growth and optimize nutrient and oxygen supply. Consequently, the Trx system is a potential target for cancer therapy. The challenge lies in selectively targeting malignant cells without disrupting the redox equilibrium in healthy cells. The aim of this review article is threefold: first, to elucidate the function of the Trx system; second, to discuss the Trx system as a potential target for cancer therapies; and third, to present the possibilities for inhibiting key components of the Trx system, along with an overview of the latest clinical studies on these inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (R.S.); (D.T.); (C.K.); (P.H.); (S.S.); (A.K.); (M.M.)
| |
Collapse
|
8
|
Fan B, Guo Q, Wang S. The application of alkaloids in ferroptosis: A review. Biomed Pharmacother 2024; 178:117232. [PMID: 39098181 DOI: 10.1016/j.biopha.2024.117232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Alkaloids have remarkable biological and pharmacological properties and have recently garnered extensive attention. Various alkaloids, including commercially available drugs such as berberine, substantially affect ferroptosis. In addition to the three main pathways of ferroptosis, iron metabolism, phospholipid metabolism, and the glutathione peroxidase 4-regulated pathway, novel mechanisms of ferroptosis are continuously being identified. Alkaloids can modulate the progression of various diseases through ferroptosis and exhibit the ability to exert varied effects depending on dosage and tissue type underscores their versatility. Therefore, this review comprehensively summarizes primary targets and the latest advancements of alkaloids in ferroptosis, as well as the dual roles of alkaloids in inhibiting and promoting ferroptosis.
Collapse
Affiliation(s)
- Bocheng Fan
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110013, China
| | - Qihao Guo
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110013, China
| | - Shu Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110013, China.
| |
Collapse
|
9
|
Yang R, Sun S, Zhang Q, Liu H, Wang L, Meng Y, Chen N, Wang Z, Liu H, Ji F, Dai Y, He G, Xu W, Ye Z, Zhang J, Ma Q, Xu J. Pharmacological Inhibition of TXNRD1 by a Small Molecule Flavonoid Butein Overcomes Cisplatin Resistance in Lung Cancer Cells. Biol Trace Elem Res 2024:10.1007/s12011-024-04331-0. [PMID: 39141196 DOI: 10.1007/s12011-024-04331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Mammalian cytosolic selenoprotein thioredoxin reductase (TXNRD1) is crucial for maintaining the reduced state of cellular thioredoxin 1 (TXN1) and is commonly up-regulated in cancer cells. TXNRD1 has been identified as an effective target in cancer chemotherapy. Discovering novel TXNRD1 inhibitors and elucidating the cellular effects of TXNRD1 inhibition are valuable for developing targeted therapies based on redox regulation strategies. In this study, we demonstrated that butein, a plant-derived small molecule flavonoid, is a novel TXNRD1 inhibitor. We found that butein irreversibly inhibited recombinant TXNRD1 activity in a time-dependent manner. Using TXNRD1 mutant variants and LC-MS, we identified that butein modifies the catalytic cysteine (Cys) residues of TXNRD1. In cellular contexts, butein promoted the accumulation of reactive oxygen species (ROS) and exhibited cytotoxic effects in HeLa cells. Notably, we found that pharmacological inhibition of TXNRD1 by butein overcame the cisplatin resistance of A549 cisplatin-resistant cells, accompanied by increased cellular ROS levels and enhanced expression of p53. Taken together, the results of this study demonstrate that butein is an effective small molecule inhibitor of TXNRD1, highlighting the therapeutic potential of inhibiting TXNRD1 in platinum-resistant cancer cells.
Collapse
Affiliation(s)
- Rui Yang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shibo Sun
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Qiuyu Zhang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Haowen Liu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Ling Wang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Yao Meng
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Na Chen
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Zihan Wang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Haiyan Liu
- College of Chemistry and Environmental Engineering, Yingkou Institute of Technology, Yingkou, 115014, China
| | - Fengyun Ji
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, Dalian, 116023, China
| | - Yan Dai
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, Dalian, 116023, China
| | - Gaohong He
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, Dalian, 116023, China
| | - Weiping Xu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, Dalian, 116023, China
| | - Zhiwei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| | - Jianqiang Xu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
10
|
Abdullah NA, Md Hashim NF, Muhamad Zakuan N, Chua JX. Thioredoxin system in colorectal cancer: Its role in carcinogenesis, disease progression, and response to treatment. Life Sci 2024; 348:122711. [PMID: 38734065 DOI: 10.1016/j.lfs.2024.122711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The thioredoxin system is essential for many physiological processes, including the maintenance of redox signalling pathways. Alterations in the activity, expression and interactions with other signalling pathways can lead to protective or pathophysiological responses. Thioredoxin and thioredoxin reductase, the two main components of this system, are often overexpressed in cancer, including colorectal cancer. This overexpression is often linked with tumour progression and poor outcomes. This review discusses the role of the Trx system in driving colorectal carcinogenesis and disease progression, as well as the challenges of targeting this system. Additionally, the recent advancements in the development of novel and effective thioredoxin inhibitors for colorectal cancer are also explored.
Collapse
Affiliation(s)
- Nurul Akmaryanti Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nur Fariesha Md Hashim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Noraina Muhamad Zakuan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Jia Xin Chua
- Department of Pre-clinical Sciences, University Tunku Abdul Rahman, 43000, Selangor, Malaysia.
| |
Collapse
|
11
|
Swain SS, Sahoo SK. Piperlongumine and its derivatives against cancer: A recent update and future prospective. Arch Pharm (Weinheim) 2024; 357:e2300768. [PMID: 38593312 DOI: 10.1002/ardp.202300768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Piperlongumine, or piplartine (PL), is a bioactive alkaloid isolated from Piper longum L. and a potent phytoconstituent in Indian Ayurveda and traditional Chinese medicine with a lot of therapeutic benefits. Apart from all of its biological activities, it demonstrates multimodal anticancer activity by targeting various cancer-associated pathways and being less toxic to normal cells. According to their structure-activity relationship (SAR), the trimethylphenyl ring (cinnamoyl core) and 5,6-dihydropyridin-2-(1H)-one (piperdine core) are responsible for the potent anticancer activity. However, it has poor intrinsic properties (low aqueous solubility, poor bioavailability, etc.). As a result, pharmaceutical researchers have been trying to optimise or modify the structure of PL to improve the drug-likeness profiles. The present review selected 26 eligible research articles on PL derivatives published between 2012 and 2023, followed by the preferred reporting items for systematic reviews and meta-analyses (PRISMA) format. We have thoroughly summarised the anticancer potency, mode of action, SAR and drug chemistry of the proposed PL-derivatives against different cancer cells. Overall, SAR analyses with respect to anticancer potency and drug-ability revealed that substitution of methoxy to hydroxyl, attachment of ligustrazine and 4-hydroxycoumarin heterocyclic rings in place of phenyl rings, and attachment of heterocyclic rings like indole at the C7-C8 olefin position in native PL can help to improve anticancer activity, aqueous solubility, cell permeability, and bioavailability, making them potential leads. Hopefully, the large-scale collection and critical drug-chemistry analyses will be helpful to pharmaceutical and academic researchers in developing potential, less-toxic and cost-effective PL-derivatives that can be used against different cancers.
Collapse
Affiliation(s)
- Shasank S Swain
- Biotechnology Research and Innovation Council-Institute of Life Sciences (BRIC-ILS), Nalco Square, Odisha, India
| | - Sanjeeb K Sahoo
- Biotechnology Research and Innovation Council-Institute of Life Sciences (BRIC-ILS), Nalco Square, Odisha, India
| |
Collapse
|
12
|
De los Santos-Jiménez J, Campos-Sandoval JA, Alonso FJ, Márquez J, Matés JM. GLS and GLS2 Glutaminase Isoenzymes in the Antioxidant System of Cancer Cells. Antioxidants (Basel) 2024; 13:745. [PMID: 38929183 PMCID: PMC11200642 DOI: 10.3390/antiox13060745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
A pathway frequently altered in cancer is glutaminolysis, whereby glutaminase (GA) catalyzes the main step as follows: the deamidation of glutamine to form glutamate and ammonium. There are two types of GA isozymes, named GLS and GLS2, which differ considerably in their expression patterns and can even perform opposing roles in cancer. GLS correlates with tumor growth and proliferation, while GLS2 can function as a context-dependent tumor suppressor. However, both isoenzymes have been described as essential molecules handling oxidant stress because of their involvement in glutathione production. We reviewed the literature to highlight the critical roles of GLS and GLS2 in restraining ROS and regulating both cellular signaling and metabolic stress due to their function as indirect antioxidant enzymes, as well as by modulating both reductive carboxylation and ferroptosis. Blocking GA activity appears to be a potential strategy in the dual activation of ferroptosis and inhibition of cancer cell growth in a ROS-mediated mechanism.
Collapse
Affiliation(s)
- Juan De los Santos-Jiménez
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| | - José A. Campos-Sandoval
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| | - Francisco J. Alonso
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| | - Javier Márquez
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| | - José M. Matés
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| |
Collapse
|
13
|
Chuang YT, Yen CY, Chien TM, Chang FR, Tsai YH, Wu KC, Tang JY, Chang HW. Ferroptosis-Regulated Natural Products and miRNAs and Their Potential Targeting to Ferroptosis and Exosome Biogenesis. Int J Mol Sci 2024; 25:6083. [PMID: 38892270 PMCID: PMC11173094 DOI: 10.3390/ijms25116083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Ferroptosis, which comprises iron-dependent cell death, is crucial in cancer and non-cancer treatments. Exosomes, the extracellular vesicles, may deliver biomolecules to regulate disease progression. The interplay between ferroptosis and exosomes may modulate cancer development but is rarely investigated in natural product treatments and their modulating miRNAs. This review focuses on the ferroptosis-modulating effects of natural products and miRNAs concerning their participation in ferroptosis and exosome biogenesis (secretion and assembly)-related targets in cancer and non-cancer cells. Natural products and miRNAs with ferroptosis-modulating effects were retrieved and organized. Next, a literature search established the connection of a panel of ferroptosis-modulating genes to these ferroptosis-associated natural products. Moreover, ferroptosis-associated miRNAs were inputted into the miRNA database (miRDB) to bioinformatically search the potential targets for the modulation of ferroptosis and exosome biogenesis. Finally, the literature search provided a connection between ferroptosis-modulating miRNAs and natural products. Consequently, the connections from ferroptosis-miRNA-exosome biogenesis to natural product-based anticancer treatments are well-organized. This review sheds light on the research directions for integrating miRNAs and exosome biogenesis into the ferroptosis-modulating therapeutic effects of natural products on cancer and non-cancer diseases.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Tsu-Ming Chien
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung 820111, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung 907101, Taiwan;
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung 900391, Taiwan;
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
14
|
Liu C, Wang G, Han W, Tian Q, Li M. Ferroptosis: a potential therapeutic target for stroke. Neural Regen Res 2024; 19:988-997. [PMID: 37862200 PMCID: PMC10749612 DOI: 10.4103/1673-5374.385284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 10/22/2023] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by massive iron accumulation and iron-dependent lipid peroxidation, differing from apoptosis, necroptosis, and autophagy in several aspects. Ferroptosis is regarded as a critical mechanism of a series of pathophysiological reactions after stroke because of iron overload caused by hemoglobin degradation and iron metabolism imbalance. In this review, we discuss ferroptosis-related metabolisms, important molecules directly or indirectly targeting iron metabolism and lipid peroxidation, and transcriptional regulation of ferroptosis, revealing the role of ferroptosis in the progression of stroke. We present updated progress in the intervention of ferroptosis as therapeutic strategies for stroke in vivo and in vitro and summarize the effects of ferroptosis inhibitors on stroke. Our review facilitates further understanding of ferroptosis pathogenesis in stroke, proposes new targets for the treatment of stroke, and suggests that more efforts should be made to investigate the mechanism of ferroptosis in stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenrui Han
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
15
|
Sang J, Liu CK, Liu J, Luo GC, Zheng WJ, Bai Y, Jiang DY, Pu JN, An S, Xu TR. Jolkinolide B synergistically potentiates the antitumor activity of GPX4 inhibitors via inhibiting TrxR1 in cisplatin-resistant bladder cancer cells. Biochem Pharmacol 2024; 223:116194. [PMID: 38583812 DOI: 10.1016/j.bcp.2024.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Glutathione peroxidase 4 (GPX4) is a promising anticancer therapeutic target; however, the application of GPX4 inhibitors (GPX4i) is limited owing to intrinsic or acquired drug resistance. Hence, understanding the mechanisms underlying drug resistance and discovering molecules that can overcome drug resistance are crucial. Herein, we demonstrated that GPX4i killed bladder cancer cells by inducing lipid reactive oxygen species-mediated ferroptosis and apoptosis, and cisplatin-resistant bladder cancer cells were also resistant to GPX4i, representing a higher half-maximal inhibitory concentration value than that of parent bladder cancer cells. In addition, thioredoxin reductase 1 (TrxR1) overexpression was responsible for GPX4i resistance in cisplatin-resistant bladder cancer cells, and inhibiting TrxR1 restored the sensitivity of these cells to GPX4i. In vitro and in vivo studies revealed that Jolkinolide B (JB), a natural diterpenoid and previously identified as a TrxR1 inhibitor, potentiated the antiproliferative efficacy of GPX4i (RSL3 and ML162) against cisplatin-resistant bladder cancer cells. Furthermore, GPX4 knockdown and inhibition could augment JB-induced paraptosis and apoptosis. Our results suggest that inhibiting TrxR1 can effectively improve GPX4 inhibition-based anticancer therapy. A combination of JB and GPX4i, which is well-tolerated and has several anticancer mechanisms, may serve as a promising therapy for treating bladder cancer.
Collapse
Affiliation(s)
- Jun Sang
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Chen-Kai Liu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jue Liu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Guan-Cong Luo
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei-Ji Zheng
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ya Bai
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - De-Yun Jiang
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jiang-Ni Pu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Su An
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Tian-Rui Xu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
16
|
Shi W, Sun S, Liu H, Meng Y, Ren K, Wang G, Liu M, Wu J, Zhang Y, Huang H, Shi M, Xu W, Ma Q, Sun B, Xu J. Guiding bar motif of thioredoxin reductase 1 modulates enzymatic activity and inhibitor binding by communicating with the co-factor FAD and regulating the flexible C-terminal redox motif. Redox Biol 2024; 70:103050. [PMID: 38277963 PMCID: PMC10840350 DOI: 10.1016/j.redox.2024.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Thioredoxin reductase (TXNRD) is a selenoprotein that plays a crucial role in cellular antioxidant defense. Previously, a distinctive guiding bar motif was identified in TXNRD1, which influences the transfer of electrons. In this study, utilizing single amino acid substitution and Excitation-Emission Matrix (EEM) fluorescence spectrum analysis, we discovered that the guiding bar communicates with the FAD and modulates the electron flow of the enzyme. Differential Scanning Fluorimetry (DSF) analysis demonstrated that the aromatic amino acid in guiding bar is a stabilizer for TXNRD1. Kinetic analysis revealed that the guiding bar is vital for the disulfide reductase activity but hinders the selenocysteine-independent reduction activity of TXNRD1. Meanwhile, the guiding bar shields the selenocysteine residue of TXNRD1 from the attack of electrophilic reagents. We also found that the inhibition of TXNRD1 by caveolin-1 scaffolding domain (CSD) peptides and compound LCS3 did not bind to the guiding bar motif. In summary, the obtained results highlight new aspects of the guiding bar that restrict the flexibility of the C-terminal redox motif and govern the transition from antioxidant to pro-oxidant.
Collapse
Affiliation(s)
- Wuyang Shi
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Shibo Sun
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Haowen Liu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Yao Meng
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Kangshuai Ren
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Guoying Wang
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Minghui Liu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Jiaqi Wu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Yue Zhang
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Huang Huang
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Meiyun Shi
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Weiping Xu
- School of Ocean Science and Technology (OST) & Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Panjin, 124221, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, Dalian, 116023, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
17
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
18
|
Jiang X, Peng Q, Peng M, Oyang L, Wang H, Liu Q, Xu X, Wu N, Tan S, Yang W, Han Y, Lin J, Xia L, Tang Y, Luo X, Dai J, Zhou Y, Liao Q. Cellular metabolism: A key player in cancer ferroptosis. Cancer Commun (Lond) 2024; 44:185-204. [PMID: 38217522 PMCID: PMC10876208 DOI: 10.1002/cac2.12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Cellular metabolism is the fundamental process by which cells maintain growth and self-renewal. It produces energy, furnishes raw materials, and intermediates for biomolecule synthesis, and modulates enzyme activity to sustain normal cellular functions. Cellular metabolism is the foundation of cellular life processes and plays a regulatory role in various biological functions, including programmed cell death. Ferroptosis is a recently discovered form of iron-dependent programmed cell death. The inhibition of ferroptosis plays a crucial role in tumorigenesis and tumor progression. However, the role of cellular metabolism, particularly glucose and amino acid metabolism, in cancer ferroptosis is not well understood. Here, we reviewed glucose, lipid, amino acid, iron and selenium metabolism involvement in cancer cell ferroptosis to elucidate the impact of different metabolic pathways on this process. Additionally, we provided a detailed overview of agents used to induce cancer ferroptosis. We explained that the metabolism of tumor cells plays a crucial role in maintaining intracellular redox homeostasis and that disrupting the normal metabolic processes in these cells renders them more susceptible to iron-induced cell death, resulting in enhanced tumor cell killing. The combination of ferroptosis inducers and cellular metabolism inhibitors may be a novel approach to future cancer therapy and an important strategy to advance the development of treatments.
Collapse
Affiliation(s)
- Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Honghan Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Department of Head and Neck Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Qiang Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Wenjuan Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Jie Dai
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Department of Head and Neck Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| |
Collapse
|
19
|
Consoli V, Fallica AN, Sorrenti V, Pittalà V, Vanella L. Novel Insights on Ferroptosis Modulation as Potential Strategy for Cancer Treatment: When Nature Kills. Antioxid Redox Signal 2024; 40:40-85. [PMID: 37132605 PMCID: PMC10824235 DOI: 10.1089/ars.2022.0179] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Significance: The multifactorial nature of the mechanisms implicated in cancer development still represents a major issue for the success of established antitumor therapies. The discovery of ferroptosis, a novel form of programmed cell death distinct from apoptosis, along with the identification of the molecular pathways activated during its execution, has led to the uncovering of novel molecules characterized by ferroptosis-inducing properties. Recent advances: As of today, the ferroptosis-inducing properties of compounds derived from natural sources have been investigated and interesting findings have been reported both in vitro and in vivo. Critical Issues: Despite the efforts made so far, only a limited number of synthetic compounds have been identified as ferroptosis inducers, and their utilization is still limited to basic research. In this review, we analyzed the most important biochemical pathways involved in ferroptosis execution, with particular attention to the newest literature findings on canonical and non-canonical hallmarks, together with mechanisms of action of natural compounds identified as novel ferroptosis inducers. Compounds have been classified based on their chemical structure, and modulation of ferroptosis-related biochemical pathways has been reported. Future Directions: The outcomes herein collected represent a fascinating starting point from which to take hints for future drug discovery studies aimed at identifying ferroptosis-inducing natural compounds for anticancer therapies. Antioxid. Redox Signal. 40, 40-85.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| |
Collapse
|
20
|
Wright DE, O’Donoghue P. Biosynthesis, Engineering, and Delivery of Selenoproteins. Int J Mol Sci 2023; 25:223. [PMID: 38203392 PMCID: PMC10778597 DOI: 10.3390/ijms25010223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Selenocysteine (Sec) was discovered as the 21st genetically encoded amino acid. In nature, site-directed incorporation of Sec into proteins requires specialized biosynthesis and recoding machinery that evolved distinctly in bacteria compared to archaea and eukaryotes. Many organisms, including higher plants and most fungi, lack the Sec-decoding trait. We review the discovery of Sec and its role in redox enzymes that are essential to human health and important targets in disease. We highlight recent genetic code expansion efforts to engineer site-directed incorporation of Sec in bacteria and yeast. We also review methods to produce selenoproteins with 21 or more amino acids and approaches to delivering recombinant selenoproteins to mammalian cells as new applications for selenoproteins in synthetic biology.
Collapse
Affiliation(s)
- David E. Wright
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada;
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada;
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
21
|
Chen JW, Chen S, Chen GQ. Recent advances in natural compounds inducing non-apoptotic cell death for anticancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:729-747. [PMID: 38239395 PMCID: PMC10792489 DOI: 10.20517/cdr.2023.78] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 01/22/2024]
Abstract
The induction of cell death is recognized as a potent strategy for cancer treatment. Apoptosis is an extensively studied form of cell death, and multiple anticancer drugs exert their therapeutic effects by inducing it. Nonetheless, apoptosis evasion is a hallmark of cancer, rendering cancer cells resistant to chemotherapy drugs. Consequently, there is a growing interest in exploring novel non-apoptotic forms of cell death, such as ferroptosis, necroptosis, pyroptosis, and paraptosis. Natural compounds with anticancer properties have garnered significant attention due to their advantages, including a reduced risk of drug resistance. Over the past two decades, numerous natural compounds have been discovered to exert anticancer and anti-resistance effects by triggering these four non-apoptotic cell death mechanisms. This review primarily focuses on these four non-apoptotic cell death mechanisms and their recent advancements in overcoming drug resistance in cancer treatment. Meanwhile, it highlights the role of natural compounds in effectively addressing cancer drug resistance through the induction of these forms of non-apoptotic cell death.
Collapse
Affiliation(s)
- Jia-Wen Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
| | - Sibao Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Guo-Qing Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| |
Collapse
|
22
|
Liu M, Sun S, Meng Y, Wang L, Liu H, Shi W, Zhang Q, Xu W, Sun B, Xu J. Benzophenanthridine Alkaloid Chelerythrine Elicits Necroptosis of Gastric Cancer Cells via Selective Conjugation at the Redox Hyperreactive C-Terminal Sec 498 Residue of Cytosolic Selenoprotein Thioredoxin Reductase. Molecules 2023; 28:6842. [PMID: 37836684 PMCID: PMC10574601 DOI: 10.3390/molecules28196842] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Targeting thioredoxin reductase (TXNRD) with low-weight molecules is emerging as a high-efficacy anti-cancer strategy in chemotherapy. Sanguinarine has been reported to inhibit the activity of TXNRD1, indicating that benzophenanthridine alkaloid is a fascinating chemical entity in the field of TXNRD1 inhibitors. In this study, the inhibition of three benzophenanthridine alkaloids, including chelerythrine, sanguinarine, and nitidine, on recombinant TXNRD1 was investigated, and their anti-cancer mechanisms were revealed using three gastric cancer cell lines. Chelerythrine and sanguinarine are more potent inhibitors of TXNRD1 than nitidine, and the inhibitory effects take place in a dose- and time-dependent manner. Site-directed mutagenesis of TXNRD1 and in vitro inhibition analysis proved that chelerythrine or sanguinarine is primarily bound to the Sec498 residue of the enzyme, but the neighboring Cys497 and remaining N-terminal redox-active cysteines could also be modified after the conjugation of Sec498. With high similarity to sanguinarine, chelerythrine exhibited cytotoxic effects on multiple gastric cancer cell lines and suppressed the proliferation of tumor spheroids derived from NCI-N87 cells. Chelerythrine elevated cellular levels of reactive oxygen species (ROS) and induced endoplasmic reticulum (ER) stress. Moreover, the ROS induced by chelerythrine could be completely suppressed by the addition of N-acetyl-L-cysteine (NAC), and the same is true for sanguinarine. Notably, Nec-1, an RIPK1 inhibitor, rescued the chelerythrine-induced rapid cell death, indicating that chelerythrine triggers necroptosis in gastric cancer cells. Taken together, this study demonstrates that chelerythrine is a novel inhibitor of TXNRD1 by targeting Sec498 and possessing high anti-tumor properties on multiple gastric cancer cell lines by eliciting necroptosis.
Collapse
Affiliation(s)
- Minghui Liu
- School of Life and Pharmaceutical Sciences (LPS), Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Shibo Sun
- School of Life and Pharmaceutical Sciences (LPS), Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Yao Meng
- School of Life and Pharmaceutical Sciences (LPS), Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Ling Wang
- School of Life and Pharmaceutical Sciences (LPS), Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Haowen Liu
- School of Life and Pharmaceutical Sciences (LPS), Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Wuyang Shi
- School of Life and Pharmaceutical Sciences (LPS), Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Qiuyu Zhang
- School of Life and Pharmaceutical Sciences (LPS), Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Weiping Xu
- School of Ocean Science and Technology (OST), Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Panjin 124221, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, Dalian 116023, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences (LPS), Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
23
|
Zhang JB, Jia X, Cao Q, Chen YT, Tong J, Lu GD, Li DJ, Han T, Zhuang CL, Wang P. Ferroptosis-Regulated Cell Death as a Therapeutic Strategy for Neurodegenerative Diseases: Current Status and Future Prospects. ACS Chem Neurosci 2023; 14:2995-3012. [PMID: 37579022 DOI: 10.1021/acschemneuro.3c00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Ferroptosis is increasingly being recognized as a key element in the pathogenesis of diverse diseases. Recent studies have highlighted the intricate links between iron metabolism and neurodegenerative disorders. Emerging evidence suggests that iron homeostasis, oxidative stress, and neuroinflammation all contribute to the regulation of both ferroptosis and neuronal health. However, the precise molecular mechanisms underlying the involvement of ferroptosis in the pathological processes of neurodegeneration and its impact on neuronal dysfunction remain incompletely understood. In our Review, we provide a comprehensive analysis and summary of the potential molecular mechanisms underlying ferroptosis in neurodegenerative diseases, aiming to elucidate the disease progression of neurodegeneration. Additionally, we discuss potential therapeutic agents that modulate ferroptosis with the goal of identifying novel drug molecules for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Jia-Bao Zhang
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
- National Experimental Teaching Demonstration Center of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Xiuqin Jia
- Department of Radiology, Beijing Chao Yang Hospital, Capital Medical University, Chaoyang District, Beijing 100020, China
| | - Qi Cao
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
- National Experimental Teaching Demonstration Center of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Yi-Ting Chen
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guo-Dong Lu
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ting Han
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Chun-Lin Zhuang
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Pei Wang
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
- National Experimental Teaching Demonstration Center of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
24
|
Song Z, Fan C, Zhao J, Wang L, Duan D, Shen T, Li X. Fluorescent Probes for Mammalian Thioredoxin Reductase: Mechanistic Analysis, Construction Strategies, and Future Perspectives. BIOSENSORS 2023; 13:811. [PMID: 37622897 PMCID: PMC10452626 DOI: 10.3390/bios13080811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
The modulation of numerous signaling pathways is orchestrated by redox regulation of cellular environments. Maintaining dynamic redox homeostasis is of utmost importance for human health, given the common occurrence of altered redox status in various pathological conditions. The cardinal component of the thioredoxin system, mammalian thioredoxin reductase (TrxR) plays a vital role in supporting various physiological functions; however, its malfunction, disrupting redox balance, is intimately associated with the pathogenesis of multiple diseases. Accordingly, the dynamic monitoring of TrxR of live organisms represents a powerful direction to facilitate the comprehensive understanding and exploration of the profound significance of redox biology in cellular processes. A number of classic assays have been developed for the determination of TrxR activity in biological samples, yet their application is constrained when exploring the real-time dynamics of TrxR activity in live organisms. Fluorescent probes offer several advantages for in situ imaging and the quantification of biological targets, such as non-destructiveness, real-time analysis, and high spatiotemporal resolution. These benefits facilitate the transition from a poise to a flux understanding of cellular targets, further advancing scientific studies in related fields. This review aims to introduce the progress in the development and application of TrxR fluorescent probes in the past years, and it mainly focuses on analyzing their reaction mechanisms, construction strategies, and potential drawbacks. Finally, this study discusses the critical challenges and issues encountered during the development of selective TrxR probes and proposes future directions for their advancement. We anticipate the comprehensive analysis of the present TrxR probes will offer some glitters of enlightenment, and we also expect that this review may shed light on the design and development of novel TrxR probes.
Collapse
Affiliation(s)
- Zilong Song
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Chengwu Fan
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Jintao Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China; (J.Z.); (X.L.)
| | - Lei Wang
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Dongzhu Duan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China;
| | - Tong Shen
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Xinming Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China; (J.Z.); (X.L.)
| |
Collapse
|
25
|
Abstract
Significance: Thioredoxin (Trx) is a powerful antioxidant that reduces protein disulfides to maintain redox stability in cells and is involved in regulating multiple redox-dependent signaling pathways. Recent Advance: The current accumulation of findings suggests that Trx participates in signaling pathways that interact with various proteins to manipulate their dynamic regulation of structure and function. These network pathways are critical for cancer pathogenesis and therapy. Promising clinical advances have been presented by most anticancer agents targeting such signaling pathways. Critical Issues: We herein link the signaling pathways regulated by the Trx system to potential cancer therapeutic opportunities, focusing on the coordination and strengths of the Trx signaling pathways in apoptosis, ferroptosis, immunomodulation, and drug resistance. We also provide a mechanistic network for the exploitation of therapeutic small molecules targeting the Trx signaling pathways. Future Directions: As research data accumulate, future complex networks of Trx-related signaling pathways will gain in detail. In-depth exploration and establishment of these signaling pathways, including Trx upstream and downstream regulatory proteins, will be critical to advancing novel cancer therapeutics. Antioxid. Redox Signal. 38, 403-424.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhengjia Zhao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | | | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
26
|
Anti-Inflammatory Effect of Dimethyl Fumarate Associates with the Inhibition of Thioredoxin Reductase 1 in RAW 264.7 Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010107. [PMID: 36615301 PMCID: PMC9822326 DOI: 10.3390/molecules28010107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Macrophages secrete a variety of pro-inflammatory cytokines in response to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) but abnormal release of cytokines unfortunately promotes cytokine storms. Dimethyl fumarate (DMF), an FDA-approved drug for multiple sclerosis (MS) treatment, has been found as an effective therapeutic agent for resolution. In this study, the anti-inflammatory effect of DMF was found to correlate to selenoprotein thioredoxin reductase 1 (TXNRD1). DMF irreversibly modified the Sec498 residue and C-terminal catalytic cysteine residues of TXNRD1 in a time- and dose-dependent manner. In LPS-stimulated RAW 264.7 cells, cellular TXNRD activity was increased through up-regulation of the protein level and DMF inhibited TXNRD activity and the nitric oxide (NO) production of RAW 264.7 cells. Meanwhile, the inhibition of TXNRD1 by DMF would contribute to the redox regulation of inflammation and promote the nuclear factor erythroid 2-related factor 2 (NRF2) activation. Notably, inhibition of cellular TXNRD1 by auranofin or TRi-1 showed anti-inflammatory effect in RAW 264.7 cells. This finding demonstrated that targeting TXNRD1 is a potential mechanism of using immunometabolites for dousing inflammation in response to pathogens and highlights the potential of TXNRD1 inhibitors in immune regulation.
Collapse
|
27
|
Shimada BK, Swanson S, Toh P, Seale LA. Metabolism of Selenium, Selenocysteine, and Selenoproteins in Ferroptosis in Solid Tumor Cancers. Biomolecules 2022; 12:1581. [PMID: 36358931 PMCID: PMC9687593 DOI: 10.3390/biom12111581] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
A potential target of precision nutrition in cancer therapeutics is the micronutrient selenium (Se). Se is metabolized and incorporated as the amino acid selenocysteine (Sec) into 25 human selenoproteins, including glutathione peroxidases (GPXs) and thioredoxin reductases (TXNRDs), among others. Both the processes of Se and Sec metabolism for the production of selenoproteins and the action of selenoproteins are utilized by cancer cells from solid tumors as a protective mechanism against oxidative damage and to resist ferroptosis, an iron-dependent cell death mechanism. Protection against ferroptosis in cancer cells requires sustained production of the selenoprotein GPX4, which involves increasing the uptake of Se, potentially activating Se metabolic pathways such as the trans-selenation pathway and the TXNRD1-dependent decomposition of inorganic selenocompounds to sustain GPX4 synthesis. Additionally, endoplasmic reticulum-resident selenoproteins also affect apoptotic responses in the presence of selenocompounds. Selenoproteins may also help cancer cells adapting against increased oxidative damage and the challenges of a modified nutrient metabolism that result from the Warburg switch. Finally, cancer cells may also rewire the selenoprotein hierarchy and use Se-related machinery to prioritize selenoproteins that are essential to the adaptations against ferroptosis and oxidative damage. In this review, we discuss both the evidence and the gaps in knowledge on how cancer cells from solid tumors use Se, Sec, selenoproteins, and the Se-related machinery to promote their survival particularly via resistance to ferroptosis.
Collapse
Affiliation(s)
| | | | | | - Lucia A. Seale
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
28
|
Zhang LL, Tang RJ, Yang YJ. The underlying pathological mechanism of ferroptosis in the development of cardiovascular disease. Front Cardiovasc Med 2022; 9:964034. [PMID: 36003910 PMCID: PMC9393259 DOI: 10.3389/fcvm.2022.964034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) have been attracting the attention of academic society for decades. Numerous researchers contributed to figuring out the core mechanisms underlying CVDs. Among those, pathological decompensated cellular loss posed by cell death in different kinds, namely necrosis, apoptosis and necroptosis, was widely regarded to accelerate the pathological development of most heart diseases and deteriorate cardiac function. Recently, apart from programmed cell death revealed previously, ferroptosis, a brand-new cellular death identified by its ferrous-iron-dependent manner, has been demonstrated to govern the occurrence and development of different cardiovascular disorders in many types of research as well. Therefore, clarifying the regulatory function of ferroptosis is conducive to finding out strategies for cardio-protection in different conditions and improving the prognosis of CVDs. Here, molecular mechanisms concerned are summarized systematically and categorized to depict the regulatory network of ferroptosis and point out potential therapeutic targets for diverse cardiovascular disorders.
Collapse
Affiliation(s)
- Li-Li Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui-Jie Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yue-Jin Yang,
| |
Collapse
|
29
|
Mecheliolide elicits ROS-mediated ERS driven immunogenic cell death in hepatocellular carcinoma. Redox Biol 2022; 54:102351. [PMID: 35671636 PMCID: PMC9168183 DOI: 10.1016/j.redox.2022.102351] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
The nonnegligible reason for the poor prognosis of hepatocellular carcinoma (HCC) is resistance to conventional chemotherapy. Immunogenic cell death (ICD) is a rare immunostimulatory form of cell death that can reengage the tumor-specific immune system. ICD can improve the clinical outcomes of chemotherapeutics by promoting a long-term cancer immunity. The discovery of potential ICD inducers is emerging as a promising direction. In the present study, micheliolide (MCL), a natural guaianolide sesquiterpene lactone, was screened out by the virtual screening strategies, identified as an inhibitor of thioredoxin reductase (TrxR) and was evaluated to have high potential to induce ICD. Here, we showed that MCL induced ICD-associated DAMPs (damage-associated molecular patterns, such as CRT exposure, ATP secretion and HMGB1 release). MCL significantly triggered the regression of established tumors in an immunocompetent mouse vaccine model, and induced ICD (DCs maturation, the stimulation of CD4+, and CD8+ T-cells responses) in vivo. Mechanistically, we found that the magnitude of ICD-associated effects induced upon exposure of HCC cells to MCL was dependent on the generation of reactive oxygen species (ROS)-mediated endoplasmic reticulum stress (ERS). In addition, the suppression of ROS normalized MCL-induced ERS, in contrast, the downregulation of TrxR synergized with the ERS driven by MCL. We also systematically detected the H2O2 generation using Hyper7 sensors in HCC cells exposed to MCL. Notably, MCL inhibited the development of HCC organoids. Collectively, our results reveal a potential association between the TrxR inhibitors and ICD, presenting valuable insights into the MCL-activated ICD in HCC cells.
Collapse
|