1
|
Rodina AV, Vysotskaya OV, Zhirnik AS, Smirnova OD, Parfenova AA, Strepetov AN, Semochkina YP, Nesterenko MV, Moskaleva EY. Features of Brain Damage after Neutron Irradiation of the Head and Modification of the Damage by Lactoferrin. DOKL BIOCHEM BIOPHYS 2024:10.1134/S1607672924701205. [PMID: 39480633 DOI: 10.1134/s1607672924701205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 11/02/2024]
Abstract
The purpose of the study was to investigate the effect of γ,n-irradiation of the mouse head on the brain cells damage, behavior, and cognition and to examine the possibility of using lactoferrin (LF) to alleviate radiation-induced impairments. MATERIALS AND METHODS : Mouse heads were irradiated in a beam of neutrons and gamma rays from the IR-8 nuclear reactor. The brain cells of control and irradiated mice were isolated using Percoll. Neurons and resting and activated microglial cells were analyzed using the fluorescently labeled antibodies and flow cytometry. The level of DNA double-strand breaks in neurons was determined by γH2AX histone content. Cytokine gene expression in the hippocampus was studied by RT-PCR. Behavior and cognitive functions were studied using the open field, Morris water maze, and novel object recognition tests. LF was isolated from female colostrum by preparative ion-exchange chromatography and purified by affinity chromatography on heparin-Sepharose. RESULTS : γ,n-Irradiation of the mouse head at a dose of 1.5 Gy led to an increase in the level of DNA double-strand breaks in neurons. Twenty-four hours after irradiation the total number of cells and the number of neurons in the isolated fraction of brain cells decreased, but the number of microglial cells remained unchanged. The number of resting and activated microglia did not change within 3-72 h after γ,n-irradiation. The expression level of the TNFα, IL-1β, and IL-6 genes increased 2 months after γ,n-irradiation of the mouse head at a dose of 1.5 Gy, indicating the development of neuroinflammation. At this time, irradiated mice demonstrated the anxiety-like behavior and impaired spatial and episodic memory. A single i.p. administration of human LF to mice immediately after γ,n-irradiation of the head did not affect the observed radiation-induced disturbances, but decreased the gene expression levels of TNFα, IL-1β, and IL-6 pro-inflammatory cytokines and increased the gene expression level of TGFβ anti-inflammatory cytokine in the hippocampus 2 months after radiation exposure. The obtained results indicate a partial decrease in the level of hippocampal neuroinflammation of irradiated animals treated with LF. CONCLUSIONS . γ,n-Irradiation of the mouse head at a dose of 1.5 Gy leads to DNA damage of neurons and the decrease in the number of neurons. Microglia cells are more resistant to such radiation exposure. Late after head-only γ,n-irradiation, mice develop neuroinflammation, which is detected by an increase in the pro-inflammatory cytokine gene expression in the hippocampus and also by anxiety-like behavior and impaired cognitive functions. A single LF administration leads to a partial decrease in the neuroinflammation level, but does not affect the other studied parameters. The optimal dosing regimen of LF remains to be determined to preserve cognitive functions after γ,n-irradiation of the brain.
Collapse
Affiliation(s)
- A V Rodina
- National Research Center "Kurchatov Institute,", Moscow, Russia
| | - O V Vysotskaya
- National Research Center "Kurchatov Institute,", Moscow, Russia
| | - A S Zhirnik
- National Research Center "Kurchatov Institute,", Moscow, Russia
| | - O D Smirnova
- National Research Center "Kurchatov Institute,", Moscow, Russia
| | - A A Parfenova
- National Research Center "Kurchatov Institute,", Moscow, Russia
| | - A N Strepetov
- National Research Center "Kurchatov Institute,", Moscow, Russia
| | - Yu P Semochkina
- National Research Center "Kurchatov Institute,", Moscow, Russia
| | | | - E Yu Moskaleva
- National Research Center "Kurchatov Institute,", Moscow, Russia.
| |
Collapse
|
2
|
Kopaeva MY, Cherepov AB, Zaraiskaya IY. Lactoferrin Has a Protective Effect on Mouse Brain Cells after Acute Gamma Irradiation of the Head. Bull Exp Biol Med 2023; 176:246-252. [PMID: 38194066 DOI: 10.1007/s10517-024-06004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 01/10/2024]
Abstract
We studied the effect of human lactoferrin on cells of the hippocampal dentate gyrus of 2-2.5-month-old male C57BL/6 mice after acute gamma irradiation of the head in a dose of 8 Gy from a 60Co source. Immediately after irradiation some animals received an intraperitoneal injection of human lactoferrin (4 mg/mouse). The appearance of TUNEL+ cells in the subgranular zone 6 h after irradiation was accompanied by a corresponding decrease in the number of Ki-67- and DCX-immunoreactive cells. Administration of lactoferrin had a protective effect on mouse brain cells, which manifested in a decrease in the number of TUNEL+ cells (by 77% relative to the irradiation alone) and an increase in the number of proliferating cells (from 16 to 61% relative to control animals) and immature neurons (from 14 to 22% relative to control animals) in the dentate gyrus of the hippocampus.
Collapse
Affiliation(s)
- M Yu Kopaeva
- National Research Centre "Kurchatov Institute", Moscow, Russia.
| | - A B Cherepov
- National Research Centre "Kurchatov Institute", Moscow, Russia
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - I Yu Zaraiskaya
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| |
Collapse
|
3
|
Obrador E, Montoro A. Ionizing Radiation, Antioxidant Response and Oxidative Damage: Radiomodulators. Antioxidants (Basel) 2023; 12:1219. [PMID: 37371949 DOI: 10.3390/antiox12061219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Ionizing radiation (IR) is the energy released by atoms in the form of electromagnetic waves (e [...].
Collapse
Affiliation(s)
- Elena Obrador
- Elena Obrador Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Alegría Montoro
- Alegría Montoro, Radiation Protection Service, University and Polytechnic Hospital La Fe, 46021 Valencia, Spain
| |
Collapse
|
4
|
Kopaeva MY, Azieva AM, Cherepov AB, Zarayskaya IY. Lactoferrin Modulates Induction of Transcription Factor c-Fos in Neuronal Cultures. Int J Mol Sci 2023; 24:ijms24098373. [PMID: 37176079 PMCID: PMC10179438 DOI: 10.3390/ijms24098373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Lactoferrin (Lf) is a multifunctional protein from the transferrin family. Of particular interest is the ability of Lf to affect a wide range of neuronal processes by modulating the expression of genes involved in long-term neuroplasticity. The expression of the immediate early gene c-fos that is rapidly activated in response to external influences, and its product, transcription factor c-Fos, is widely used as a marker of long-term neuronal plasticity. The present study aims to examine the effect of human Lf on the induction of transcription factor c-Fos in the primary mouse neuronal cultures after stimulation and to determine the cellular localization of human Lf and its colocalization with induced c-Fos protein. Primary dissociated cultures of hippocampal cells were obtained from the brains of newborn C57BL/6 mice (P0-P1). On day 7 of culturing, human Lf was added to the medium. After 24 h (day 8 in culture), c-Fos protein was induced in cells by triple application of 50 mM KCl. c-Fos content was analyzed using the immunofluorescent method 2 h after stimulation. Stimulation promoted exogenous Lf translocation into the nuclei of cultured neuronal cells, which correlated with increased induction of transcription factor c-Fos and was accompanied by nuclear colocalization of these proteins. These results attest to the potential of Lf as a modulator of neuronal processes and open up new prospects in studying the mechanisms of the regulatory effects of lactoferrin on cell function.
Collapse
Affiliation(s)
- Marina Yu Kopaeva
- National Research Center "Kurchatov Institute", 1 Akademika Kurchatova Sq., 123182 Moscow, Russia
| | - Asya M Azieva
- National Research Center "Kurchatov Institute", 1 Akademika Kurchatova Sq., 123182 Moscow, Russia
| | - Anton B Cherepov
- National Research Center "Kurchatov Institute", 1 Akademika Kurchatova Sq., 123182 Moscow, Russia
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Irina Yu Zarayskaya
- Research Institute of Normal Physiology Named after P.K. Anokhin, 8 Baltiyskaya St., 125315 Moscow, Russia
| |
Collapse
|
5
|
Antsiferova AA, Kopaeva MY, Kochkin VN, Reshetnikov AA, Kashkarov PK. Neurotoxicity of Silver Nanoparticles and Non-Linear Development of Adaptive Homeostasis with Age. MICROMACHINES 2023; 14:mi14050984. [PMID: 37241608 DOI: 10.3390/mi14050984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
For the first time in the world, the behavioral functions of laboratory mammals exposed to silver nanoparticles were studied with regard to age. Silver nanoparticles coated with polyvinylpyrrolidone with a size of 8.7 nm were used in the present research as a potential xenobiotic. Elder mice adapted to the xenobiotic better than the younger animals. Younger animals demonstrated more drastic anxiety than the elder ones. A hormetic effect of the xenobiotic in elder animals was observed. Thus, it is concluded that adaptive homeostasis non-linearly changes with age increase. Presumably, it may improve during the prime of life and start to decline just after a certain stage. This work demonstrates that age growth is not directly conjugated with the organism fading and pathology development. Oppositely, vitality and resistance to xenobiotics may even improve with age at least until the prime of life.
Collapse
Affiliation(s)
- Anna A Antsiferova
- National Research Center "Kurchatov Institute", Akademika Kurchatova sq., 123182 Moscow, Russia
- Moscow Institute of Physics and Technologies, Institutskii Lane, Moscow Region, 141700 Dolgoprudny, Russia
| | - Marina Yu Kopaeva
- National Research Center "Kurchatov Institute", Akademika Kurchatova sq., 123182 Moscow, Russia
| | - Vyacheslav N Kochkin
- National Research Center "Kurchatov Institute", Akademika Kurchatova sq., 123182 Moscow, Russia
| | - Alexander A Reshetnikov
- National Research Center "Kurchatov Institute", Akademika Kurchatova sq., 123182 Moscow, Russia
| | - Pavel K Kashkarov
- National Research Center "Kurchatov Institute", Akademika Kurchatova sq., 123182 Moscow, Russia
- Moscow Institute of Physics and Technologies, Institutskii Lane, Moscow Region, 141700 Dolgoprudny, Russia
- Department of Physics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, 119991 Moscow, Russia
| |
Collapse
|
6
|
Andreu S, Ripa I, Bello-Morales R, López-Guerrero JA. Liposomal Lactoferrin Exerts Antiviral Activity against HCoV-229E and SARS-CoV-2 Pseudoviruses In Vitro. Viruses 2023; 15:v15040972. [PMID: 37112952 PMCID: PMC10142420 DOI: 10.3390/v15040972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
A limited number of effective therapies are currently available to treat human coronavirus SARS-CoV-2 and other human coronaviruses, which are responsible for nearly a third of global cases of the common cold. The possibility of new emerging coronaviruses demands powerful new antiviral strategies. Lactoferrin is a well-known protein that possesses anti-inflammatory and immunomodulatory activities, and it has previously shown antiviral activity against several viruses, including SARS-CoV-2. To increase this antiviral activity, here we present bovine liposomal lactoferrin. Liposomal encapsulation of the compound was proven to increase permeability, bioavailability, and time release. In the present work, we compare the antiviral activity of free and liposomal bovine lactoferrin against HCoV229E and SARS-CoV-2 in vitro and in human primary bronchial epithelial cells, and we demonstrated that the liposomal form exerts a more potent antiviral activity than its free form at non-cytotoxic doses.
Collapse
Affiliation(s)
- Sabina Andreu
- Department of Molecular Biology, Universidad Autónoma de Madrid, C/Darwin, 2 Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Universidad Autónoma de Madrid (CSIC-UAM), C/Nicolás Cabrera, 1 Cantoblanco, 28049 Madrid, Spain
| | - Inés Ripa
- Department of Molecular Biology, Universidad Autónoma de Madrid, C/Darwin, 2 Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Universidad Autónoma de Madrid (CSIC-UAM), C/Nicolás Cabrera, 1 Cantoblanco, 28049 Madrid, Spain
| | - Raquel Bello-Morales
- Department of Molecular Biology, Universidad Autónoma de Madrid, C/Darwin, 2 Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Universidad Autónoma de Madrid (CSIC-UAM), C/Nicolás Cabrera, 1 Cantoblanco, 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Department of Molecular Biology, Universidad Autónoma de Madrid, C/Darwin, 2 Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Universidad Autónoma de Madrid (CSIC-UAM), C/Nicolás Cabrera, 1 Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
7
|
Artym J, Zimecki M. Colostrum Proteins in Protection against Therapy-Induced Injuries in Cancer Chemo- and Radiotherapy: A Comprehensive Review. Biomedicines 2023; 11:biomedicines11010114. [PMID: 36672622 PMCID: PMC9856106 DOI: 10.3390/biomedicines11010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
In this article, we review the benefits of application of colostrum and colostrum-derived proteins in animal models and clinical trials that include chemotherapy with antimetabolic drugs, radiotherapy and surgical interventions. A majority of the reported investigations was performed with bovine colostrum (BC) and native bovine or recombinant human lactoferrin (LF), applied alone, in nutraceutics or in combination with probiotics. Apart from reducing side effects of the applied therapeutics, radiation and surgical procedures, BC and LF augmented their efficacy and improved the wellness of patients. In conclusion, colostrum and colostrum proteins, preferably administered with probiotic bacteria, are highly recommended for inclusion to therapeutic protocols in cancer chemo- and radiotherapy as well as during the surgical treatment of cancer patients.
Collapse
|