1
|
Kraus R, Maier E, Gruber M, Wittmann S. Impact of Nitric Oxide on Polymorphonuclear Neutrophils' Function. Biomedicines 2024; 12:2353. [PMID: 39457665 PMCID: PMC11505631 DOI: 10.3390/biomedicines12102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND There is increasing evidence that nitric oxide (nitrogen monoxide, NO) significantly influences immune cellular responses, including those from polymorphonuclear leukocytes (PMNs). OBJECTIVE The aim of this study was to examine a possible effect of NO on PMNs' function (chemotaxis, production of reactive oxygen species (ROS), and NETosis) using live cell imaging. Moreover, we investigated PMN surface epitope and neutrophil oxidative burst under the influence of NO by flow cytometric analysis. METHODS Whole blood samples were obtained from healthy volunteers, and PMNs were isolated by density centrifugation. Live cell imaging using type I collagen matrix in µSlide IBIDI chemotaxis chambers was conducted in order to observe N-formyl-L-methionyl-L-leucyl-phenylalanine (fMLP)-stimulated PMN chemotaxis, ROS production, and NETosis. In the test group, NO was continuously redirected into the climate chamber of the microscope, so the chemotaxis chambers were surrounded by NO. The same experimental setup without NO served as a control. In addition, isolated PMNs were incubated with nitrogen monoxide (NO) or without (the control). Subsequently, flow cytometry was used to analyze neutrophil antigen expression and oxidative burst. RESULTS Our live cell imaging results demonstrated a migration-promoting effect of NO on PMNs. We observed that in the case of prior stimulation by fMLP, NO has no effect on the time course of neutrophil ROS production and NET release. However, flow cytometric analyses demonstrated an increase in ROS production after pretreatment with NO. No NO-dependent differences for the expression of CD11b, CD62L, or CD66b could be observed. CONCLUSIONS We were able to demonstrate a distinct effect of NO on PMNs' function. The complex interaction between NO and PMNs remains a major research focus, as the exact mechanisms and additional influencing factors remain elusive. Future studies should explore how varying NO concentrations and the timing of NO exposure relative to PMN activation affect its influence.
Collapse
Affiliation(s)
- Richard Kraus
- Department of Anaesthesiology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | | | | |
Collapse
|
2
|
Anastasiadi AT, Arvaniti VZ, Hudson KE, Kriebardis AG, Stathopoulos C, D’Alessandro A, Spitalnik SL, Tzounakas VL. Exploring unconventional attributes of red blood cells and their potential applications in biomedicine. Protein Cell 2024; 15:315-330. [PMID: 38270470 PMCID: PMC11074998 DOI: 10.1093/procel/pwae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Affiliation(s)
- Alkmini T Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Vasiliki-Zoi Arvaniti
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece
| | | | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 13001 Aurora, CO, USA
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Vassilis L Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
3
|
Cai N, Li C, Gu X, Zeng W, Liu J, Zeng G, Zhong J, Zhu J, Hong H. ALDH2 rs671 and MTHFR rs1801133 polymorphisms are risk factors for arteriosclerosis in multiple arteries. BMC Cardiovasc Disord 2023; 23:319. [PMID: 37355582 PMCID: PMC10290786 DOI: 10.1186/s12872-023-03354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Arteriosclerosis in multiple arteries has long been associated with heightened cardiovascular risk. Acetaldehyde dehydrogenase 2 (ALDH2) and methylenetetrahydrofolate reductase (MTHFR) play an important role in the pathogenesis of arteriosclerosis by participating in the oxidation and reduction reactions in vascular endothelial cells. The purpose was to investigate the relationship of ALDH2 and MTHFR gene polymorphisms with arteriosclerosis in multiple arteries. METHODS 410 patients with arteriosclerosis in single artery and 472 patients with arteriosclerosis in multiple arteries were included. The relationship between ALDH2 rs671 and MTHFR rs1801133 polymorphisms and arteriosclerosis in single artery and arteriosclerosis in multiple arteries was analyzed. RESULTS The proportion of ALDH2 rs671 A allele (35.6% vs. 30.9%, P = 0.038) and MTHFR rs1801133 T allele (32.6% vs. 27.1%, P = 0.012) in patients with arteriosclerosis in multiple arteries was significantly higher than that in arteriosclerosis in single artery, respectively. The proportion of history of alcohol consumption in patients with ALDH2 rs671 G/G genotype was higher than those in ALDH2 rs671 G/A genotype and A/A genotype (P < 0.001). The results of logistic regression analysis indicated that ALDH2 rs671 A/A genotype (A/A vs. G/G: OR 1.996, 95% CI: 1.258-3.166, P = 0.003) and MTHFR rs1801133 T/T genotype (T/T vs. C/C: OR 1.943, 95% CI: 1.179-3.203, P = 0.009) may be independent risk factors for arteriosclerosis in multiple arteries (adjusted for age, sex, smoking, drinking, hypertension, and diabetes). CONCLUSIONS ALDH2 rs671 A/A and MTHFR rs1801133 T/T genotypes may be independent risk factors for arteriosclerosis in multiple arteries.
Collapse
Affiliation(s)
- Nan Cai
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China.
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China.
| | - Cunren Li
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Xianfang Gu
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Wenfeng Zeng
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Jingfeng Liu
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Guopeng Zeng
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Jiawei Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Junxing Zhu
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Haifeng Hong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| |
Collapse
|
4
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
5
|
Liu J, Mamun Bhuyan AA, Ma K, Zhu X, Zhou K, Lang F. Myricetin-induced suicidal erythrocyte death. Mol Biol Rep 2023; 50:4253-4260. [PMID: 36905403 DOI: 10.1007/s11033-023-08350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Myricetin, a type of flavonol commonly found in fruits and herbs, has demonstrated anticancer properties by triggering the process of apoptosis or programmed cell death in tumor cells. Despite the absence of mitochondria and nuclei, erythrocytes can undergo programmed cell death, also known as eryptosis.This process is characterized by cell shrinkage, externalization of phosphatidylserine (PS) on the cell membrane, and the formation of membrane blebs. The signaling of eryptosis involves Ca2+ influx, the formation of reactive oxygen species (ROS), and the accumulation of cell surface ceramide. The present study explored the effects of myricetin on eryptosis. METHODS AND RESULTS Human erythrocytes were exposed to various concentrations of myricetin (2-8 µM) for 24 h. Flow cytometry was used to assess the markers of eryptosis, including PS exposure, cellular volume, cytosolic Ca2+ concentration, and ceramide accumulation. In addition, the levels of intracellular ROS were measured using the 2',7'-dichlorofluorescin diacetate (DCFDA) assay. The myricetin-treated (8 µM) erythrocytes significantly increased Annexin-positive cells, Fluo-3 fluorescence intensity, DCF fluorescence intensity, and the accumulation of ceramide. The impact of myricetin on the binding of annexin-V was significantly reduced, but not completely eliminated, by the nominal removal of extracellular Ca2+. CONCLUSION Myricetin triggers eryptosis, which is accompanied and, at least in part, caused by Ca2+ influx, oxidative stress and increase of ceramide abundance.
Collapse
Affiliation(s)
- Jibin Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang, Chengdu, 611137, People's Republic of China.,Department of Physiology, Eberhard-Karls-University of Tuebingen, Wilhlmstr. 56, 72076, Tuebingen, Germany
| | - Abdulla Al Mamun Bhuyan
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Wilhlmstr. 56, 72076, Tuebingen, Germany.,Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, 6250, Bangladesh
| | - Ke Ma
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Wilhlmstr. 56, 72076, Tuebingen, Germany
| | - Xuexue Zhu
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Wilhlmstr. 56, 72076, Tuebingen, Germany
| | - Kuo Zhou
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Wilhlmstr. 56, 72076, Tuebingen, Germany
| | - Florian Lang
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Wilhlmstr. 56, 72076, Tuebingen, Germany.
| |
Collapse
|
6
|
Tkachenko A, Havránek O. Redox Status of Erythrocytes as an Important Factor in Eryptosis and Erythronecroptosis. Folia Biol (Praha) 2023; 69:116-126. [PMID: 38410969 DOI: 10.14712/fb2023069040116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Overall, reactive oxygen species (ROS) signalling significantly contributes to initiation and mo-dulation of multiple regulated cell death (RCD) pathways. Lately, more information has become available about RCD modalities of erythrocytes, including the role of ROS. ROS accumulation has therefore been increasingly recognized as a critical factor involved in eryptosis (apoptosis of erythrocytes) and erythro-necroptosis (necroptosis of erythrocytes). Eryptosis is a Ca2+-dependent apoptosis-like RCD of erythrocytes that occurs in response to oxidative stress, hyperosmolarity, ATP depletion, and a wide range of xenobiotics. Moreover, eryptosis seems to be involved in the pathogenesis of multiple human diseases and pathological processes. Several studies have reported that erythrocytes can also undergo necroptosis, a lytic RIPK1/RIPK3/MLKL-mediated RCD. As an example, erythronecroptosis can occur in response to CD59-specific pore-forming toxins. We have systematically summarized available studies regarding the involvement of ROS and oxidative stress in these two distinct RCDs of erythrocytes. We have focused specifically on cellular signalling pathways involved in ROS-mediated cell death decisions in erythrocytes. Furthermore, we have summarized dysregulation of related erythrocytic antioxidant defence systems. The general concept of the ROS role in eryptotic and necroptotic cell death pathways in erythrocytes seems to be established. However, further studies are required to uncover the complex role of ROS in the crosstalk and interplay between the survival and RCDs of erythrocytes.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Ondřej Havránek
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.
| |
Collapse
|
7
|
Kotan R, Peto K, Deak A, Szentkereszty Z, Nemeth N. Hemorheological and Microcirculatory Relations of Acute Pancreatitis. Metabolites 2022; 13:metabo13010004. [PMID: 36676930 PMCID: PMC9863893 DOI: 10.3390/metabo13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Acute pancreatitis still means a serious challenge in clinical practice. Its pathomechanism is complex and has yet to be fully elucidated. Rheological properties of blood play an important role in tissue perfusion and show non-specific changes in acute pancreatitis. An increase in blood and plasma viscosity, impairment of red blood cell deformability, and enhanced red blood cell aggregation caused by metabolic, inflammatory, free radical-related changes and mechanical stress contribute to the deterioration of the blood flow in the large vessels and also in the microcirculation. Revealing the significance of these changes in acute pancreatitis may better explain the pathogenesis and optimize the therapy. In this review, we give an overview of the role of impaired microcirculation by changes in hemorheological properties in acute pancreatitis.
Collapse
Affiliation(s)
- Robert Kotan
- Endocrine Surgery Unit, Linköping University Hospital, Universitetssjukhuset, 581 85 Linköping, Sweden
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary
| | - Zsolt Szentkereszty
- Department of Surgery, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-416-915
| |
Collapse
|