1
|
Yang P, Fan M, Chen Y, Yang D, Zhai L, Fu B, Zhang L, Wang Y, Ma R, Sun L. A novel strategy for the protective effect of ginsenoside Rg1 against ovarian reserve decline by the PINK1 pathway. PHARMACEUTICAL BIOLOGY 2025; 63:68-81. [PMID: 39862058 PMCID: PMC11770866 DOI: 10.1080/13880209.2025.2453699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025]
Abstract
CONTEXT The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear. OBJECTIVE To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve. MATERIALS AND METHODS Ovarian reserve function, reproductive capacity, oxidative stress levels, and mitochondrial function were compared between ginsenoside Rg1-treated and untreated naturally aged female Drosophila using behavioral, histological, and molecular biological techniques. The protective effects of ginsenoside Rg1 were analyzed in a Drosophila model of oxidative damage induced by tert-butyl hydroperoxide. Protein expression levels in the PINK1/Parkin pathway were assessed, and molecular docking and PINK1 mutant analyses were conducted to identify potential targets. RESULTS Ginsenoside Rg1 significantly mitigated ovarian reserve decline, enhancing offspring quantity and quality, increasing the levels of ecdysteroids, preventing ovarian atrophy, and elevating germline stem cell numbers in aged Drosophila. Ginsenoside Rg1 improved superoxide dismutase, catalase activity, and gene expression while reducing reactive oxygen species levels. Ginsenoside Rg1 activated the mitophagy pathway by upregulating PINK1, Parkin, and Atg8a and downregulating Ref(2)P. Knockdown of PINK1 in the ovary by RNAi attenuated the protective effects of ginsenoside Rg1. Molecular docking analysis revealed that the ginsenoside Rg1 could bind to the active site of the PINK1 kinase domain. DISCUSSION AND CONCLUSIONS Ginsenoside Rg1 targets PINK1 to regulate mitophagy, preserving ovarian reserve. These findings suggest the potential of ginsenoside Rg1 as a therapeutic strategy to prevent ovarian reserve decline.
Collapse
Affiliation(s)
- Pengdi Yang
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Meiling Fan
- Obstetrics and Gynecology Center, The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Chen
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Dan Yang
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Zhai
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Baoyu Fu
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Lili Zhang
- Obstetrics and Gynecology Center, The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Yanping Wang
- Obstetrics and Gynecology Center, The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Ma
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Liwei Sun
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Costa FC, Silva BR, Filho FFC, Bezerra VS, Azevedo VAN, Silva AA, Silva JRV. Ascorbic acid and resveratrol improve the structural integrity of the extracellular matrix and enhance follicular survival in cultured bovine ovarian tissue. Theriogenology 2025; 235:231-244. [PMID: 39874799 DOI: 10.1016/j.theriogenology.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 12/28/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
This study aimed to investigate the changes induced by the culture system and the effect of ascorbic acid and resveratrol on collagen fibers, stromal cells, follicle growth and survival, as well as antioxidant enzyme activity in cultured bovine ovarian tissues. In experiment 1, bovine ovarian fragments were cultured in α-minimum essential medium (α-MEM+) for 6 days. Before and after culturing, the fragments were fixed and processed to assess follicular morphology and diameters, stromal cell survival, collagen fibers, and glycosaminoglycans (GAGs). Uncultured and cultured tissues were also used to measure mRNA expression for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and peroxiredoxin (PRDX). Thiol levels and activity of CAT, SOD, and GPX enzymes were also investigated. In experiment 2, bovine ovarian fragments were cultured in α-MEM+ alone or supplemented with 50 μg/mL ascorbic acid or both 50 μg/mL ascorbic acid and 20 μM resveratrol for 6 days. In experiment 1, cultured tissues had higher percentages of growing follicles, but higher percentage of degenerated follicles than uncultured slices (P < 0.05). Additionally, the collagen and GAGs network became disorganized, with reduced deposition around primordial and primary follicles (P < 0.05). The number of stromal and granulosa cells, as well as follicular and oocyte diameters were reduced in both follicular categories compared to uncultured tissue (P < 0.05). Expression of mRNA for CAT, SOD, GPX, and PRDX was downregulated in 6-day cultured tissues (P < 0.05). Similarly, thiol levels and CAT activity were also reduced (P < 0.05). In experiment 2, ascorbic acid or both ascorbic acid and resveratrol increased the rate of follicular diameters and survival, and the number of granulosa and stromal cells compared to tissues cultured in the control medium (P < 0.05). Both ascorbic acid and resveratrol improved collagen density and preserved the GAG network, as well as increased thiol levels and CAT activity (P < 0.05). In conclusion, in vitro culture of ovarian tissue favored follicular activation, but reduced the proportion of normal follicles, collagen, GAG network, stromal cell numbers, and tissue antioxidant protection. Ascorbic acid alone or in association with resveratrol improved the preservation of extracellular matrix components and enhanced follicular survival.
Collapse
Affiliation(s)
- F C Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - B R Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará - UECE, Fortaleza, CE, Brazil
| | - F F C Filho
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - V S Bezerra
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - V A N Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - A A Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - J R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil.
| |
Collapse
|
3
|
Ferro MHDS, Morante I, Nishino FA, Estevam C, do Amaral FG, Cipolla-Neto J, Stumpp T. Melatonin influence on miRNA expression in sperm, hypothalamus, pre-frontal cortex and cerebellum of Wistar rats. PLoS One 2025; 20:e0312403. [PMID: 39869591 PMCID: PMC11771911 DOI: 10.1371/journal.pone.0312403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/04/2024] [Indexed: 01/29/2025] Open
Abstract
Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo. MicroRNAs from sperm have been associated with modulation of embryonic development and inheritance of psychiatric symptoms, including autism. Given that microRNAs and melatonin are ubiquitous molecules with important roles in the organism, the aim of this study was to investigate the expression of specific microRNAs in sperm, brain and cerebellum of pinealectomized rats. For this study, Wistar rats had their pineal gland removed at 60 post-partum. Part of these rats received exogenous melatonin until the day of the euthanasia. The control group did not receive any treatment or manipulation. The sperm, hypothalamus, prefrontal cortex and cerebellum were collected for analysis of microRNA expression by RT-qPCR. The results suggest that melatonin absence caused by pinealectomy increases the expression of the target microRNAs in the sperm. Although the data suggest an alteration (increase or decrease depending on the region and microRNA) of expression levels of some microRNAs in the brain and cerebellum of pinealectomized rats, the differences were not statistically significant. This seems to be a consequence of the intragroup variation. Melatonin administration restored the levels of the target microRNAs in the sperm. Additional studies are needed to understand the impact of the alterations of microRNA expression to the pinealectomized rats as well as to their descendants.
Collapse
Affiliation(s)
- Mísia Helena da Silva Ferro
- Laboratory of Developmental Biology, Department of Morphology and Genetics–Paulista Medicine School, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - Ingrid Morante
- Laboratory of Developmental Biology, Department of Morphology and Genetics–Paulista Medicine School, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - Fernanda Akane Nishino
- Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Camila Estevam
- Laboratory of Developmental Biology, Department of Morphology and Genetics–Paulista Medicine School, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | | | - José Cipolla-Neto
- Department of Physiology and Biophysics, Neurobiology Lab, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Taiza Stumpp
- Laboratory of Developmental Biology, Department of Morphology and Genetics–Paulista Medicine School, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| |
Collapse
|
4
|
Dai W, Yang H, Xu B, He T, Liu L, Zhang Z, Ding L, Pei X, Fu X. 3D hUC-MSC spheroids exhibit superior resistance to autophagy and apoptosis of granulosa cells in POF rat model. Reproduction 2024; 168:e230496. [PMID: 38912966 PMCID: PMC11301424 DOI: 10.1530/rep-23-0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/24/2024] [Indexed: 06/25/2024]
Abstract
In brief This study reveals that orthotopic transplantation of 3D hUC-MSC spheroids is more effective than monolayer-cultured hUC-MSCs in improving POF and distinctly reducing oxidative stress through the paracrine effect, thereby preventing apoptosis and autophagy of GCs. Abstract Premature ovarian failure (POF) is a common reproductive disease in women younger than 40 years old, and studies have demonstrated that the application of human umbilical cord mesenchymal stem cells (hUC-MSCs) is a promising therapy strategy for POF. Given the previously established therapeutic advantages of 3D MSC spheroids, and to evaluate their effectiveness, both 3D hUC-MSC spheroids and monolayer-cultured hUC-MSCs were employed to treat a cyclophosphamide-induced POF rat model through orthotopic transplantation. The effects of these two forms on POF were subsequently assessed by examining apoptosis, autophagy, and oxidative damage in ovarian granulosa cells (GCs). The results indicated that hUC-MSC spheroids exhibited superior treatment effects on resisting autophagy, apoptosis, and oxidative damage in GCs compared to monolayer-cultured hUC-MSCs. To further elucidate the impact of hUC-MSC spheroids in vitro, a H2O2-induced KGN cells model was established and co-cultured with both forms of hUC-MSCs. As expected, the hUC-MSC spheroids also exhibited superior effects in resisting apoptosis and autophagy caused by oxidative damage. Therefore, this study demonstrates that 3D hUC-MSC spheroids have potential advantages in POF therapy; however, the detailed mechanisms need to be further investigated. Furthermore, this study will provide a reference for the clinical treatment strategy of POF.
Collapse
Affiliation(s)
- Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Hong Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Tiantian He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ling Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Zhen Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Liyang Ding
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
5
|
Alkali IM, Colombo M, Luvoni GC. Melatonin reduces oxidative stress and improves follicular morphology in feline (Felis catus) vitrified ovarian tissue. Theriogenology 2024; 224:58-67. [PMID: 38749260 DOI: 10.1016/j.theriogenology.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Ovarian tissue vitrification is associated with multiple events that promote accumulation of ROS (reactive oxygen species) which culminate in follicular apoptosis. Thus, this study was aimed at evaluating the role of melatonin in vitrification and culture of feline (Felis catus) ovarian tissue. In phase 1, domestic cat ovaries were fragmented into equal circular pieces of 1.5 mm diameter by 1 mm thickness and divided into four groups (fresh control and 3 treatments). The treatments were exposed to vitrification solutions supplemented with melatonin at 0 M, 10-9 M, and 10-7 M, then vitrified-warmed, histologically evaluated and assayed for ROS. Consequently, phase 2 experiment was designed wherein ovarian fragments were divided into two groups. One group was exposed to vitrification solution without melatonin and the other with 10-7 M melatonin supplementation, then vitrified-warmed and cultured for ten days with fresh ovarian fragments as control prior to assessment for histology, immunohistochemistry (Ki-67, MCM-7 and caspase-3) and ROS. Concentration of ROS was lower (p = 0.0009) in 10-7 M supplemented group in addition to higher proportion of grade 1 follicles. After culture, proportions of intact and activated follicles were higher (p < 0.05) in melatonin supplemented group evidenced by higher expression of Ki-67 and MCM-7. Follicular apoptosis was lower in melatonin supplemented group. In conclusion, melatonin at 10-7 M concentration preserved follicular morphological integrity while reducing ROS concentration in vitrified-warmed feline ovarian tissue. It has also promoted the follicular viability and activation with reduced apoptosis during in vitro culture of vitrified-warmed feline ovarian tissue.
Collapse
Affiliation(s)
- Isa Mohammed Alkali
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy; Department of Theriogenology, University of Maiduguri, Maiduguri, Nigeria.
| | - Martina Colombo
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy.
| | - Gaia Cecilia Luvoni
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy.
| |
Collapse
|
6
|
Wei CY, Zhang X, Si LN, Shu WH, Jiang SN, Ding PJ, Cheng LY, Sun TC, Yang SH. Melatonin activates Nrf2/HO-1 signalling pathway to antagonizes oxidative stress-induced injury via melatonin receptor 1 (MT1) in cryopreserved mice ovarian tissue. Reprod Domest Anim 2024; 59:e14598. [PMID: 38881434 DOI: 10.1111/rda.14598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 06/18/2024]
Abstract
Our previous research has shown that melatonin (MLT) can reduce cryopreserved ovarian damage in mice. Yet, the molecular mechanism of MLT protection is still unclear. Some studies have shown that melatonin receptor 1 (MT1) is very important for animal reproductive system. To evaluate whether MLT exerts its protective effect on cryopreserved mice ovarian tissue via MT1, we added antagonist of MT1/MT2 (Luzindor) or antagonist of MT2 (4P-PDOT) to the freezing solution, followed by cryopreservation and thawing of ovarian tissue. The levels of total superoxide dismutase (T-SOD), catalase (CAT), nitric oxide (NO) and malondialdehyde (MDA) were detected. Besides, by using RT-PCR and Western blotting, the expression of Bcl-2, Bax and Nrf2/HO-1 signalling pathway-related proteins was detected. These findings demonstrated that compared with the melatonin group, the addition of Luzindor increased apoptosis, NO and MDA activities, decreased CAT and T-SOD activities and inhibited Nrf2/HO-1 signalling pathway. In conclusion, melatonin can play a protective role in cryopreserved ovarian tissue of mice through MT1 receptor.
Collapse
Affiliation(s)
- Chen Yang Wei
- Faculty of Graduate Studies, Chengde Medical University, Chengde, Hebei, China
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei, China
| | - Xin Zhang
- Faculty of Graduate Studies, Chengde Medical University, Chengde, Hebei, China
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei, China
| | - Li Na Si
- Faculty of Graduate Studies, Chengde Medical University, Chengde, Hebei, China
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei, China
| | - Wei Han Shu
- Faculty of Graduate Studies, Chengde Medical University, Chengde, Hebei, China
- Department of Immunology, Chengde Medical University, Chengde, Hebei, China
| | - Sheng Nan Jiang
- Faculty of Graduate Studies, Chengde Medical University, Chengde, Hebei, China
- Department of Immunology, Chengde Medical University, Chengde, Hebei, China
| | - Pei Jian Ding
- Department of Gastrointestinal Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Lu Yang Cheng
- Faculty of Graduate Studies, Chengde Medical University, Chengde, Hebei, China
- Department of Immunology, Chengde Medical University, Chengde, Hebei, China
| | - Tie Cheng Sun
- HLA Laboratory, Beijing Red Cross Blood Center, Beijing, China
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Song He Yang
- Faculty of Graduate Studies, Chengde Medical University, Chengde, Hebei, China
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
7
|
Asadi E, Najafi A, Benson JD. Comparison of liquid nitrogen-free slow freezing protocols toward enabling a practical option for centralized cryobanking of ovarian tissue. Cryobiology 2024; 114:104836. [PMID: 38092234 DOI: 10.1016/j.cryobiol.2023.104836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
Geographically distributed ovarian tissue cryobanks remain limited due to the high facility and staff costs, and cold transportation to centers is associated with ischemia-induced tissue damage that increases with transport distance. It is ideal to perform the cryopreservation procedure at a tissue removal site or local hospital before shipment to cost-effective centralized cryobanks. However, conventional liquid nitrogen-based freezers are not portable and require expensive infrastructure. To study the possibility of an ovarian tissue cryopreservation network not dependent on liquid nitrogen, we cryopreserved bovine ovarian tissue using three cooling techniques: a controlled rate freezer using liquid nitrogen, a liquid nitrogen-free controlled rate freezer, and liquid nitrogen-free passive cooling. Upon thawing, we evaluated a panel of viability metrics in frozen and fresh groups to examine the potency of the portable liquid nitrogen-free controlled and uncontrolled rate freezers in preserving the ovarian tissue compared to the non-portable conventional controlled rate freezer. We found similar outcomes for reactive oxygen species (ROS), total antioxidant capacity (TAC), follicular morphology, tissue viability, and fibrosis in the controlled rate freezer groups. However, passive slow cooling was associated with the lowest tissue viability, follicle morphology, and TAC, and the highest tissue fibrosis and ROS levels compared to all other groups. A stronger correlation was found between follicle morphology, ovarian tissue viability, and fibrosis with the TAC/ROS ratio compared to ROS and TAC alone. The current study undergirds the possibility of centralized cryobanks using a controlled rate liquid nitrogen-free freezer to prevent ischemia-induced damage during ovarian tissue shipment.
Collapse
Affiliation(s)
- Ebrahim Asadi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - Atefeh Najafi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - James D Benson
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| |
Collapse
|
8
|
Najafi A, Asadi E, Benson JD. Comparative effects of a calcium chelator (BAPTA-AM) and melatonin on cryopreservation-induced oxidative stress and damage in ovarian tissue. Sci Rep 2023; 13:22911. [PMID: 38129642 PMCID: PMC10739950 DOI: 10.1038/s41598-023-49892-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Oncology treatments cause infertility, and ovarian tissue cryopreservation and transplantation (OTCT) is the only option for fertility preservation in prepubertal girls with cancer. However, OTCT is associated with massive follicle loss. Here, we aimed to determine the effect of supplementation of slow freezing and vitrification media with BAPTA-AM and melatonin alone and in combination on ovarian tissue viability, reactive oxygen species (ROS) levels, total antioxidant capacity (TAC), and follicular morphology and viability. Our results indicated that BAPTA-AM and melatonin can significantly improve ovarian tissue viability and the TAC/ROS ratio and reduce ROS generation in frozen-thawed ovarian tissues in slow freezing and vitrification procedures. BAPTA-AM was also found to be less effective on TAC compared to melatonin in vitrified ovarian tissue. While supplementation of slow freezing and vitrification media with BAPTA-AM and/or melatonin could increase the percentage of morphologically intact follicles in cryopreserved ovarian tissues, the differences were not significant. In conclusion, supplementation of cryopreservation media with BAPTA-AM or melatonin improved the outcome of ovarian tissue cryopreservation in both vitrification and slow freezing methods. Our data provide some insight into the importance of modulating redox balance and intracellular Ca2+ levels during ovarian tissue cryopreservation to optimize the current cryopreservation methods.
Collapse
Affiliation(s)
- Atefeh Najafi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Ebrahim Asadi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - James D Benson
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| |
Collapse
|
9
|
Olver DJ, Heres P, Paredes E, Benson JD. Rational synthesis of total damage during cryoprotectant equilibration: modelling and experimental validation of osmomechanical, temperature, and cytotoxic damage in sea urchin ( Paracentrotus lividus) oocytes. PeerJ 2023; 11:e15539. [PMID: 37671360 PMCID: PMC10476611 DOI: 10.7717/peerj.15539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/21/2023] [Indexed: 09/07/2023] Open
Abstract
Sea urchins (e.g., Paracentrotus lividus) are important for both aquaculture and as model species. Despite their importance, biobanking of urchin oocytes by cryopreservation is currently not possible. Optimized cryoprotectant loading may enable novel vitrification methods and thus successful cryopreservation of oocytes. One method for determining an optimized loading protocol uses membrane characteristics and models of damage, namely osmomechanical damage, temperature damage (e.g., chill injury) and cytotoxicity. Here we present and experimentally evaluate existing and novel models of these damage modalities as a function of time and temperature. In osmomechanical damage experiments, oocytes were exposed for 2 to 30 minutes in hypertonic NaCl or sucrose supplemented seawater or in hypotonic diluted seawater. In temperature damage experiments, oocytes were exposed to 1.7 °C, 10 °C, or 20 °C for 2 to 90 minutes. Cytotoxicity was investigated by exposing oocytes to solutions of Me2SO for 2 to 30 minutes. We identified a time-dependent osmotic damage model, a temperature-dependent damage model, and a temperature and time-dependent cytotoxicity model. We combined these models to estimate total damage during a cryoprotectant loading protocol and determined the optimal loading protocol for any given goal intracellular cryoprotectant concentration. Given our fitted models, we find sea urchin oocytes can only be loaded to 13% Me2SO v/v with about 50% survival. This synthesis of multiple damage modalities is the first of its kind and enables a novel approach to modelling cryoprotectant equilibration survival for cells in general.
Collapse
Affiliation(s)
- Dominic J. Olver
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Pablo Heres
- Departamento de Ecología y Biología Animal, ECOCOST Lab, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Estefania Paredes
- Departamento de Ecología y Biología Animal, ECOCOST Lab, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - James D. Benson
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
Azam I, Benson JD. Silymarin mediated osmotic responses and damage in HepG2 cell suspensions and monolayers. Cryobiology 2023; 112:104552. [PMID: 37301358 DOI: 10.1016/j.cryobiol.2023.104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Maintenance of cells within a volume range compatible with their functional integrity is a critical determinant of cell survival after cryopreservation, and quantifying this osmotically induced damage is a part of the rational design of improved cryopreservation protocols. The degree that cells tolerate osmotic stress significantly impacts applicable cryoprotocols, but there has been little research on the time dependence of this osmotic stress. Additionally, the flavonoid silymarin has been shown to be hepatoprotective. Therefore, here we test the hypotheses that osmotic damage is time-dependent and that flavonoid inclusion reduces osmotic damage. In our first experiment, cells were exposed to a series of anisosmotic solutions of graded hypo- and hypertonicity for 10-40 min, resulting in a conclusion that osmotically induced damage is time dependent. In the next experiment, adherent cells preincubated with silymarin at the concentration of 10-4 mol/L and 10-5 mol/L showed a significant increase in cell proliferation and metabolic activity after osmotic stress compared to untreated matched controls. For instance, when adherent cells preincubated with 10-5 mol/L silymarin were tested, resistance to osmotic damage and a significant increase (15%) in membrane integrity was observed in hypo-osmotic media and a 22% increase in hyperosmotic conditions. Similarly, significant protection from osmotic damage was observed in suspended HepG2 cells in the presence of silymarin. Our study concludes that osmotic damage is time dependent, and the addition of silymarin leads to elevated resistance to osmotic stress and a potential increase in the cryosurvival of HepG2 cells.
Collapse
Affiliation(s)
- Iqra Azam
- Department of Biology, University of Saskatchewan, Canada
| | - James D Benson
- Department of Biology, University of Saskatchewan, Canada.
| |
Collapse
|
11
|
Najafi A, Asadi E, Benson JD. Ovarian tissue cryopreservation and transplantation: a review on reactive oxygen species generation and antioxidant therapy. Cell Tissue Res 2023; 393:401-423. [PMID: 37328708 DOI: 10.1007/s00441-023-03794-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Cancer is the leading cause of death worldwide. Fortunately, the survival rate of cancer continues to rise, owing to advances in cancer treatments. However, these treatments are gonadotoxic and cause infertility. Ovarian tissue cryopreservation and transplantation (OTCT) is the most flexible option to preserve fertility in women and children with cancer. However, OTCT is associated with significant follicle loss and an accompanying short lifespan of the grafts. There has been a decade of research in cryopreservation-induced oxidative stress in single cells with significant successes in mitigating this major source of loss of viability. However, despite its success elsewhere and beyond a few promising experiments, little attention has been paid to this key aspect of OTCT-induced damage. As more and more clinical practices adopt OTCT for fertility preservation, it is a critical time to review oxidative stress as a cause of damage and to outline potential ameliorative interventions. Here we give an overview of the application of OTCT for female fertility preservation and existing challenges; clarify the potential contribution of oxidative stress in ovarian follicle loss; and highlight potential ability of antioxidant treatments to mitigate the OTCT-induced injuries that might be of interest to cryobiologists and reproductive clinicians.
Collapse
Affiliation(s)
- Atefeh Najafi
- Department of Biology, University of Saskatchewan, S7N 5E2, Saskatoon, SK, Canada
| | - Ebrahim Asadi
- Department of Biology, University of Saskatchewan, S7N 5E2, Saskatoon, SK, Canada
| | - James D Benson
- Department of Biology, University of Saskatchewan, S7N 5E2, Saskatoon, SK, Canada.
| |
Collapse
|