1
|
Sun Y, Chen S, Grin IR, Zharkov DO, Yu B, Li H. The dual role of methylglyoxal in plant stress response and regulation of DJ-1 protein. PHYSIOLOGIA PLANTARUM 2024; 176:e14608. [PMID: 39508129 DOI: 10.1111/ppl.14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Methylglyoxal (MG) is a highly reactive metabolic intermediate that plays important roles in plant salt stress response. This review explores the sources of MG in plants, how salt stress promotes MG production, and the dual role of MG under salt stress conditions. Both the positive role of low concentrations of MG as a signalling molecule and the toxic effects of high concentrations of MG in plant response to salt stress are discussed. The MG detoxification pathways, especially the glyoxalase system, are described in detail. Special attention is given to the novel role of the DJ-1 protein in the glyoxalase system as glyoxalase III to remove MG, and as a deglycase to decrease glycation damage caused by MG on DNA, proteins, and other biomolecules. This review aims to provide readers with comprehensive perspectives on the functions of MG in plant salt stress response, the roles of the DJ-1 protein in MG detoxification and repair of glycation-damaged molecules, as well as the broader functional implications of MG in plant salt stress tolerance. New perspectives on maintaining plant genome stability, breeding for salt-tolerant crop varieties, and improving crop quality are discussed.
Collapse
Affiliation(s)
- Yutong Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, USA
| | - Inga R Grin
- Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Dmitry O Zharkov
- Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
2
|
Basyreva LY, Shmeleva EV, Vakhrusheva TV, Gorudko IV, Grigorieva DV, Kostevich VA, Gorbunov NP, Sokolov AV, Gusev SA, Panasenko OM, Sergienko VI. Hypochlorous Acid-Modified Serum Albumin Causes NETosis in the Whole Blood Ex Vivo and in Isolated Neutrophils. Bull Exp Biol Med 2024; 177:197-202. [PMID: 39090470 DOI: 10.1007/s10517-024-06155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 08/04/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is accompanied by halogenative stress resulting from the excessive activation of neutrophils and neutrophilic myeloperoxidase (MPO) generating highly reactive hypochlorous acid (HOCl). HOCl in blood plasma modifies serum albumin (Cl-HSA). We studied the formation of neutrophil extracellular traps (NETs) in the whole blood and by isolated neutrophils under the action of Cl-HSA. It was found that Cl-HSA induces neutrophil priming and NETosis. MPO-containing as well as MPO-free NETs were found. These NETs with different composition can be a product of NETosis of one and the same neutrophil. NET formation in neutrophils with vacuolated cytoplasm was detected. In the presence of Cl-HSA, acceleration of NET degradation was observed. Accelerated NET degradation and neutrophil priming can be the factors contributing to the development of complications in T2DM.
Collapse
Affiliation(s)
- L Yu Basyreva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia.
| | - E V Shmeleva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - T V Vakhrusheva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - I V Gorudko
- Belarusian State University, Minsk, Republic of Belarus
| | | | - V A Kostevich
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - N P Gorbunov
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - A V Sokolov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - S A Gusev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - O M Panasenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - V I Sergienko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| |
Collapse
|
3
|
Khramova YV, Katrukha VA, Chebanenko VV, Kostyuk AI, Gorbunov NP, Panasenko OM, Sokolov AV, Bilan DS. Reactive Halogen Species: Role in Living Systems and Current Research Approaches. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S90-S111. [PMID: 38621746 DOI: 10.1134/s0006297924140062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 04/17/2024]
Abstract
Reactive halogen species (RHS) are highly reactive compounds that are normally required for regulation of immune response, inflammatory reactions, enzyme function, etc. At the same time, hyperproduction of highly reactive compounds leads to the development of various socially significant diseases - asthma, pulmonary hypertension, oncological and neurodegenerative diseases, retinopathy, and many others. The main sources of (pseudo)hypohalous acids are enzymes from the family of heme peroxidases - myeloperoxidase, lactoperoxidase, eosinophil peroxidase, and thyroid peroxidase. Main targets of these compounds are proteins and peptides, primarily methionine and cysteine residues. Due to the short lifetime, detection of RHS can be difficult. The most common approach is detection of myeloperoxidase, which is thought to reflect the amount of RHS produced, but these methods are indirect, and the results are often contradictory. The most promising approaches seem to be those that provide direct registration of highly reactive compounds themselves or products of their interaction with components of living cells, such as fluorescent dyes. However, even such methods have a number of limitations and can often be applied mainly for in vitro studies with cell culture. Detection of reactive halogen species in living organisms in real time is a particularly acute issue. The present review is devoted to RHS, their characteristics, chemical properties, peculiarities of interaction with components of living cells, and methods of their detection in living systems. Special attention is paid to the genetically encoded tools, which have been introduced recently and allow avoiding a number of difficulties when working with living systems.
Collapse
Affiliation(s)
- Yuliya V Khramova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Veronika A Katrukha
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Victoria V Chebanenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander I Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | | | - Oleg M Panasenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Alexey V Sokolov
- Institute of Experimental Medicine, Saint-Petersburg, 197022, Russia.
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
4
|
Mikhalchik EV, Maltseva LN, Firova RK, Murina MA, Gorudko IV, Grigorieva DV, Ivanov VA, Obraztsova EA, Klinov DV, Shmeleva EV, Gusev SA, Panasenko OM, Sokolov AV, Gorbunov NP, Filatova LY, Balabushevich NG. Incorporation of Pectin into Vaterite Microparticles Prevented Effects of Adsorbed Mucin on Neutrophil Activation. Int J Mol Sci 2023; 24:15927. [PMID: 37958911 PMCID: PMC10649924 DOI: 10.3390/ijms242115927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
The application of vaterite microparticles for mucosal delivery depends on their interaction with mucin and immune cells. As we have shown previously, the binding of mucin onto particles enhances the generation of reactive oxygen species by neutrophils. The attenuation of the pro-oxidant effect of the bound mucin through the modification of vaterite could improve its biocompatibility. Hybrid microparticles composed of vaterite and pectin (CCP) were prepared using co-precipitation. In comparison with vaterite (CC), they had a smaller diameter and pores, a greater surface area, and a negative zeta-potential. We aimed to study the cytotoxicity and mucin-dependent neutrophil-activating effect of CCP microparticles. The incorporated pectin did not influence the neutrophil damage according to a lactate dehydrogenase test. The difference in the CC- and CCP-elicited luminol or lucigenin chemiluminescence of neutrophils was insignificant, with no direct pro- or antioxidant effects from the incorporated pectin. Unlike soluble pectin, the CCP particles were ineffective at scavenging radicals in an ABAP-luminol test. The fluorescence of SYTOX Green demonstrated a CCP-stimulated formation of neutrophil extracellular traps (NETs). The pre-treatment of CC and CCP with mucin resulted in a 2.5-times-higher CL response of neutrophils to the CC-mucin than to the CCP-mucin. Thus, the incorporation of pectin into vaterite microspheres enabled an antioxidant effect to be reached when the neutrophils were activated by mucin-treated microparticles, presumably via exposed ligands.
Collapse
Affiliation(s)
- Elena V. Mikhalchik
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
| | - Liliya N. Maltseva
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Roxalana K. Firova
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
| | - Marina A. Murina
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
| | - Irina V. Gorudko
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus; (I.V.G.); (D.V.G.)
| | - Daria V. Grigorieva
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus; (I.V.G.); (D.V.G.)
| | - Viktor A. Ivanov
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
| | - Ekaterina A. Obraztsova
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Dmitry V. Klinov
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Ekaterina V. Shmeleva
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
| | - Sergey A. Gusev
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
| | - Oleg M. Panasenko
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
| | - Alexey V. Sokolov
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
- Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Nikolay P. Gorbunov
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
- Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Lyubov Y. Filatova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Nadezhda G. Balabushevich
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
5
|
Transcriptional Insights of Oxidative Stress and Extracellular Traps in Lung Tissues of Fatal COVID-19 Cases. Int J Mol Sci 2023; 24:ijms24032646. [PMID: 36768969 PMCID: PMC9917045 DOI: 10.3390/ijms24032646] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
Neutrophil extracellular traps (NETs) and oxidative stress are considered to be beneficial in the innate immune defense against pathogens. However, defective clearance of NETs in the lung of acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients could lead to severe respiratory syndrome infection, the so-called coronavirus disease 2019 (COVID-19). To elucidate the pathways that are related to NETs within the pathophysiology of COVID-19, we utilized RNA sequencing (RNA-seq) as well as immunofluorescence and immunohistochemistry methods. RNA-seq analysis provided evidence for increased oxidative stress and the activation of viral-related signaling pathways in post-mortem lungs of COVID-19 patients compared to control donors. Moreover, an excess of neutrophil infiltration and NET formation were detected in the patients' lungs, where the extracellular DNA was oxidized and co-localized with neutrophil granule protein myeloperoxidase (MPO). Interestingly, staining of the lipid peroxidation marker 4-hydroxynonenal (4-HNE) depicted high colocalization with NETs and was correlated with the neutrophil infiltration of the lung tissues, suggesting that it could serve as a suitable marker for the identification of NETs and the severity of the disease. Moreover, local inhalation therapy to reduce the excess lipid oxidation and NETs in the lungs of severely infected patients might be useful to ameliorate their clinical conditions.
Collapse
|