1
|
Ncho CM, Berdos JI, Gupta V, Rahman A, Mekonnen KT, Bakhsh A. Abiotic stressors in poultry production: A comprehensive review. J Anim Physiol Anim Nutr (Berl) 2025; 109:30-50. [PMID: 39132861 DOI: 10.1111/jpn.14032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
In modern animal husbandry, stress can be viewed as an automatic response triggered by exposure to adverse environmental conditions. This response can range from mild discomfort to severe consequences, including mortality. The poultry industry, which significantly contributes to human nutrition, is not exempt from this issue. Although genetic selection has been employed for several decades to enhance production output, it has also resulted in poor stress resilience. Stress is manifested through a series of physiological reactions, such as the identification of the stressful stimulus, activation of the sympathetic nervous system and the adrenal medulla, and subsequent hormonal cascades. While brief periods of stress can be tolerated, prolonged exposure can have more severe consequences. For instance, extreme fluctuations in environmental temperature can lead to the accumulation of reactive oxygen species, impairment of reproductive performance, and reduced immunity. In addition, excessive noise in poultry slaughterhouses has been linked to altered bird behaviour and decreased production efficiency. Mechanical vibrations have also been shown to negatively impact the meat quality of broilers during transport as well as the egg quality and hatchability in hatcheries. Lastly, egg production is heavily influenced by light intensity and regimens, and inadequate light management can result in deficiencies, including visual anomalies, skeletal deformities, and circulatory problems. Although there is a growing body of evidence demonstrating the impact of environmental stressors on poultry physiology, there is a disproportionate representation of stressors in research. Recent studies have been focused on chronic heat stress, reflecting the current interest of the scientific community in climate change. Therefore, this review aims to highlight the major abiotic stressors in poultry production and elucidate their underlying mechanisms, addressing the need for a more comprehensive understanding of stress in diverse environmental contexts.
Collapse
Affiliation(s)
- Chris Major Ncho
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | - Janine I Berdos
- Department of Animal Science, College of Agriculture and Forestry, Tarlac Agricultural University, Malacampa, Tarlac, Philippines
| | - Vaishali Gupta
- Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju-si, Republic of Korea
| | - Attaur Rahman
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Kefala Taye Mekonnen
- Department of Animal Science, College of Agriculture and Environmental Science, Arsi University, Asella, Oromia, Ethiopia
| | - Allah Bakhsh
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
2
|
Navarro-Guillén C, Jerez-Cepa I, Lopes A, Mancera JM, Engrola S. Effects of early-life amino acids supplementation on fish responses to a thermal challenge. J Comp Physiol B 2024; 194:827-842. [PMID: 39269478 PMCID: PMC11511724 DOI: 10.1007/s00360-024-01581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Nutritional programming is a promising concept for promoting metabolic adaptation of fish to challenging conditions, such as the increase in water temperature. The present work evaluates in ovo arginine or glutamine supplementation as enhancers of zebrafish metabolic or absorptive capacity, respectively, at optimum (28 ºC) and challenging temperatures (32 ºC) in the long-term. Growth performance, free amino acids profile, methylation index and the activity levels of digestive and intermediary metabolism enzymes were analysed to assess the metabolic plasticity induced by an early nutritional intervention. Temperature affected fish larvae growth performance. At the end of the experimental period 28 ºC-fish showed higher dry weight than 32 ºC-fish. The effects of the early supplementation were reflected in the larval free amino acids profile at the end of the experiment. Higher methylation potential was observed in the ARG-fish. In ovo amino acid supplementation modulated the metabolic response in zebrafish larvae, however, the magnitude of this effect differed according to the amino acid and the temperature. Overall, arginine supplementation enhanced carbohydrates metabolism at 32 ºC. In conclusion, the present work suggests that in ovo arginine supplementation may promote a better adaptive response to higher temperatures.
Collapse
Affiliation(s)
- Carmen Navarro-Guillén
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
- Departmento de Biología Marina y Acuicultura, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, Cádiz, Spain
| | - Ismael Jerez-Cepa
- Department of Biology, Faculty of Marine and Environmental Sciences, Institute of Marine Research (INMAR), Universidad de Cádiz, CEI·MAR, Puerto Real, Cádiz, Spain
| | - André Lopes
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Institute of Marine Research (INMAR), Universidad de Cádiz, CEI·MAR, Puerto Real, Cádiz, Spain
| | - Sofia Engrola
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
| |
Collapse
|
3
|
Huang Y, Cai H, Han Y, Yang P. Mechanisms of Heat Stress on Neuroendocrine and Organ Damage and Nutritional Measures of Prevention and Treatment in Poultry. BIOLOGY 2024; 13:926. [PMID: 39596881 PMCID: PMC11591812 DOI: 10.3390/biology13110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Heat stress (HS) due to high temperatures has adverse effects on poultry, including decreased feed intake, lower feed efficiency, decreased body weight, and higher mortality. There are complex mechanisms behind heat stress in poultry involving the neuroendocrine system, organ damage, and other physiological systems. HS activates endocrine glands, such as the pituitary, adrenal, thyroid, and gonadal, by the action of the hypothalamus and sympathetic nerves, ultimately causing changes in hormone levels: HS leads to increased corticosterone levels, changes in triiodothyronine and thyroxine levels, decreased gonadotropin levels, reduced ovarian function, and the promotion of catecholamine release, which ultimately affects the normal productive performance of poultry. Meanwhile, heat stress also causes damage to the liver, lungs, intestines, and various immune organs, severely impairing organ function in poultry. Nutrient additives to feed are important measures of prevention and treatment, including natural plants and extracts, probiotics, amino acids, and other nutrients, which are effective in alleviating heat stress in poultry. Future studies need to explore the specific mechanisms through which heat stress impacts the neuroendocrine system in poultry and the interrelationships between the axes and organ damage so as to provide an effective theoretical basis for the development of preventive and treatment measures.
Collapse
Affiliation(s)
| | | | | | - Peilong Yang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (H.C.); (Y.H.)
| |
Collapse
|
4
|
Selle PH, Macelline SP, Toghyani M, Liu SY. The potential of glutamine supplementation in reduced-crude protein diets for chicken-meat production. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:49-56. [PMID: 39022775 PMCID: PMC466976 DOI: 10.1016/j.aninu.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 07/20/2024]
Abstract
This review explores the potential of including glutamine, a so-called non-essential amino acid, in the formulation of reduced-crude protein (CP) diets for broiler chickens. There is a precedent for benefits when including glycine and serine in reduced-CP diets. Fundamentally this is due to decreases in non-essential amino acid concentrations in reduced-CP diets - an unavoidable consequence of reducing CP without amino acid supplementation. The situation for glutamine is complicated because analysed dietary concentrations are very rarely provided as standard assays do not differentiate between glutamine and glutamate and are reported on a combined basis as glutamic acid. The dietary requirement for glutamic acid is approximately 36.3 g/kg but it is increasingly unlikely that this requirement will be met as dietary CP levels are progressively reduced. Glutamine is an abundant and versatile amino acid and constitutes 50.5 mg/g of whole-body chicken protein and is the dominant free amino acid in systemic plasma where it has been shown to provide 22.6% (139.9 of 620.3 μg/mL) of the total in birds offered 215 g/kg CP, wheat-based diets. In addition to dietary intakes, glutamine biosynthesis is derived mainly from the condensation of glutamate and ammonia (NH3) catalysed by glutamine synthetase, a reaction that is pivotal to NH3 detoxification. Glutamate and NH3 are converted to glutamine by phosphate-dependent glutaminase in the reciprocal reaction; thus, glutamine and glutamate are interchangeable amino acids. However, the rate of glutamine biosynthesis may not be adequate in rapidly growing broiler chickens and exogenous and endogenous glutamine levels are probably insufficient in birds offered reduced-CP diets. The many functional roles of glutamine, including NH3 detoxification and maintenance of acid-base homeostasis, then become relevant. Twenty feeding studies were identified where dietary glutamine supplementation, usually 10 g/kg, was evaluated in birds kept under thermoneutral conditions. On balance, the outcomes were positive, but the average dietary CP was 213 g/kg across the twenty feeding studies, which indicates that CP and, in turn, glutamine concentrations would have been adequate. This suggests that glutamine inclusions in reduced-CP diets hold potential and consideration is given to how this may be best confirmed.
Collapse
Affiliation(s)
- Peter H. Selle
- Poultry Research Foundation within the University of Sydney, Camden, NSW 2570, Australia
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Shemil P. Macelline
- Poultry Research Foundation within the University of Sydney, Camden, NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Mehdi Toghyani
- Poultry Research Foundation within the University of Sydney, Camden, NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Sonia Yun Liu
- Poultry Research Foundation within the University of Sydney, Camden, NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
5
|
Gupta V, Ncho CM, Goel A, Jeong CM, Choi YH. In ovo feeding of α-ketoglutaric acid improves hepatic antioxidant-gene expression, plasma antioxidant activities and decreases body temperature without affecting broiler body weight under cyclic heat stress. Poult Sci 2024; 103:103749. [PMID: 38670054 PMCID: PMC11066556 DOI: 10.1016/j.psj.2024.103749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The broiler industry is adversely affected by the rise in global temperature. This study investigated the effects of in ovo feeding of α-ketoglutaric acid (AKG) on growth performance, organ weight, plasma metabolite, plasma oxidative stress, rectal temperature (RT), and hepatic mRNA expression of antioxidant-related genes in Arbor Acres broilers subjected to cyclic heat stress (HS). Three hundred fifty fertile eggs during incubation were divided into 5 groups according to AKG concentrations and temperature conditions. After dissolving AKG in distilled water at 0, 0.5, 1.0, and 1.5, 0% AKG was in ovo administered to 2 of the 5 groups whereas the remaining 3 groups received 0.5, 1.0, and 1.5%, respectively. From d 29 to 34 of age, 4 groups of birds received heat stress (HS) at 31°C ± 1°C for 6 h per day while the other group was kept at room temperature (21°C ± 1°C; NT). So, the 5 treatment groups were: 1) 0AKG-NT, where chicks hatched from eggs receiving 0% AKG were reared under thermoneutral conditions. 2) 0AKG-HS, where chicks hatched from eggs receiving 0% AKG were reared under cyclic HS conditions. 3) 0.5AKG-HS, where chicks hatched from eggs receiving 0.5% AKG were reared under cyclic HS conditions. 4) 1.0AKG-HS, where chicks hatched from eggs receiving 1.0% AKG were reared under cyclic HS conditions. 5) 1.5AKG-HS, where chicks hatched from eggs receiving 1.5% AKG were reared under cyclic HS conditions. HS significantly reduced body weight change (ΔBW %) and average daily gain (ADG) without affecting average daily feed intake (ADFI). Feed conversion ratio (FCR) was significantly increased (P = 0.003) in all HS-treated groups. A significant linear decrease in the final RT (P = 0.005) and a change in RT (P = 0.003) were detected with increasing AKG concentration. Total antioxidant capacity (P = 0.029) and antioxidant balance (P = 0.001) in plasma increased linearly with increasing AKG concentration whereas malondialdehyde concentrations were linearly decreased (P = 0.001). Hepatic gene expression of CAT (P = 0.026) and GPX1 (P = 0.001) were dose-dependently upregulated while nicotinamide adenine dinucleotide phosphate oxidase (NOX)1, NOX4, and heat shock protein (HSP)70 were linearly downregulated (P < 0.05). Hence, in ovo injection of AKG was effective in mitigating HS-induced oxidative stress without attenuating the adverse effects on broiler growth.
Collapse
Affiliation(s)
- Vaishali Gupta
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chris Major Ncho
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Akshat Goel
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chae-Mi Jeong
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
6
|
Ncho CM, Kim SH, Rang SA, Lee SS. A meta-analysis of probiotic interventions to mitigate ruminal methane emissions in cattle: implications for sustainable livestock farming. Animal 2024; 18:101180. [PMID: 38823282 DOI: 10.1016/j.animal.2024.101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 06/03/2024] Open
Abstract
In recent years, the significant impact of ruminants on methane emissions has garnered international attention. While dietary strategies have been implemented to solve this issue, probiotics gained the attention of researchers due to their sustainability. However, it is challenging to ascertain their effectiveness as an extensive range of strains and doses have been reported in the literature. Hence, the objective of this experiment was to perform a meta-analysis of probiotic interventions aiming to reduce ruminal methane emissions from cattle. From 362 articles retrieved from scientific databases, 85 articles were assessed independently by two reviewers, and 20 articles representing 49 comparisons were found eligible for meta-analysis. In each study, data such as mean, SD, and sample sizes of both the control and probiotic intervention groups were extracted. The outcomes of interest were methane emission, methane yield, and methane intensity. For the meta-analysis, effect sizes were pooled using a fixed effect or a random effect model depending on the heterogeneity. Afterward, sensitivity analyses were conducted to confirm the robustness of the findings. Overall pooled standardized mean differences (SMDs) with their confidence intervals (CIs) did not detect significant differences in methane emission (SMD = -0.04; 95% CI = -0.18-0.11; P = 0.632), methane yield (SMD = -0.08; 95% CI = -0.24-0.07; P = 0.291), and methane intensity (SMD = -0.22; 95% CI = -0.50-0.07; P = 0.129) between cattle supplemented with probiotics and the control group. However, subgroup analyses revealed that multiple-strain bacterial probiotics (SMD = -0.36; 95% CI = -0.62 to -0.11; P = 0.005), specifically the combination of bacteria involved in reductive acetogenesis and propionate production (SMD = -0.71; 95% CI = -1.04 to -0.36; P = 0.001), emerged as better interventions. Likewise, crossbreeds (SMD = -0.48; 95% CI = -0.78 to -0.18; P = 0.001) exhibited a more favorable response to the treatments. Furthermore, meta-regression demonstrated that longer periods of supplementation led to significant reductions in methane emissions (P = 0.001), yield (P = 0.032), and intensity (P = 0.012) effect sizes. Overall, the results of the current study suggest that cattle responses to probiotic interventions are highly dependent on the probiotic category. Therefore, extended trials performed with probiotics containing multiple bacterial strains are showing the most promising results. Ideally, further trials focusing on the use of probiotics to reduce ruminal methane in cattle should be conducted to complete the available literature.
Collapse
Affiliation(s)
- C M Ncho
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - S-H Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - S A Rang
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - S S Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea.
| |
Collapse
|
7
|
Zhao GP, Cheng WL, Zhang ZH, Li YX, Li YQ, Yang FW, Wang YB. The use of amino acids and their derivates to mitigate against pesticide-induced toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116340. [PMID: 38636261 DOI: 10.1016/j.ecoenv.2024.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Exposure to pesticides induces oxidative stress and deleterious effects on various tissues in non-target organisms. Numerous models investigating pesticide exposure have demonstrated metabolic disturbances such as imbalances in amino acid levels within the organism. One potentially effective strategy to mitigate pesticide toxicity involves dietary intervention by supplementing exogenous amino acids and their derivates to augment the body's antioxidant capacity and mitigate pesticide-induced oxidative harm, whose mechanism including bolstering glutathione synthesis, regulating arginine-NO metabolism, mitochondria-related oxidative stress, and the open of ion channels, as well as enhancing intestinal microecology. Enhancing glutathione synthesis through supplementation of substrates N-acetylcysteine and glycine is regarded as a potent mechanism to achieve this. Selection of appropriate amino acids or their derivates for supplementation, and determining an appropriate dosage, are of the utmost importance for effective mitigation of pesticide-induced oxidative harm. More experimentation is required that involves large population samples to validate the efficacy of dietary intervention strategies, as well as to determine the effects of amino acids and their derivates on long-term and low-dose pesticide exposure. This review provides insights to guide future research aimed at preventing and alleviating pesticide toxicity through dietary intervention of amino acids and their derivates.
Collapse
Affiliation(s)
- Guo-Ping Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Wei-Long Cheng
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zhi-Hui Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yi-Xuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; National Center of Technology Innovation for Dairy, Inner Mongolia 013757, China
| | - Ying-Qiu Li
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Fang-Wei Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan-Bo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
8
|
Hossain MM, Cho SB, Kang DK, Nguyen QT, Kim IH. Comparative effects of dietary herbal mixture or guanidinoacetic acid supplementation on growth performance, cecal microbiota, blood profile, excreta gas emission, and meat quality in Hanhyup-3-ho chicken. Poult Sci 2024; 103:103553. [PMID: 38417333 PMCID: PMC10907848 DOI: 10.1016/j.psj.2024.103553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
Phytogenic feed additives are renowned for their growth promotion, gut health enhancement, and disease prevention properties, which is important factors for sustaining prolonged poultry rearing. The study aimed to evaluate the effect of herbal mixture (mixture of ginseng and artichoke) or guanidinoacetic acid (GAA) on growth performance, cecal microbiota, excretal gas emission, blood profile, and meat quality in Hanhyup-3-ho chicken. A total of 360 one-day-old chickens (half males and half females) were allocated into one of 3 dietary treatments (12 replicate cages/treatment; 10 broilers/replicate cage) for 100 d of age. Experimental diets were CON: basal diet; TRT1: basal diet combined with 0.05% herbal mixture; and TRT2: basal diet combined with 0.06% GAA. All birds received a basal diet during the first 30 d, but from d 31 to 100, an experimental diet was supplied. The addition of 0.05% herbal mixture improved the average body weight gain and feed conversion ratio from d 31 to 100 as well as the overall experimental period. The cecal Lactobacillus, Escherichia coli, and Salmonella count remained consistent across all dietary treatments. Blood albumin and Superoxide Dismutase (SOD) levels increased in the herbal mixture supplemented diet. Additionally, there was a notable reduction in excretal NH3 and H2S emissions in the herbal mixture group. Furthermore, the herbal mixture group exhibited increased breast muscle weight, improved breast muscle color, improved water holding capacity, and a decrease in abdominal fat compared to the control group. Additionally, the supplementation of 0.06% GAA did not demonstrate any statistically significant impact on any evaluated parameter throughout the experiment. The results from the present investigation underscore the potential of ginseng together with artichoke extract supplementation as a viable feed additive, conferring improvements in growth performance, feed efficiency, excreta gas emission, meat quality parameters, and defense mechanism against oxidative stress in Hanhyup-3-ho chicken.
Collapse
Affiliation(s)
- Md Mortuza Hossain
- Department of Animal Biotechnology, Dankook University, Choongnam 330-714, South Korea; Smart Animal Bio Institute Dankook University, Cheonan, Korea
| | - Sung Bo Cho
- Department of Animal Biotechnology, Dankook University, Choongnam 330-714, South Korea; Smart Animal Bio Institute Dankook University, Cheonan, Korea
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, Choongnam 330-714, South Korea; Smart Animal Bio Institute Dankook University, Cheonan, Korea
| | | | - In Ho Kim
- Department of Animal Biotechnology, Dankook University, Choongnam 330-714, South Korea; Smart Animal Bio Institute Dankook University, Cheonan, Korea..
| |
Collapse
|
9
|
Luc QC, Ncho CM, Dhahbi S, Olowe OS. Mitigation of cold stress in Nile tilapia (Oreochromis niloticus) through dietary lipids supplementation: a preliminary network meta-analysis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:209-223. [PMID: 37453980 DOI: 10.1007/s10695-023-01217-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
There is a growing body of evidence suggesting that water temperature can significantly impact the dietary fatty acid requirements of Nile tilapia (Oreochromis niloticus). Therefore, this study assessed the effectiveness of different dietary lipid sources on the growth performance of Nile tilapia reared at suboptimal temperatures. A network meta-analysis was performed, including searches of PubMed and Scopus from inception to January 2022, for trials that evaluated the effects of lipid sources on cold-stressed Nile tilapia. The Bayesian hierarchical framework was used to pool and compare the effect sizes of growth parameters such as weight gain, feed intake, and feed conversion ratio (FCR). Furthermore, the surface under the cumulative ranking curve (SUCRA) was obtained to calculate the probability that each lipid source was the most effective against cold stress. All subsequent numbers refer to comparisons with diets containing only fish oil. Dietary Aurantiochytrium significantly increased weight gain (SMD = 2.00, CrI: 0.70 to 3.40). In contrast, diets containing coconut oil led to significantly lower weight gain (SMD = - 3.30, CrI: - 6.00 to - 0.63) and higher FCR (SMD = 17.0, CrI: 6.70 to 27.0). Additionally, dietary corn oil was associated with a decrease in feed intake (SMD = - 2.32, CrI: - 3.91 to - 0.80), while a combination of fish and corn oil reduced FCR (SMD = - 5.70, CrI: - 11.0 to - 0.81). In general, the analysis of SUCRA values revealed that in cold-stressed Nile tilapia, Aurantiochytrium, sunflower oil, and the combination of fish and corn oil were the most effective lipid sources for improving growth at suboptimal temperatures. The results of the current study can serve as a basis for future studies that focus on the use of dietary lipid sources to mitigate cold stress in Nile tilapia.
Collapse
Affiliation(s)
- Quenum Crespin Luc
- Department of Formation and Research in Agriculture and Animal Resources, Institut National Polytechnique Felix Houphouet-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Chris Major Ncho
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Souleima Dhahbi
- World Fisheries University, Pukyong National University, 365 Sinseon-Ro, Nam-Gu, 48547, Busan, Republic of Korea
| | - Olumide Samuel Olowe
- Department of Animal Sciences, Purdue University, 270 S Russell Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
10
|
Ncho CM, Bakhsh A, Goel A. In ovo feeding of vitamins in broilers: A comprehensive meta-analysis of hatchability and growth performance. J Anim Physiol Anim Nutr (Berl) 2024; 108:215-225. [PMID: 37697679 DOI: 10.1111/jpn.13881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
In ovo feeding has been introduced as a cost-effective method to improve hatchability and broiler performance. Specifically, several studies have focused on the impact of vitamins. However, due to variations in experimental conditions across all trials, drawing general conclusions appears challenging. Therefore, we conducted a meta-analysis of 17 published papers, including a maximum of 134 sample size to evaluate the potential effects of in ovo feeding of vitamins in broilers. Studies were retrieved by consulting scientific repositories such as Pubmed, Scopus, Scielo, Web of Science, and Google Scholar. A binary logistic model was used to determine the parameters influencing hatchability. To assess variations in hatchling weight and growth parameters based on the vitamin category, a mixed model analysis of variance was performed, considering the study as a random effect and the vitamin category as a fixed effect. Finally, a linear mixed model was used to develop equations that explain the evolution of growth parameters based on vitamin concentration, volume, and day of injection. The results revealed that for better hatchability, it is preferable to consider heavier eggs (p = 0.007), lower volumes (p = 0.039), and late injection (p = 0.022). Vitamin E was associated with higher hatchling weight (p = 0.037), while vitamin C exhibited the lowest overall feed conversion ratio (p = 0.042). Interactions were observed between the day of injection and vitamin concentration or volume of injection for all studied growth parameters. In summary, the findings of this study suggest that hatchability during in ovo feeding is influenced by technique-related parameters, whereas growth parameters can be modulated by the category of vitamin injected. Consequently, this study lays the groundwork for future investigations assessing the effects of in ovo feeding in broilers, as it highlights the relationship between the methodology and potential outcomes.
Collapse
Affiliation(s)
- Chris Major Ncho
- Department of Animal Science, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Allah Bakhsh
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Akshat Goel
- Department of Animal Science, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|