1
|
Ławiński M, Zadka K, Ksepka N, Matin M, Wysocki K, Karkocha D, Gradowska A, Atanasov AG, Słodkowski M, Wierzbicka A, Jóźwik A. Does Resveratrol Impact Oxidative Stress Markers in Patients with Head and Neck Cancer Receiving Home Enteral Nutrition? Nutrients 2025; 17:504. [PMID: 39940362 PMCID: PMC11819975 DOI: 10.3390/nu17030504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Objectives: Resveratrol (RES) is well documented for its multiple health benefits, with a notable impact on cancer prevention and therapy. This study aimed to evaluate the effect of RES supplementation on oxidative stress in patients with head and neck cancer (HNC) receiving home enteral nutrition (HEN). Methods: This randomized, single-center, open-label study involved 72 adult patients, with 40 completing the intervention. Participants in the intervention group received 400 mg of liposomal RES daily for 12 weeks alongside HEN, while the control group received HEN only. Body composition and oxidative stress markers-including total antioxidant capacity (TAC), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), and reduced glutathione (GSH)-were measured at baseline and after 12 weeks. Results: Significant increases in TAC and SOD activity were observed in both groups. GPx activity increased significantly only in the RES group. MDA levels rose in both groups but were more pronounced in the RES group. GSH levels showed no significant changes. Phase angle (PhA) increased significantly in the RES group, while no significant change was observed in the control group. Conclusions: RES supplementation may enhance antioxidant defenses, as evidenced by increased GPx activity and improvements in TAC and SOD levels, supporting oxidative balance in patients with HNC receiving HEN. The higher MDA levels in the RES group may reflect RES's dual antioxidant and pro-oxidant activities. Additionally, the observed increase in PhA suggests potential cellular health benefits. These findings highlight the potential of RES as a complementary antioxidant intervention in clinical oncology, warranting further investigation to clarify its therapeutic effects on oxidative stress and cellular health in cancer care.
Collapse
Affiliation(s)
- Michał Ławiński
- Department of General, Gastroenterology, and Oncologic Surgery, Medical University of Warsaw, Banacha 1a, 02-097 Warszawa, Poland; (M.Ł.); (D.K.); (M.S.)
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36a, Jastrzębiec, 05-552 Magdalenka, Poland; (N.K.); (M.M.); (K.W.); (A.G.A.); (A.W.); (A.J.)
| | - Katarzyna Zadka
- Department of General, Gastroenterology, and Oncologic Surgery, Medical University of Warsaw, Banacha 1a, 02-097 Warszawa, Poland; (M.Ł.); (D.K.); (M.S.)
| | - Natalia Ksepka
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36a, Jastrzębiec, 05-552 Magdalenka, Poland; (N.K.); (M.M.); (K.W.); (A.G.A.); (A.W.); (A.J.)
| | - Maima Matin
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36a, Jastrzębiec, 05-552 Magdalenka, Poland; (N.K.); (M.M.); (K.W.); (A.G.A.); (A.W.); (A.J.)
| | - Kamil Wysocki
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36a, Jastrzębiec, 05-552 Magdalenka, Poland; (N.K.); (M.M.); (K.W.); (A.G.A.); (A.W.); (A.J.)
| | - Dominika Karkocha
- Department of General, Gastroenterology, and Oncologic Surgery, Medical University of Warsaw, Banacha 1a, 02-097 Warszawa, Poland; (M.Ł.); (D.K.); (M.S.)
| | - Aleksandra Gradowska
- Institute of Applied Psychology, University of Social Sciences, Sienkiewicza 9, 90-113 Łódź, Poland;
| | - Atanas G. Atanasov
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36a, Jastrzębiec, 05-552 Magdalenka, Poland; (N.K.); (M.M.); (K.W.); (A.G.A.); (A.W.); (A.J.)
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, India
| | - Maciej Słodkowski
- Department of General, Gastroenterology, and Oncologic Surgery, Medical University of Warsaw, Banacha 1a, 02-097 Warszawa, Poland; (M.Ł.); (D.K.); (M.S.)
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36a, Jastrzębiec, 05-552 Magdalenka, Poland; (N.K.); (M.M.); (K.W.); (A.G.A.); (A.W.); (A.J.)
| | - Agnieszka Wierzbicka
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36a, Jastrzębiec, 05-552 Magdalenka, Poland; (N.K.); (M.M.); (K.W.); (A.G.A.); (A.W.); (A.J.)
| | - Artur Jóźwik
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36a, Jastrzębiec, 05-552 Magdalenka, Poland; (N.K.); (M.M.); (K.W.); (A.G.A.); (A.W.); (A.J.)
| |
Collapse
|
2
|
Zhou Y, Deng Q, Vong CT, Khan H, Cheang WS. Oxyresveratrol reduces lipopolysaccharide-induced inflammation and oxidative stress through inactivation of MAPK and NF-κB signaling in brain endothelial cells. Biochem Biophys Rep 2024; 40:101823. [PMID: 39290344 PMCID: PMC11407036 DOI: 10.1016/j.bbrep.2024.101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Inflammatory responses and oxidative stress damage the integrity of the blood-brain barrier (BBB), which is a primary pathological modulator of neurodegenerative diseases. Brain endothelial cells are crucial components of BBB. In the present study, the effect of oxyresveratrol on lipopolysaccharide (LPS)-induced brain endothelial (bEnd.3) cells was assessed. Our results showed that oxyresveratrol diminished protein expressions of inducible nitric oxide synthase (iNOS) and adhesion molecules including intercellular adhesion molecule (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), nitric oxide (NO) production, and proinflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor (TNF-α) in LPS-elicited bEnd.3 cells. These anti-inflammatory effects were mediated through suppressing nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. In addition, we found that oxyresveratrol reduced reactive oxygen species (ROS) levels. To conclude, the current results demonstrated the protective role of oxyresveratrol against LPS-induced inflammation and oxidative stress in bEnd.3 cells, suggesting its potential effect for mitigating neurodegenerative and cerebrovascular diseases.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Qiaowen Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau SAR, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
3
|
Bencsik T, Balázs O, Vida RG, Zsidó BZ, Hetényi C, Valentová K, Poór M. Effects of catechins, resveratrol, silymarin components and some of their conjugates on xanthine oxidase-catalyzed xanthine and 6-mercaptopurine oxidation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39606799 DOI: 10.1002/jsfa.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Over the past two decades, the global incidence of gout has markedly increased, affecting people worldwide. Considering the side effects of xanthine oxidase (XO) inhibitor drugs (e.g. allopurinol and febuxostat) used in the treatment of hyperuricemia and gout, the potential application of phytochemicals has been widely studied. In addition, XO also takes part in the elimination of certain drugs, including 6-mercaptopurine. In the current explorative study, we aimed to examine the potential effects of tea catechins, resveratrol, silymarin flavonolignans and some of their conjugated metabolites on XO-catalyzed xanthine and 6-mercaptopurine oxidation, applying in vitro assays and modeling studies. RESULTS Catechins, resveratrol and resveratrol conjugates exerted no or only weak inhibitory effects on XO. Silybin A, silybin B and isosilybin A were weak, silychristin was a moderate, while 2,3-dehydrosilychristin was a potent inhibitor of the enzyme. Sulfate metabolites of silybin A, silybin B and isosilybin A were considerably stronger inhibitors compared to the parent flavonolignans, and the sulfation of 2,3-dehydrosilychristin slightly increased its inhibitory potency. Silychristin was the sole flavonolignan tested, where sulfate conjugation decreased its inhibitory effect. CONCLUSION 2,3-Dehydrosilychristin seems to be a promising candidate for examining its in vivo antihyperuricemic effects, because both the parent compound and its sulfate conjugate are highly potent inhibitors of XO. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Tímea Bencsik
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Orsolya Balázs
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Róbert G Vida
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Balázs Z Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miklós Poór
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Molecular Medicine Research Group, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
4
|
Li N, Fan C, Li X, Su J. Dynamic changes of MMPs during cerebral aneurysm formation in rats and the effect of resveratrol on MMP expression. Am J Transl Res 2024; 16:5347-5356. [PMID: 39544733 PMCID: PMC11558362 DOI: 10.62347/lkiu6905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/18/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVES To investigate the expression of matrix protein metalloenzymes (MMPs) during cerebral aneurysm (CA) formation and assess the effects of resveratrol (RES) on MMP expression and CA prevention. METHODS Male Sprague-Dawley rats were randomly divided into three groups: sham-operated, CA, and RES groups. CA models were constructed by ligating the renal and carotid arteries of SD rats. The RES group received a diet mixed with RES (50 mg/kg), while the CA group was given normal feed; the sham-operated group underwent simulated surgery without ligation and received normal feed. HE staining was used to observe the pathological changes in the cerebral artery aneurysm wall. Immunofluorescence (IF) staining and RT-PCR were used to detect the expression of MMP-2 and MMP-9, as well as oxidative stress markers in the cerebral artery wall tissues of rats at 1-, 2-, and 3-months post-surgery. RESULTS HE staining reveled that after ligation, the cerebral artery walls of SD rats exhibited irregular thickness, twisted morphology, abnormal nuclear morphology of the cells, and infiltration of inflammatory cells, confirming the successful establishment of CA model. Meanwhile, the infrared spectrogram of the RES purified from Tiger Balm closely matched that of the standard, confirming successful purification. IF staining indicated that MMP-2 and MMP-9 levels dynamically increased over time in the vessel wall of the CA rats. Subsequently, antioxidant assays showed that RES treatment enhanced antioxidant capacity, with increased levels of superoxide dismutase, glutathione peroxidase, and catalase in the vascular wall tissue. Moreover, after 3 months of RES treatment, IF staining showed a marked reduction in MMP-2 and MMP-9 levels in the vessel walls of CA rats. Meanwhile, HE staining also showed improvements in the wall structure, with a more intact wall and an increased vascular endothelial cell density. CONCLUSIONS RES effectively inhibits the expression of MMP-2 and MMP-9, thereby preventing and delaying the development of CA.
Collapse
Affiliation(s)
- Na Li
- Office of Post-graduation Education, The Second Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Chunyan Fan
- Department of Neurology, Hebei People’s HospitalShijiazhuang 050000, Hebei, China
| | - Xiaoyi Li
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Junhua Su
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| |
Collapse
|
5
|
Abdulazeez R, Highab SM, Onyawole UF, Jeje MT, Musa H, Shehu DM, Ndams IS. Co-administration of resveratrol rescued lead-induced toxicity in Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104470. [PMID: 38763436 DOI: 10.1016/j.etap.2024.104470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/23/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Lead toxicity poses a significant environmental concern linked to diverse health issues. This study explores the potential mitigating effects of resveratrol on lead-induced toxicity in Drosophila melanogaster. Adult fruit flies, aged three days, were orally exposed to lead (60 mg/L), Succimer (10 mg), and varying concentrations of resveratrol (50, 100, and 150 mg). The investigation encompassed the assessment of selected biological parameters, biochemical markers, oxidative stress indicators, and antioxidant enzymes. Resveratrol exhibited a dose-dependent enhancement of egg-laying, eclosion rate, filial generation output, locomotor activity, and life span in D. melanogaster, significantly to 150 mg of diet. Most of the investigated biochemical parameters were significantly rescued in lead-exposed fruit flies when co-treated with resveratrol (p < 0.05). However, oxidative stress remained unaffected by resveratrol. The findings suggest that resveratrol effectively protects against lead toxicity in Drosophila melanogaster and may hold therapeutic potential as an agent for managing lead poisoning in humans.
Collapse
Affiliation(s)
- R Abdulazeez
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
| | - S M Highab
- Department of Clinical Pharmacology and Therapeutics, Faculty of Clinical Sciences, College of Medicine and Health Sciences, Federal University, Dutse, Jigawa State, Nigeria
| | - U F Onyawole
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - M T Jeje
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - H Musa
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - D M Shehu
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - I S Ndams
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
6
|
Wu JP, Xiaoning Z, Xiaoqing L, Jie Z, Qian-Cheng Z. Resveratrol Supplements Reduce the Risk of Aging-Related Cardiac Disease after Cardiorespiratory Fitness. RESVERATROL - RECENT ADVANCES, APPLICATION, AND THERAPEUTIC POTENTIAL 2024. [DOI: 10.5772/intechopen.109612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Aging changes in the very elderly cardiac disease are associated with physiological and pathological changes, however, all observed changes in aging are associated with a deterioration of cardiorespiratory fitness function. For example, hypertension and cardiorespiratory disease make difficult distinctions between normal aging changes and the effects of underlying resveratrol supplements processes. Cardiorespiratory fitness-independent changes in resveratrol intake are still unclear. This review aimed to discuss whether the aging-associated cardiorespiratory fitness changes in the heart can be reversed by resveratrol supplements, and the mechanisms of cardiorespiratory fitness. Aging led to apoptosis and fibrosis-related protein expression increased, however, cardiorespiratory fitness had revered more functions. Resveratrol supplements in combination with cardiorespiratory fitness had a good enhanced mitochondrial function in aging including IL-6, STAT3, MEK5, and MEK1/ERK1 increased. Resveratrol supplements also induced survival signals and downregulation of apoptosis signaling in aging. Therefore, we suggest resveratrol has enhanced cardiorespiratory fitness to combine their function in repressed aging.
Collapse
|
7
|
Mohammadi S, Moghadam MD, Nasiriasl M, Akhzari M, Barazesh M. Insights into the Therapeutic and Pharmacological Properties of Resveratrol as a Nutraceutical Antioxidant Polyphenol in Health Promotion and Disease Prevention. Curr Rev Clin Exp Pharmacol 2024; 19:327-354. [PMID: 38192151 DOI: 10.2174/0127724328268507231218051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/10/2024]
Abstract
Resveratrol (3, 5, 4'-trihydroxystilbene) is a polyphenolic derivative with herbal origin. It has attracted considerable attention in recent decades. Many studies have revealed the benefits of Resveratrol over several human disease models, including heart and neurological diseases, nephroprotective, immune regulation, antidiabetic, anti-obesity, age-related diseases, antiviral, and anticancer in experimental and clinical conditions. Recently, the antioxidant and anti-inflammatory activities of Resveratrol have been observed, and it has been shown that Resveratrol reduces inflammatory biomarkers, such as tissue degradation factor, cyclooxygenase 2, nitric oxide synthase, and interleukins. All of these activities appear to be dependent on its structural properties, such as the number and position of the hydroxyl group, which regulates oxidative stress, cell death, and inflammation. Resveratrol is well tolerated and safe even at higher pharmacological doses and desirably affects cardiovascular, neurological, and diabetic diseases. Consequently, it is plausible that Resveratrol can be regarded as a beneficial nutritional additive and a complementary drug, particularly for therapeutic applications. The present review provides an overview of currently available investigations on preventive and therapeutic characteristics and the main molecular mechanisms of Resveratrol and its potent derivatives in various diseases. Thus, this review would enhance knowledge and information about Resveratrol and encourage researchers worldwide to consider it as a pharmaceutical drug to struggle with future health crises against different human disorders.
Collapse
Affiliation(s)
- Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Dalaei Moghadam
- Razi Herbal Medicines Research Center, Department of Endodontic, Faculty of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Nasiriasl
- Radiology Department, Fasa University of Medical Sciences, Fasa, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Mahdi Barazesh
- School of Paramedical Sciences, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
8
|
Agrawal N, Arya M, Kushwah P. Therapeutic voyage of synthetic and natural xanthine oxidase inhibitors. Chem Biol Drug Des 2023; 102:1293-1307. [PMID: 37550063 DOI: 10.1111/cbdd.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023]
Abstract
Xanthine oxidase (XO) inhibitors are commonly used to treat gout, nephropathy, and renal stone diseases related to hyperuricemia. However, recent research has shown that these inhibitors may also have potential benefits in preventing vascular diseases, including those affecting the cerebrovasculature. This is due to emerging evidence suggesting that serum uric acid is involved in the growth of cardiovascular disease, and XO inhibition can reduce oxidative stress in the vasculature. There is a great interest in the development of new XO inhibitors for the treatment of hyperuricemia and gout. The present review discusses the many synthetic and natural XO inhibitors that have been developed which are found to have greater potency.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Medha Arya
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Priya Kushwah
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
9
|
Adah AS, Ayo JO, Adah DA, Nwonuma CO, Lawal TA. Molecular docking and experimental validation of the effect of ergothioneine on heat shock protein-70 following endurance exercise by Arabian stallions. BMC Vet Res 2023; 19:27. [PMID: 36717851 PMCID: PMC9887863 DOI: 10.1186/s12917-023-03584-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Exercise-induced oxidative stress is a challenge in equine sports. This study aims at determining the effects of ergothioneine on heat shock protein-70 (HSP-70) following the stress of an endurance exercise of 30 km by Arabian stallions. Molecular docking was also done to investigate the interaction between the ligand ergothioneine and heat shock protein-70 using sulfogalactosylceramide and sulfogalactoglycerolipid as standards. The study involved a total of 18 clinically healthy stallions, with an average age of 6.7 ± 2.4 years and an average weight of 411.54 ± 12.46 kg. Only clinically healthy stallions were selected as subjects. The stallions were divided into two groups of nine stallions each. Group I (ERGX) was administered ergothioneine at a dose of 0.02 mg/kg once daily orally for four weeks while group II (ERGN) was not administered ergothioneine. The activities of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase were determined in the two groups before and post-exercise. The concentrations of malondialdehyde and HSP-70 were also determined. RESULTS The results obtained showed that the activities of the antioxidant enzymes and concentration of HSP-70 were higher (P < 0.05) in the ERGX group compared to the ERGN group. The concentration of malondialdehyde was however lower in the ERGX group. Following molecular docking, ergothioneine and the selected standards have common amino acids at the site of interaction with the target protein (HSP-70) suggesting that ergothioneine may have a modulatory effect on the synthesis of HSP-70. CONCLUSION The results obtained indicated that ergothioneine modulated the synthesis of HSP-70 and the biomarkers of oxidative stress. It was therefore concluded that ergothioneine may be beneficial to horses subjected to endurance exercise.
Collapse
Affiliation(s)
- Adakole Sylvanus Adah
- grid.412974.d0000 0001 0625 9425Department of Veterinary Physiology and Biochemistry, University of Ilorin, Ilorin, Nigeria
| | - Joseph Olusegun Ayo
- grid.411225.10000 0004 1937 1493Department of Veterinary Physiology, Ahmadu Bello University, Zaria, Nigeria
| | - Deborah Arimie Adah
- grid.412974.d0000 0001 0625 9425Department of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - Charles Obiora Nwonuma
- grid.448923.00000 0004 1767 6410Department of Biochemistry, Landmark University, Omuaran, Nigeria
| | - Teslim Alabi Lawal
- Computational Biophysical Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University, Ogbomoso, Nigeria
| |
Collapse
|