1
|
Dawi J, Misakyan Y, Affa S, Kades S, Narasimhan A, Hajjar F, Besser M, Tumanyan K, Venketaraman V. Oxidative Stress, Glutathione Insufficiency, and Inflammatory Pathways in Type 2 Diabetes Mellitus: Implications for Therapeutic Interventions. Biomedicines 2024; 13:18. [PMID: 39857603 PMCID: PMC11762874 DOI: 10.3390/biomedicines13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is significantly associated with oxidative stress, resulting from the imbalance between reactive oxygen species (ROS) production and antioxidant defenses. This imbalance contributes to insulin resistance, β-cell dysfunction, and complications in organs like the vasculature and nervous system. Glutathione (GSH), a major antioxidant, is crucial for neutralizing ROS, but GSH levels are notably low in T2DM, exacerbating oxidative stress and inflammation. Elevated interleukin-6 (IL-6) levels further intensify inflammation and oxidative stress, disrupting insulin signaling and worsening complications such as nephropathy, retinopathy, and neuropathy. While lifestyle modifications and antioxidant supplementation are current approaches for managing oxidative stress, their effectiveness in preventing complications remains under study. Recent investigations suggest that GSH and Vitamin D3 supplementation may offer dual-action benefits, as Vitamin D3 not only has anti-inflammatory properties but also promotes GSH synthesis. This dual action helps mitigate both oxidative stress and inflammation, addressing key pathological features of T2DM. This review highlights the complex interactions between oxidative stress, GSH insufficiency, and IL-6, and emphasizes the potential of targeted therapies to improve the management and outcomes of T2DM.
Collapse
Affiliation(s)
- John Dawi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (Y.M.); (S.K.); (A.N.); (F.H.); (M.B.)
| | - Yura Misakyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (Y.M.); (S.K.); (A.N.); (F.H.); (M.B.)
| | - Stephen Affa
- Department of Chemistry, Physics, and Engineering, Los Angeles Valley College, Valley Glen, CA 91401, USA;
| | - Samuel Kades
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (Y.M.); (S.K.); (A.N.); (F.H.); (M.B.)
| | - Ananya Narasimhan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (Y.M.); (S.K.); (A.N.); (F.H.); (M.B.)
| | - Fouad Hajjar
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (Y.M.); (S.K.); (A.N.); (F.H.); (M.B.)
| | - Max Besser
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (Y.M.); (S.K.); (A.N.); (F.H.); (M.B.)
| | - Kevin Tumanyan
- College of Podiatric Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (J.D.); (Y.M.); (S.K.); (A.N.); (F.H.); (M.B.)
| |
Collapse
|
2
|
Savvopoulos S, Hatzikirou H, Jelinek HF. Comparative Analysis of Biomarkers in Type 2 Diabetes Patients With and Without Comorbidities: Insights Into the Role of Hypertension and Cardiovascular Disease. Biomark Insights 2024; 19:11772719231222111. [PMID: 38707193 PMCID: PMC11069335 DOI: 10.1177/11772719231222111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/04/2023] [Indexed: 05/07/2024] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) are 90% of diabetes cases, and its prevalence and incidence, including comorbidities, are rising worldwide. Clinically, diabetes and associated comorbidities are identified by biochemical and physical characteristics including glycemia, glycated hemoglobin (HbA1c), and tests for cardiovascular, eye and kidney disease. Objectives Diabetes may have a common etiology based on inflammation and oxidative stress that may provide additional information about disease progression and treatment options. Thus, identifying high-risk individuals can delay or prevent diabetes and its complications. Design In patients with or without hypertension and cardiovascular disease, as part of progression from no diabetes to T2DM, this research studied the changes in biomarkers between control and prediabetes, prediabetes to T2DM, and control to T2DM, and classified patients based on first-attendance data. Control patients and patients with hypertension, cardiovascular, and with both hypertension and cardiovascular diseases are 156, 148, 61, and 216, respectively. Methods Linear discriminant analysis is used for classification method and feature importance, This study examined the relationship between Humanin and mitochondrial protein (MOTSc), mitochondrial peptides associated with oxidative stress, diabetes progression, and associated complications. Results MOTSc, reduced glutathione and glutathione disulfide ratio (GSH/GSSG), interleukin-1β (IL-1β), and 8-isoprostane were significant (P < .05) for the transition from prediabetes to t2dm, highlighting importance of mitochondrial involvement. complement component 5a (c5a) is a biomarker associated with disease progression and comorbidities, gsh gssg, monocyte chemoattractant protein-1 (mcp-1), 8-isoprostane being most important biomarkers. Conclusions Comorbidities affect the hypothesized biomarkers as diabetes progresses. Mitochondrial oxidative stress indicators, coagulation, and inflammatory markers help assess diabetes disease development and provide appropriate medications. Future studies will examine longitudinal biomarker evolution.
Collapse
Affiliation(s)
- Symeon Savvopoulos
- Mathematics Department, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Herbert F Jelinek
- Department of Biomedical Engineering and Health Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Biotechnology Center, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Chen X, Li P, Huang Y, Lv Y, Xu X, Nong H, Zhang L, Wu H, Yu C, Chen L, Liu D, Wei L, Zhang H. Joint associations among non-essential heavy metal mixtures and nutritional factors on glucose metabolism indexes in US adults: evidence from the NHANES 2011-2016. Food Funct 2024; 15:2706-2718. [PMID: 38376466 DOI: 10.1039/d3fo05439j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Dietary intake can modify the impact of metals on human health, and is also closely related to glucose metabolism in human bodies. However, research on their interaction is limited. We used data based on 1738 adults aged ≥20 years from the National Health and Nutrition Examination Survey 2011-2016. We combined linear regression and restricted cubic splines with Bayesian kernel machine regression (BKMR) to identify metals associated with each glucose metabolism index (P < 0.05 and the posterior inclusion probabilities of BKMR >0.5) in eight non-essential heavy metals (barium, cadmium, antimony, tungsten, uranium, arsenic, lead, and thallium) and glucose metabolism indexes [fasting plasma glucose (FPG), blood hemoglobin A1c (HbA1c) and homeostatic model assessment of insulin resistance (HOMA-IR)]. We identified two pairs of metals associated with glucose metabolism indexes: cadmium and tungsten to HbA1c and barium and thallium to HOMA-IR. Then, the cross-validated kernel ensemble (CVEK) approach was applied to identify the specific nutrient group (nutrients) that interacted with the association. By using the CVEK model, we identified significant interactions between the energy-adjusted diet inflammatory index (E-DII) and cadmium, tungsten and barium (all P < 0.05); macro-nutrients and cadmium, tungsten and barium (all P < 0.05); minerals and cadmium, tungsten, barium and thallium (all P < 0.05); and A vitamins and thallium (P = 0.043). Furthermore, a lower E-DII, a lower intake of carbohydrates and phosphorus, and a higher consumption of magnesium seem to attenuate the positive association between metals and glucose metabolism indexes. Our finding identifying the nutrients that interact with non-essential heavy metals could provide a feasible nutritional guideline for the general population to protect against the adverse effects of non-essential heavy metals on glucose metabolism.
Collapse
Affiliation(s)
- Xiaolang Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Peipei Li
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Yuanhao Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Yingnan Lv
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xia Xu
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Huiyun Nong
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Lulu Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Huabei Wu
- School of General Practice, Guangxi Medical University, Nanning 530021, China
| | - Chao Yu
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Lina Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Di Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Lancheng Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Haiying Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
| |
Collapse
|
4
|
El Helew EA, Hamed WS, Moustafa AM, Sakkara ZA. Structural changes in testes of Streptozotocin induced diabetic rats and possible protective effect of royal jelly: light and electron microscopic study. Ultrastruct Pathol 2024; 48:1-15. [PMID: 37927047 DOI: 10.1080/01913123.2023.2277170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Diabetes mellitus (DM) is one of the most common metabolic diseases causing damage in many organs in the body including the testes. Royal Jelly (RJ) is one of the honey bee products that has antioxidant, anti-inflammatory and antidiabetic properties. This study was performed to evaluate the changes in the microscopic structure of the testes in Streptozotocin (STZ)-induced diabetic rats, and the possible protective role of RJ. 60 adult male albino rats were divided into three groups. Group I Control group, Group II STZ group, and Group III STZ+RJ group. Group II received a single dose of STZ (50 mg/kg) by intraperitoneal injection. Group III received a single dose of STZ as in the second group then received RJ orally by intragastric tube in dose of (100 mg/kg/day) for 4 weeks after confirmation of diabetes. Light and electron microscopic studies were performed. Group II revealed marked structural changes affecting seminiferous tubules with sever reduction in germinal epithelium and loss of mature spermatozoa in their lumina. The interstitial tissue revealed degenerated Leydig cells and congested blood vessels. Mallory trichrome stained section of group II revealed marked increase in the amount of collagen fibers. Group III revealed highly preserved testicular architecture almost near to that appeared in the control group except few tubules that were damaged. In conclusion, RJ protected the testicular structure from the damaging effect of diabetic oxidative stress through its antioxidant effect thus preserving male fertility.
Collapse
Affiliation(s)
- Eman A El Helew
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Wafaa S Hamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amal M Moustafa
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Zeinab A Sakkara
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Azizi B, Mohseni S, Tabatabaei-Malazy O, Esmaeili F, Khodaeian M, Qorbani M, Nazeri E, Nouhi Z. Meta-analysis of the anti-oxidative and anti-inflammatory effects of hypoglycaemic plant-derived medicines. Inflammopharmacology 2023; 31:2521-2539. [PMID: 37658968 DOI: 10.1007/s10787-023-01315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND The pivotal role of oxidative stress and inflammation in the pathophysiology of type 2 diabetes mellitus (T2DM) has been firmly established. However, the evidence concerning hypoglycaemic medicinal plants' antioxidant and anti-inflammatory effects remains inconclusive due to inconsistencies in prior studies. To address this gap, our study aims to perform a comprehensive systematic review and meta-analysis of randomized controlled trials (RCTs) to consolidate previous research findings in this field. METHODS We conducted a comprehensive search in the PubMed, Web of Science, Embase, Cochrane Library, and Scopus databases to identify relevant English randomized controlled trials (RCTs). Our study adhered to the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guidelines. All eligible studies that evaluated concurrently the antioxidative and anti-inflammatory effects of hypoglycaemic plant-derived supplements on type 2 diabetes mellitus (T2DM) were included in the meta-analysis. The meta-analysis itself was carried out using both fixed and random effects models to synthesize the findings from the selected studies. RESULTS Our study included 47 trials with a total of 2636 participants, both male and female, aged between 20 and 79 years, diagnosed with prediabetes, type 2 diabetes mellitus (T2DM), or metabolic syndrome. The meta-analysis revealed that plant-derived treatments, compared to placebos or other medicines, significantly improved oxidative stress (SMD = - 0.36, 95% CI - 0.64 to - 0.09), inflammation (SMD = - 0.47, 95% CI - 0.63 to - 0.31), total antioxidant capacity (SMD = 0.46, 95% CI 0.16-0.75), and antioxidant enzyme activity (SMD = 1.80, 95% CI 1.26-2.33). The meta-regression analysis showed that treatment duration exceeding 8 weeks significantly impacted the heterogeneity of the oxidative stress data. CONCLUSIONS Several hypoglycaemic plant-based treatments appear to positively affect T2DM patients by concurrently lowering oxidative stress and inflammatory indicators and boosting antioxidant enzyme activity. CLINICAL TRAIL REGISTRY PROSPERO ID: CRD42021226147.
Collapse
Affiliation(s)
- Bayan Azizi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Mohseni
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Khodaeian
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Elahe Nazeri
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Nouhi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Yousef H, Khandoker AH, Feng SF, Helf C, Jelinek HF. Inflammation, oxidative stress and mitochondrial dysfunction in the progression of type II diabetes mellitus with coexisting hypertension. Front Endocrinol (Lausanne) 2023; 14:1173402. [PMID: 37383391 PMCID: PMC10296202 DOI: 10.3389/fendo.2023.1173402] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Type II diabetes mellitus (T2DM) is a metabolic disorder that poses a serious health concern worldwide due to its rising prevalence. Hypertension (HT) is a frequent comorbidity of T2DM, with the co-occurrence of both conditions increasing the risk of diabetes-associated complications. Inflammation and oxidative stress (OS) have been identified as leading factors in the development and progression of both T2DM and HT. However, OS and inflammation processes associated with these two comorbidities are not fully understood. This study aimed to explore changes in the levels of plasma and urinary inflammatory and OS biomarkers, along with mitochondrial OS biomarkers connected to mitochondrial dysfunction (MitD). These markers may provide a more comprehensive perspective associated with disease progression from no diabetes, and prediabetes, to T2DM coexisting with HT in a cohort of patients attending a diabetes health clinic in Australia. Methods Three-hundred and eighty-four participants were divided into four groups according to disease status: 210 healthy controls, 55 prediabetic patients, 32 T2DM, and 87 patients with T2DM and HT (T2DM+HT). Kruskal-Wallis and χ2 tests were conducted between the four groups to detect significant differences for numerical and categorical variables, respectively. Results and discussion For the transition from prediabetes to T2DM, interleukin-10 (IL-10), C-reactive protein (CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), humanin (HN), and p66Shc were the most discriminatory biomarkers, generally displaying elevated levels of inflammation and OS in T2DM, in addition to disrupted mitochondrial function as revealed by p66Shc and HN. Disease progression from T2DM to T2DM+HT indicated lower levels of inflammation and OS as revealed through IL-10, interleukin-6 (IL-6), interleukin-1β (IL-1β), 8-OHdG and oxidized glutathione (GSSG) levels, most likely due to antihypertensive medication use in the T2DM +HT patient group. The results also indicated better mitochondrial function in this group as shown through higher HN and lower p66Shc levels, which can also be attributed to medication use. However, monocyte chemoattractant protein-1 (MCP-1) levels appeared to be independent of medication, providing an effective biomarker even in the presence of medication use. The results of this study suggest that a more comprehensive review of inflammation and OS biomarkers is more effective in discriminating between the stages of T2DM progression in the presence or absence of HT. Our results further indicate the usefulness of medication use, especially with respect to the known involvement of inflammation and OS in disease progression, highlighting specific biomarkers during disease progression and therefore allowing a more targeted individualized treatment plan.
Collapse
Affiliation(s)
- Hibba Yousef
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ahsan H. Khandoker
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Samuel F. Feng
- Department of Science and Engineering, Sorbonne University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Charlotte Helf
- Dermatology, Venereology and Allergology, University Hospital Schleswig-Holstein, Schleswig-Holstein, Germany
| | - Herbert F. Jelinek
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Biotechnology Center, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Dulala RK, Balraj M, Chandrashekar S, N M, Rajapandiyan N, Badrachalam R, Mani V. Phytochemical cocktail of Asanadi ganaextract in the management of diabetes. Bioinformation 2023; 19:299-306. [PMID: 37808369 PMCID: PMC10557453 DOI: 10.6026/97320630019299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 10/10/2023] Open
Abstract
It is of interest to investigate that the phytochemical analysis, in-vitro antioxidant potential and glycosidase inhibitory potential of Asanadi ganaa polyherbal formulation. Asanadi ganais a classical Ayurvedic polyherbal formulation, markedly used for alleviation of Prameha and Medodosha, which correlates in many ways with obesity, metabolic syndrome, and diabetes mellitus (madhumeha). The phytochemical constituents, total phenolic, total flavonoids, total tannin content, total antioxidant capacity, total reducing power, and free radical scavenging activity of the polyherbal formulation extracts were determined. Comparing it to the common medication Acarbose, its inhibitory impact against the digestive enzymes α-amylase and α-glucosidase was also examined. The formulation showed the presence of major constituents such as terpenoids, triterpenoids, sterols, flavonoids, tannins, phenolic, saponins, alkaloids and Glycosides. The ethanol extract had high phenolic content and flavonoid content, whereas the aqueous extract had more tannin content (181 ± 5.5µg/mg), (132 ± 5.50 µg/mg), (22± 1.6 µg/mg respectively. we conclude that the extracts of ayurvedic polyherbal formulations, particularly ethanol extract are a potential source of natural antioxidants and remarkable glycosidase inhibitory activity. Hence, Asanadi ganahas the potential to be a safe and effective natural treatment for the delay or prevention of diabetic complications.
Collapse
Affiliation(s)
- Rekha Kumari Dulala
- Department of Biochemistry, Konaseema Institute of Medical sciences and research foundation, Amalapuram, East Godavari Dt-533201, Andhra Pradesh, India
| | - Manikandan Balraj
- Department of Physiology, Konaseema Institute of Medical sciences and research foundation, Amalapuram, East Godavari Dt-533201, Andhra Pradesh, India
| | - Sangeeta Chandrashekar
- Department of Physiology, Bharath Institute of Higher Education and Research, Chennai-600073, Tamilnadu, India
| | - Muninathan N
- Central Research Laboratory, Meenakshi Medical College and Hospital, Kanchipuram-631552, Tamilnadu, India
| | - Nithiya Rajapandiyan
- Department of Physiology, Arunai Medical College & Hospital, Tiruvanamallai-606603, Tamilnadu, India
| | - Ramya Badrachalam
- Department of Biochemistry, Sri Manakula Vinayagar Medical College and Hospital, Puducherry - 605107, Tamil Nadu, India
| | - Vadivel Mani
- Department of Biochemistry, Konaseema Institute of Medical sciences and research foundation, Amalapuram, East Godavari Dt-533201, Andhra Pradesh, India
| |
Collapse
|
8
|
Molecular Mechanism of Fucoidan Nanoparticles as Protector on Endothelial Cell Dysfunction in Diabetic Rats' Aortas. Nutrients 2023; 15:nu15030568. [PMID: 36771275 PMCID: PMC9920843 DOI: 10.3390/nu15030568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Antioxidants have an important role in protecting against diabetes complications such as vascular endothelial cell damage. Fucoidan has strong antioxidant properties, therefore the aim of this study was to investigate the protective mechanism of fucoidan nanoparticles through the pathway of antioxidant activity against streptozotocin-induced diabetic aortic endothelial cell dysfunction in rats. Fucoidan nanoparticles are made utilizing high-energy ball milling. This research consists of five groups, namely: control rats, rats were administered aquadest; diabetic rats, rats were administered streptozotocin (STZ); fucoidan nanoparticle rats, rats were administered STZ and fucoidan nanoparticles. Aortic tissue was collected for the evaluation of ROS (reactive oxygen species), Malondialdehyde (MDA), superoxide Dismutase (SOD), Glutathione Peroxidase (GPx), Nuclear factor erythroid-2-related factor 2 (Nrf2), Nitric Oxide (NO), cyclic Guanosine Monophosphate (cGMP), relaxation response of acetylcholine (Ach), and the diameter of the aorta. The size distribution of the fucoidan nanoparticles was 267.2 ± 42.8 nm. Administration of fucoidan nanoparticles decreased the levels of ROS and MDA, and increased the levels of SOD, levels of GPx, Nrf2 expression, NO levels, cGMP expression, the relaxation response of Ach, and lumen diameter of the aorta, which are significantly different when compared with diabetic rats, p < 0.05. In this study, we concluded that the mechanism pathway of fucoidan nanoparticles prevents aortic endothelial cell dysfunction in diabetic rats through antioxidant activity by reducing ROS and MDA and incrementing SOD levels, GPx levels, and Nrf2 expression. All of these can lead to an elevated relaxation response effect of Ach and an increase in the lumen diameter of the aorta, which indicates a protective effect of fucoidan nanoparticles on aortic endothelial cells.
Collapse
|