1
|
Zhao X, Kang Z, Han R, Wang M, Wang Y, Sun X, Wang C, Zhou J, Cao L, Lu M. JWA binding to NCOA4 alleviates degeneration in dopaminergic neurons through suppression of ferritinophagy in Parkinson's disease. Redox Biol 2024; 73:103190. [PMID: 38744191 PMCID: PMC11109895 DOI: 10.1016/j.redox.2024.103190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024] Open
Abstract
Parkinson's disease (PD) poses a significant challenge in neurodegenerative disorders, characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). The intricate mechanisms orchestrating DA neurodegeneration in PD are not fully understood, necessitating the exploration of innovative therapeutic approaches. Recent studies have implicated ferroptosis as a major contributor to the loss of DA neurons, revealing a complex interplay between iron accumulation and neurodegeneration. However, the sophisticated nature of this process challenges the conventional belief that mere iron removal could effectively prevent DA neuronal ferroptosis. Here, we report JWA, alternatively referred to as ARL6IP5, as a negative regulator of ferroptosis, capable of ameliorating DA neuronal loss in the context of PD. In this study, synchronized expression patterns of JWA and tyrosine hydroxylase (TH) in PD patients and mice were observed, underscoring the importance of JWA for DA neuronal survival. Screening of ferroptosis-related genes unraveled the engagement of iron metabolism in the JWA-dependent inhibition of DA neuronal ferroptosis. Genetic manipulation of JWA provided compelling evidence linking its neuroprotective effects to the attenuation of NCOA4-mediated ferritinophagy. Molecular docking, co-immunoprecipitation, and immunofluorescence studies confirmed that JWA mitigated DA neuronal ferroptosis by occupying the ferritin binding site of NCOA4. Moreover, the JWA-activating compound, JAC4, demonstrated promising neuroprotective effects in cellular and animal PD models by elevating JWA expression, offering a potential avenue for neuroprotection in PD. Collectively, our work establishes JWA as a novel regulator of ferritinophagy, presenting a promising therapeutic target for addressing DA neuronal ferroptosis in PD.
Collapse
Affiliation(s)
- Xinxin Zhao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Zhengwei Kang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Ruixue Han
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Min Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Yueping Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Xin Sun
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Cong Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China; Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, 213000, Changzhou, China
| | - Lei Cao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China; Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, 213000, Changzhou, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China; Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, 213000, Changzhou, China.
| |
Collapse
|
2
|
Gao Y, Wu F, He W, Cai Z, Pang J, Zheng Y. Reactive Oxygen Species-Related Disruptions to Cochlear Hair Cell and Stria Vascularis Consequently Leading to Radiation-Induced Sensorineural Hearing Loss. Antioxid Redox Signal 2024; 40:470-491. [PMID: 37476961 DOI: 10.1089/ars.2022.0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Aims: Radiation-induced sensorineural hearing loss (RISNHL) is one of the major side effects of radiotherapy for head and neck cancers. At present, no effective clinical treatment or prevention is available for RISNHL. This study thus aimed to investigate the cochlear pathology so that the underlying mechanisms of RISNHL may be elucidated, consequently paving the way for potential protective strategies to be developed. Results: Functional and morphological impairment in the stria vascularis (SV) was observed after irradiation (IR), as indicated by endocochlear potential (EP) reduction, hyperpermeability, and SV atrophy. The expression of zonulae occludins-1 was found to have decreased after IR. The loss of outer hair cells (OHCs) occurred later than SV damage. The disruption to the SV and OHCs could be attributed to reactive oxygen species (ROS)-related damage. In addition, EP shifts and the loss of OHCs were reduced when ROS was reduced by N-acetylcysteine (NAC) in C57BL/6 mice, attenuating auditory threshold shifts. Innovation: The damage to the SV was found to occur before OHC loss. ROS-related damage accounted for SV damage and OHC loss. The incidences of SV damage and OHC loss were decreased through ROS modulation by NAC, subsequently preventing RISNHL, suggesting the possible role of NAC as a possible protective agent against RISNHL. Conclusion: The findings from this study suggest oxidative stress-induced early SV injury and late OHC loss to be the key factors leading to RISNHL. NAC prevents IR-induced OHC loss, and attenuates auditory brainstem response and EP shifts by regulating the level of oxidative stress. Antioxid. Redox Signal. 40, 470-491.
Collapse
Affiliation(s)
- Yiming Gao
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fan Wu
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wuhui He
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ziyi Cai
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiaqi Pang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Shanwei, China
| |
Collapse
|
3
|
Park HY, Yu JH. X-ray radiation-induced intestinal barrier dysfunction in human epithelial Caco-2 cell monolayers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115404. [PMID: 37625335 DOI: 10.1016/j.ecoenv.2023.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Radiation therapy and unwanted radiological or nuclear exposure, such as nuclear plant accidents, terrorist attacks, and military conflicts, pose serious health issues to humans. Dysfunction of the intestinal epithelial barrier and the leakage of luminal antigens and bacteria across the barrier have been linked to various human diseases. Intestinal permeability is regulated by intercellular structures, termed tight junctions (TJs), which are disrupted after radiation exposure. In this study, we investigated radiation-induced alterations in TJ-related proteins in an intestinal epithelial cell model. Caco-2 cells were irradiated with 2, 5, and 10 Gy and harvested 1 and 24 h after X-ray exposure. The trypan blue assay revealed that cell viability was reduced in a dose-dependent manner 24 h after X-ray exposure compared to that of non-irradiated cells. However, the WST-8 assay revealed that cell proliferation was significantly reduced only 24 h after radiation exposure to 10 Gy compared to that of non-irradiated cells. In addition, a decreased growth rate and increased doubling time were observed in cells irradiated with X-rays. Intestinal permeability was significantly increased, and transepithelial electrical resistance values were remarkably reduced in Caco-2 cell monolayers irradiated with X-rays compared to non-irradiated cells. X-ray irradiation significantly decreased the mRNA and protein levels of ZO-1, occludin, claudin-3, and claudin-4, with ZO-1 and claudin-3 protein levels decreasing in a dose-dependent manner. Overall, the present study reveals that exposure to X-ray induces dysfunction of the human epithelial intestinal barrier and integrity via the downregulation of TJ-related genes, which may be a key factor contributing to intestinal barrier damage and increased intestinal permeability.
Collapse
Affiliation(s)
- Ha-Young Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea.
| | - Jin-Hee Yu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| |
Collapse
|
4
|
Zou L, Che Z, Ding K, Zhang C, Liu X, Wang L, Li A, Zhou J. JAC4 Alleviates Rotenone-Induced Parkinson's Disease through the Inactivation of the NLRP3 Signal Pathway. Antioxidants (Basel) 2023; 12:antiox12051134. [PMID: 37238000 DOI: 10.3390/antiox12051134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) is the fastest-growing neurodegeneration disease, characterized typically by a progressive loss of dopaminergic neurons in the substantia nigra, and there are no effective therapeutic agents to cure PD. Rotenone (Rot) is a common and widely used pesticide which can directly inhibit mitochondrial complex I, leading to a loss of dopaminergic neurons. Our previous studies proved that the JWA gene (arl6ip5) may play a prominent role in resisting aging, oxidative stress and inflammation, and JWA knockout in astrocytes increases the susceptibility of mice to 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. JWA-activating compound 4 (JAC4) is a small-molecule activator of the JWA gene, but its role in and mechanism against PD have not yet been clarified. In the present study, we showed that the JWA expression level is strongly related to tyrosine hydroxylase (TH) in different growth periods of mice. Additionally, we constructed models with Rot in vivo and in vitro to observe the neuroprotective effects of JAC4. Our results demonstrated that JAC4 prophylactic intervention improved motor dysfunction and dopaminergic neuron loss in mice. Mechanistically, JAC4 reduced oxidative stress damage by reversing mitochondrial complex I damage, reducing nuclear factor kappa-B (NF-κB) translocation and repressing nucleotide-binding domain, leucine-rich-containing family and pyrin domain-containing-3 (NLRP3) inflammasome activation. Overall, our results provide proof that JAC4 could serve as a novel effective agent for PD prevention.
Collapse
Affiliation(s)
- Lu Zou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhen Che
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Kun Ding
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chao Zhang
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xia Liu
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Luman Wang
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Aiping Li
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
5
|
Ding K, Jiang X, Wang Z, Zou L, Cui J, Li X, Shu C, Li A, Zhou J. JAC4 Inhibits EGFR-Driven Lung Adenocarcinoma Growth and Metastasis through CTBP1-Mediated JWA/AMPK/NEDD4L/EGFR Axis. Int J Mol Sci 2023; 24:ijms24108794. [PMID: 37240137 DOI: 10.3390/ijms24108794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/24/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common lung cancer, with high mortality. As a tumor-suppressor gene, JWA plays an important role in blocking pan-tumor progression. JAC4, a small molecular-compound agonist, transcriptionally activates JWA expression both in vivo and in vitro. However, the direct target and the anticancer mechanism of JAC4 in LUAD have not been elucidated. Public transcriptome and proteome data sets were used to analyze the relationship between JWA expression and patient survival in LUAD. The anticancer activities of JAC4 were determined through in vitro and in vivo assays. The molecular mechanism of JAC4 was assessed by Western blot, quantitative real-time PCR (qRT-PCR), immunofluorescence (IF), ubiquitination assay, co-immunoprecipitation, and mass spectrometry (MS). Cellular thermal shift and molecule-docking assays were used for confirmation of the interactions between JAC4/CTBP1 and AMPK/NEDD4L. JWA was downregulated in LUAD tissues. Higher expression of JWA was associated with a better prognosis of LUAD. JAC4 inhibited LUAD cell proliferation and migration in both in-vitro and in-vivo models. Mechanistically, JAC4 increased the stability of NEDD4L through AMPK-mediated phosphorylation at Thr367. The WW domain of NEDD4L, an E3 ubiquitin ligase, interacted with EGFR, thus promoting ubiquitination at K716 and the subsequent degradation of EGFR. Importantly, the combination of JAC4 and AZD9191 synergistically inhibited the growth and metastasis of EGFR-mutant lung cancer in both subcutaneous and orthotopic NSCLC xenografts. Furthermore, direct binding of JAC4 to CTBP1 blocked nuclear translocation of CTBP1 and then removed its transcriptional suppression on the JWA gene. The small-molecule JWA agonist JAC4 plays a therapeutic role in EGFR-driven LUAD growth and metastasis through the CTBP1-mediated JWA/AMPK/NEDD4L/EGFR axis.
Collapse
Affiliation(s)
- Kun Ding
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xuqian Jiang
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Zhangding Wang
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Lu Zou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jiahua Cui
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiong Li
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Chuanjun Shu
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Aiping Li
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
6
|
Targeting JWA for Cancer Therapy: Functions, Mechanisms and Drug Discovery. Cancers (Basel) 2022; 14:cancers14194655. [PMID: 36230577 PMCID: PMC9564207 DOI: 10.3390/cancers14194655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary JWA has been identified as a potential therapeutic target for several cancers. In this review, we summarize the tumor suppressive functions of the JWA gene and its role in anti-cancer drug development. The focus is on elucidating the key regulatory proteins up and downstream of JWA and their signaling networks. We also discuss current strategies for targeting JWA (JWA peptides, small molecule agonists, and JWA-targeted Pt (IV) prodrugs). Abstract Tumor heterogeneity limits the precision treatment of targeted drugs. It is important to find new tumor targets. JWA, also known as ADP ribosylation factor-like GTPase 6 interacting protein 5 (ARL6IP5, GenBank: AF070523, 1998), is a microtubule-associated protein and an environmental response gene. Substantial evidence shows that JWA is low expressed in a variety of malignancies and is correlated with overall survival. As a tumor suppressor, JWA inhibits tumor progression by suppressing multiple oncogenes or activating tumor suppressor genes. Low levels of JWA expression in tumors have been reported to be associated with multiple aspects of cancer progression, including angiogenesis, proliferation, apoptosis, metastasis, and chemotherapy resistance. In this review, we will discuss the structure and biological functions of JWA in tumors, examine the potential therapeutic strategies for targeting JWA and explore the directions for future investigation.
Collapse
|