1
|
Muñoz-Jurado A, Escribano BM. Presence of melatonin in foods of daily consumption: The benefit of this hormone for health. Food Chem 2024; 458:140172. [PMID: 38943958 DOI: 10.1016/j.foodchem.2024.140172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Melatonin (MLT) is a hormone that exists in all living organisms, including bacteria, yeast, fungi, animals, and plants, many of which are ingested daily in the diet. However, the exact concentrations of melatonin in each of the foods and the effect on health of the intake of foods rich in MLT are not known. Therefore, the aim of this review was to gather the available information on the melatonin content of different foods and to evaluate the effect that this hormone has on different pathologies. The amount of MLT may vary depending on the variety, origin, heat treatment, processing, and analysis technique, among other factors. Dietary interventions with foods rich in MLT report health benefits, but there is no evidence that hormone is partially responsible for the clinical improvement. Therefore, it is necessary to evaluate the MLT content in more foods, as well as the effect that cooking/processing has on the amount of MLT, to estimate its total intake in a typical diet and better explore its potential impact on the health.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| |
Collapse
|
2
|
Kim TK, Slominski RM, Pyza E, Kleszczynski K, Tuckey RC, Reiter RJ, Holick MF, Slominski AT. Evolutionary formation of melatonin and vitamin D in early life forms: insects take centre stage. Biol Rev Camb Philos Soc 2024; 99:1772-1790. [PMID: 38686544 PMCID: PMC11368659 DOI: 10.1111/brv.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Melatonin, a product of tryptophan metabolism via serotonin, is a molecule with an indole backbone that is widely produced by bacteria, unicellular eukaryotic organisms, plants, fungi and all animal taxa. Aside from its role in the regulation of circadian rhythms, it has diverse biological actions including regulation of cytoprotective responses and other functions crucial for survival across different species. The latter properties are also shared by its metabolites including kynuric products generated by reactive oxygen species or phototransfomation induced by ultraviolet radiation. Vitamins D and related photoproducts originate from phototransformation of ∆5,7 sterols, of which 7-dehydrocholesterol and ergosterol are examples. Their ∆5,7 bonds in the B ring absorb solar ultraviolet radiation [290-315 nm, ultraviolet B (UVB) radiation] resulting in B ring opening to produce previtamin D, also referred to as a secosteroid. Once formed, previtamin D can either undergo thermal-induced isomerization to vitamin D or absorb UVB radiation to be transformed into photoproducts including lumisterol and tachysterol. Vitamin D, as well as the previtamin D photoproducts lumisterol and tachysterol, are hydroxylated by cyochrome P450 (CYP) enzymes to produce biologically active hydroxyderivatives. The best known of these is 1,25-dihydroxyvitamin D (1,25(OH)2D) for which the major function in vertebrates is regulation of calcium and phosphorus metabolism. Herein we review data on melatonin production and metabolism and discuss their functions in insects. We discuss production of previtamin D and vitamin D, and their photoproducts in fungi, plants and insects, as well as mechanisms for their enzymatic activation and suggest possible biological functions for them in these groups of organisms. For the detection of these secosteroids and their precursors and photoderivatives, as well as melatonin metabolites, we focus on honey produced by bees and on body extracts of Drosophila melanogaster. Common biological functions for melatonin derivatives and secosteroids such as cytoprotective and photoprotective actions in insects are discussed. We provide hypotheses for the photoproduction of other secosteroids and of kynuric metabolites of melatonin, based on the known photobiology of ∆5,7 sterols and of the indole ring, respectively. We also offer possible mechanisms of actions for these unique molecules and summarise differences and similarities of melatoninergic and secosteroidogenic pathways in diverse organisms including insects.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Radomir M Slominski
- Department of Genetics, Genomics, Bioinformatics and Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, Kraków, 30-387, Poland
| | - Konrad Kleszczynski
- Department of Dermatology, Münster, Von-Esmarch-Str. 58, Münster, 48161, Germany
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | | | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
3
|
Yeung E, Biedrzycki RJ, Gómez Herrera LC, Issarapu P, Dou J, Marques IF, Mansuri SR, Page CM, Harbs J, Khodasevich D, Poisel E, Niu Z, Allard C, Casey E, Berstein FM, Mancano G, Elliott HR, Richmond R, He Y, Ronkainen J, Sebert S, Bell EM, Sharp G, Mumford SL, Schisterman EF, Chandak GR, Fall CHD, Sahariah SA, Silver MJ, Prentice AM, Bouchard L, Domellof M, West C, Holland N, Cardenas A, Eskenazi B, Zillich L, Witt SH, Send T, Breton C, Bakulski KM, Fallin MD, Schmidt RJ, Stein DJ, Zar HJ, Jaddoe VWV, Wright J, Grazuleviciene R, Gutzkow KB, Sunyer J, Huels A, Vrijheid M, Harlid S, London S, Hivert M, Felix J, Bustamante M, Guan W. Maternal age is related to offspring DNA methylation: A meta-analysis of results from the PACE consortium. Aging Cell 2024; 23:e14194. [PMID: 38808605 PMCID: PMC11320347 DOI: 10.1111/acel.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/30/2024] Open
Abstract
Worldwide trends to delay childbearing have increased parental ages at birth. Older parental age may harm offspring health, but mechanisms remain unclear. Alterations in offspring DNA methylation (DNAm) patterns could play a role as aging has been associated with methylation changes in gametes of older individuals. We meta-analyzed epigenome-wide associations of parental age with offspring blood DNAm of over 9500 newborns and 2000 children (5-10 years old) from the Pregnancy and Childhood Epigenetics consortium. In newborns, we identified 33 CpG sites in 13 loci with DNAm associated with maternal age (PFDR < 0.05). Eight of these CpGs were located near/in the MTNR1B gene, coding for a melatonin receptor. Regional analysis identified them together as a differentially methylated region consisting of 9 CpGs in/near MTNR1B, at which higher DNAm was associated with greater maternal age (PFDR = 6.92 × 10-8) in newborns. In childhood blood samples, these differences in blood DNAm of MTNR1B CpGs were nominally significant (p < 0.05) and retained the same positive direction, suggesting persistence of associations. Maternal age was also positively associated with higher DNA methylation at three CpGs in RTEL1-TNFRSF6B at birth (PFDR < 0.05) and nominally in childhood (p < 0.0001). Of the remaining 10 CpGs also persistent in childhood, methylation at cg26709300 in YPEL3/BOLA2B in external data was associated with expression of ITGAL, an immune regulator. While further study is needed to establish causality, particularly due to the small effect sizes observed, our results potentially support offspring DNAm as a mechanism underlying associations of maternal age with child health.
Collapse
Affiliation(s)
- Edwina Yeung
- Epidemiology Branch, Division of Population Health Research, Division of Intramural ResearchEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaMarylandUSA
| | - Richard J. Biedrzycki
- Division of Intramural ResearchGlotech Inc., Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaMarylandUSA
| | - Laura C. Gómez Herrera
- ISGlobal, Institute for Global HealthBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
| | - Prachand Issarapu
- MRC Unit the Gambia at the London School of Hygiene and Tropical Medicine (LSHTM)BanjulThe Gambia
| | - John Dou
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Irene Fontes Marques
- Generation R Study Group, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of Pediatrics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Sohail Rafik Mansuri
- Genomic Research on Complex Diseases (GRC‐Group)CSIR‐Centre for Cellular and Molecular BiologyHyderabadTelanganaIndia
| | | | - Justin Harbs
- Department of Diagnostics and Intervention, OncologyUmeå UniversityUmeåSweden
| | - Dennis Khodasevich
- Environmental Health Sciences, Berkeley Public HealthCERCH, University of CaliforniaBerkeleyCaliforniaUSA
| | - Eric Poisel
- Department of Genetic Epidemiology in PsychiatryCentral Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheimGermany
| | - Zhongzheng Niu
- Department of Population and Public Health Science, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Catherine Allard
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS)SherbrookeQuebecCanada
| | - Emma Casey
- Department of Epidemiology, Rollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| | - Fernanda Morales Berstein
- Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUK
- Bristol Medical School Population Health SciencesUniversity of BristolBristolUK
| | - Giulia Mancano
- Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUK
- Bristol Medical School Population Health SciencesUniversity of BristolBristolUK
| | - Hannah R. Elliott
- Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUK
- Bristol Medical School Population Health SciencesUniversity of BristolBristolUK
| | - Rebecca Richmond
- Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUK
- Bristol Medical School Population Health SciencesUniversity of BristolBristolUK
| | - Yiyan He
- Research Unit of Population HealthUniversity of OuluOuluFinland
| | | | - Sylvain Sebert
- Research Unit of Population HealthUniversity of OuluOuluFinland
| | - Erin M. Bell
- Department of Environmental Health Sciences and Epidemiology and BiostatisticsUniversity at Albany School of Public HealthAlbanyNew YorkUSA
| | - Gemma Sharp
- Department of PsychologyUniversity of ExeterExeterUK
| | - Sunni L. Mumford
- Department of Biostatistics, Epidemiology and Informatics and Department of Obstetrics and Gynecology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Enrique F. Schisterman
- Department of Biostatistics, Epidemiology and Informatics and Department of Obstetrics and Gynecology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Giriraj R. Chandak
- Genomic Research on Complex Diseases (GRC‐Group)CSIR‐Centre for Cellular and Molecular BiologyHyderabadTelanganaIndia
| | | | | | - Matt J. Silver
- MRC Unit the Gambia at the London School of Hygiene and Tropical Medicine (LSHTM)BanjulThe Gambia
| | - Andrew M. Prentice
- MRC Unit the Gambia at the London School of Hygiene and Tropical Medicine (LSHTM)BanjulThe Gambia
| | - Luigi Bouchard
- Department of Biochemistry and Functional GenomicsCentre intégré Universitaire de santé et de Services Sociaux (CIUSSS) du Saguenay‐Lac‐St‐Jean, Université de SherbrookeSherbrookeQuebecCanada
- Department of Laboratory MedicineCIUSSS du Saguenay‐Lac‐Saint‐Jean – Hôpital de ChicoutimiChicoutimiQuebecCanada
| | - Magnus Domellof
- Department of Clinical Sciences, PediatricsUmeå UniversityUmeåSweden
| | - Christina West
- Department of Clinical Sciences, PediatricsUmeå UniversityUmeåSweden
| | - Nina Holland
- Environmental Health Sciences, Berkeley Public HealthCERCH, University of CaliforniaBerkeleyCaliforniaUSA
| | - Andres Cardenas
- Department of Epidemiology and Population HealthStanford UniversityStanfordCaliforniaUSA
| | - Brenda Eskenazi
- Environmental Health Sciences, Berkeley Public HealthCERCH, University of CaliforniaBerkeleyCaliforniaUSA
| | - Lea Zillich
- Department of Genetic Epidemiology in PsychiatryCentral Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheimGermany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in PsychiatryCentral Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheimGermany
| | - Tabea Send
- Department of Psychiatry and PsychotherapyCentral Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheimGermany
| | - Carrie Breton
- Department of Population and Public Health Science, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kelly M. Bakulski
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - M. Daniele Fallin
- Dean's Office, Rollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences and the M.I.N.D. Institute, School of MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Dan J. Stein
- Neuroscience Institute, University of Cape TownCape TownSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental DisordersUniversity of Cape TownCape TownSouth Africa
| | - Heather J. Zar
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental DisordersUniversity of Cape TownCape TownSouth Africa
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
| | - Vincent W. V. Jaddoe
- Generation R Study Group, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of Pediatrics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - John Wright
- Bradford Institute for Health Research, Temple Bank House, Bradford Royal InfirmaryBradfordUK
| | | | | | - Jordi Sunyer
- ISGlobal, Institute for Global HealthBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
- IMIM‐Parc Salut MarBarcelonaSpain
| | - Anke Huels
- Department of Epidemiology, Rollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
- Gangarosa Department of Environmental Health, Rollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| | - Martine Vrijheid
- ISGlobal, Institute for Global HealthBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
| | - Sophia Harlid
- Department of Diagnostics and Intervention, OncologyUmeå UniversityUmeåSweden
| | - Stephanie London
- Epidemiology BranchNational Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle ParkDurhamNorth CarolinaUSA
| | - Marie‐France Hivert
- Division of Chronic Disease Research across the Lifecourse (CoRAL); Department of Population Medicine, Harvard Medical SchoolHarvard Pilgrim Health Care InstituteBostonMassachusettsUSA
- Diabetes Unit, Massachusetts General HospitalBostonMassachusettsUSA
| | - Janine Felix
- Generation R Study Group, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of Pediatrics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Mariona Bustamante
- ISGlobal, Institute for Global HealthBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
| | - Weihua Guan
- Division of Biostatistics, School of Public HealthUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
4
|
Kumari N, Saini S, Thakur S, Sharma S, Punetha M, Kumar P, Sango C, Sharma RK, Datta TK, Yadav PS, Kumar D. Enhancing the quality of inferior oocytes of buffalo for in vitro embryo production: The impact of melatonin on maturation, SCNT, and epigenetic modifications. Tissue Cell 2024; 89:102480. [PMID: 39029316 DOI: 10.1016/j.tice.2024.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Success of animal cloning is limited by oocyte quality, which is closely linked to reprogramming ability. The number of layers of cumulus cells is typically used to assess the quality of oocyte; a minimum of one-third of collected cumulus-oocyte complexes (COCs) are discarded as inferior oocytes because they have less cumulus cells. Melatonin, which has been recognised for its ability to sequester free radicals and perform multiple functions, has emerged as a potentially effective candidate for enhancing inferior oocytes quality and, consequently, embryo development competency. The current study investigates to improve the quality of inferior oocytes by supplementation of melatonin (10-9 M) during in vitro maturation (IVM) and subsequent cloned embryo production and its mechanism. The results indicate that melatonin supplementation significantly (p<0.05) enhances inferior oocytes maturation, reduces oxidative stress by reducing ROS levels, and improves mitochondrial function by boosting GSH levels. The melatonin treatment (10-9 M) enhances the expression of SOD, GPx1, GDF 9, BMP 15, ATPase 6, and ATPase 8 in inferior oocytes. Furthermore, melatonin treatment increases the total cell number in the treated groups, promoting cloned blastocyst formation rates derived from inferior oocytes. Furthermore, compared to the control, 10-9 M melatonin supplementation enhances H3K9ac acetylation and lowers H3K27me3 methylation in cloned blastocysts derived from inferior oocytes. In conclusion, 10-9 M melatonin supplementation during IVM increased inferior oocyte maturation and promoted cloned buffalo embryo development by lowering oxidative stress and promoting epigenetic alterations. These studies show that melatonin may improve the quality of poor oocytes and buffalo cloning.
Collapse
Affiliation(s)
- Nidhi Kumari
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India; Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sheetal Saini
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - Swati Thakur
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - Surabhi Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - Meeti Punetha
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India.
| | - Pradeep Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - Chakarvati Sango
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - R K Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - T K Datta
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - P S Yadav
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India.
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India.
| |
Collapse
|
5
|
Gil-Martín E, Ramos E, López-Muñoz F, Egea J, Romero A. Potential of melatonin to reverse epigenetic aberrations in oral cancer: new findings. EXCLI JOURNAL 2023; 22:1280-1310. [PMID: 38234969 PMCID: PMC10792176 DOI: 10.17179/excli2023-6624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024]
Abstract
It is now an accepted principle that epigenetic alterations cause cellular dyshomeostasis and functional changes, both of which are essential for the initiation and completion of the tumor cycle. Oral carcinogenesis is no exception in this regard, as most of the tumors in the different subsites of the oral cavity arise from the cross-reaction between (epi)genetic inheritance and the huge challenge of environmental stressors. Currently, the biochemical machinery is put at the service of the tumor program, halting the cell cycle, triggering uncontrolled proliferation, driving angiogenesis and resistance to apoptosis, until the archetypes of the tumor phenotype are reached. Melatonin has the ability to dynamically affect the epigenetic code. It has become accepted that melatonin can reverse (epi)genetic aberrations present in oral and other cancers, suggesting the possibility of enhancing the oncostatic capacity of standard multimodal treatments by incorporating this indolamine as an adjuvant. First steps in this direction confirm the potential of melatonin as a countermeasure to mitigate the detrimental side effects of conventional first-line radiochemotherapy. This single effect could produce synergies of extraordinary clinical importance, allowing doses to be increased and treatments not to be interrupted, ultimately improving patients' quality of life and prognosis. Motivated by the urgency of improving the medical management of oral cancer, many authors advocate moving from in vitro and preclinical research, where the bulk of melatonin cancer research is concentrated, to systematic randomized clinical trials on large cohorts. Recognizing the challenge to improve the clinical management of cancer, our motivation is to encourage comprehensive and robust research to reveal the clinical potential of melatonin in oral cancer control. To improve the outcome and quality of life of patients with oral cancer, here we provide the latest evidence of the oncolytic activity that melatonin can achieve by manipulating epigenetic patterns in oronasopharyngeal tissue.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute, 28041 Madrid, Spain
| | - Javier Egea
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Hsieh MC, Lai CY, Lin LT, Chou D, Yeh CM, Cheng JK, Wang HH, Lin KH, Lin TB, Peng HY. Melatonin Relieves Paclitaxel-Induced Neuropathic Pain by Regulating pNEK2-Dependent Epigenetic Pathways in DRG Neurons. ACS Chem Neurosci 2023; 14:4227-4239. [PMID: 37978917 DOI: 10.1021/acschemneuro.3c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
The neurohormone melatonin (MLT) demonstrates promising potential in ameliorating neuropathic pain induced by paclitaxel (PTX) chemotherapy. However, little is known about its protective effect on dorsal root ganglion (DRG) neurons in neuropathic pain resulting from the chemotherapeutic drug PTX. Here, PTX-treated rats revealed that intrathecal administration of MLT dose-dependently elevated hind paw withdrawal thresholds and latency, indicating that MLT significantly reversed PTX-induced neuropathic pain. Mechanistically, the analgesic effects of MLT were found to be mediated via melatonin receptor 2 (MT2), as pretreatment with an MT2 receptor antagonist inhibited these effects. Moreover, intrathecal MLT injection reversed the pNEK2-dependent epigenetic program induced by PTX. All of the effects caused by MLT were blocked by pretreatment with an MT2 receptor-selective antagonist, 4P-PDOT. Remarkably, multiple MLT administered during PTX treatment (PTX+MLTs) exhibited not only rapid but also lasting reversal of allodynia/hyperalgesia compared to single-bolus MLT administered after PTX treatment (PTX+MLT). In addition, PTX+MLTs exhibited greater efficacy in reversing PTX-induced alterations in pRSK2, pNEK2, JMJD3, H3K27me3, and TRPV1 expression and interaction in DRG neurons than PTX+MLT. These results indicated that MLT administered during PTX treatment reduced the incidence and/or severity of neuropathy and had a better inhibitory effect on the pNEK2-dependent epigenetic program compared to MLT administered after PTX treatment. In conclusion, MLT/MT2 is a promising therapy for the treatment of pNEK2-dependent painful neuropathy resulting from PTX treatment. MLT administered during PTX chemotherapy may be more effective in the prevention or reduction of PTX-induced neuropathy and maintaining quality.
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
| | - Cheng-Yuan Lai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
| | - Li-Ting Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
| | - Dylan Chou
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
| | - Chou-Ming Yeh
- Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung 40343, Taiwan
- Central Taiwan University of Science and Technology, Taichung 40343, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei104, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei110, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 252, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei City 110, Taiwan
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung 40604, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
| |
Collapse
|
7
|
Samra T, Gomez-Gomez T, Linowiecka K, Akhundlu A, Lopez de Mendoza G, Gompels M, Lee WW, Gherardini J, Chéret J, Paus R. Melatonin Exerts Prominent, Differential Epidermal and Dermal Anti-Aging Properties in Aged Human Eyelid Skin Ex Vivo. Int J Mol Sci 2023; 24:15963. [PMID: 37958946 PMCID: PMC10647640 DOI: 10.3390/ijms242115963] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Human skin aging is associated with functional deterioration on multiple levels of physiology, necessitating the development of effective skin senotherapeutics. The well-tolerated neurohormone melatonin unfolds anti-aging properties in vitro and in vivo, but it remains unclear whether these effects translate to aged human skin ex vivo. We tested this in organ-cultured, full-thickness human eyelid skin (5-6 donors; 49-77 years) by adding melatonin to the culture medium, followed by the assessment of core aging biomarkers via quantitative immunohistochemistry. Over 6 days, 200 µM melatonin significantly downregulated the intraepidermal activity of the aging-promoting mTORC1 pathway (as visualized by reduced S6 phosphorylation) and MMP-1 protein expression in the epidermis compared to vehicle-treated control skin. Conversely, the transmembrane collagen 17A1, a key stem cell niche matrix molecule that declines with aging, and mitochondrial markers (e.g., TFAM, MTCO-1, and VDAC/porin) were significantly upregulated. Interestingly, 100 µM melatonin also significantly increased the epidermal expression of VEGF-A protein, which is required and sufficient for inducing human skin rejuvenation. In aged human dermis, melatonin significantly increased fibrillin-1 protein expression and improved fibrillin structural organization, indicating an improved collagen and elastic fiber network. In contrast, other key aging biomarkers (SIRT-1, lamin-B1, p16INK4, collagen I) remained unchanged. This ex vivo study provides proof of principle that melatonin indeed exerts long-suspected but never conclusively demonstrated and surprisingly differential anti-aging effects in aged human epidermis and dermis.
Collapse
Affiliation(s)
- Tara Samra
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Tatiana Gomez-Gomez
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Kinga Linowiecka
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
- Department of Human Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
| | - Aysun Akhundlu
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Gabriella Lopez de Mendoza
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Matthew Gompels
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Wendy W. Lee
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Jennifer Gherardini
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
- Monasterium Laboratory, 48149 Muenster, Germany
- CUTANEON—Skin & Hair Innovations, 22335 Hamburg, Germany
| |
Collapse
|
8
|
Luo N, Wang Y, Ma Y, Liu Y, Liu Z. Melatonin alleviates renal injury in diabetic rats by regulating autophagy. Mol Med Rep 2023; 28:214. [PMID: 37772370 PMCID: PMC10552076 DOI: 10.3892/mmr.2023.13101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 09/30/2023] Open
Abstract
Melatonin (MLT) is a biologically active indoleamine involved in regulating various biological rhythms, which is deficient in individuals with Type 2 diabetes. The present study examined the effects of MLT on diabetic neuropathy (DN). Diabetic rats received MLT treatment for 12 weeks, after which changes in kidney histology, oxidative damage, mitochondrial morphology and autophagy were measured. The glucose tolerance‑ and isoflurane tolerance‑area under the curve (AUC) values and the relative renal weight index (RI) in the diabetes mellitus (DM) group of rats were significantly higher compared with those in the control group. A significant increase in malondialdehyde (MDA) content, and decreases in the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH‑Px) and GSH were demonstrated in the kidneys of DM rats compared with those in the control rats. Histological staining of DM rat kidney tissue with hematoxylin and eosin, Masson's trichome and Periodic acid‑Schiff demonstrated glomerular and tubule lesions, and an increase in collagen compared with control rats. Protein expression levels of LC3II, P62, collagen IV (COL‑IV) and α‑SMA were increased in DM rats and HG‑induced NRK‑52E cells compared with those in the control groups. Phosphorylation of AMPK was reduced, whereas phosphorylation of PI3K, Akt and mTOR were increased in vivo and in vitro. Notably, MLT treatment significantly reduced glucose tolerance‑AUC and RI, decreased MDA content, and increased SOD, CAT, GSH‑Px and GSH activity. Glomerular and tubule lesions improved, collagen was decreased and mitochondrial damage was alleviated by MLT treatment. MLT treatment also decreased the protein expression levels of LC3II, P62 and COL‑IV, whereas the phosphorylation of AMPK was significantly increased, which inhibited the phosphorylation of PI3K, AKT and mTOR in vivo and in vitro. These results demonstrated that MLT protects against DN and NRK‑52E cell injury through inhibiting oxidative damage and regulating autophagy via the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Na Luo
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Yangyang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yu Liu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
9
|
El Gazzar WB, Sliem RE, Bayoumi H, Nasr HE, Shabanah M, Elalfy A, Radwaan SE, Gebba MA, Mansour HM, Badr AM, Amer MF, Ashour SS, Morsi H, Aboelkomsan ESAF, Baioumy B, Sayed AEDH, Farag AA. Melatonin Alleviates Intestinal Barrier Damaging Effects Induced by Polyethylene Microplastics in Albino Rats. Int J Mol Sci 2023; 24:13619. [PMID: 37686424 PMCID: PMC10488227 DOI: 10.3390/ijms241713619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
There have been concerns about the potential health risks posed by microplastics (MP). The detection of MP in a variety of food products revealed that humans are ingesting MP. Nevertheless, there is a paucity of data about their impacts, as well as their uptake, on intestinal barrier integrity. This study examined the toxic effects of oral administration of two doses of polyethylene microplastics (PE-MP) (3.75 or 15 mg/kg/day for 5 weeks; mean particle size: 4.0-6.0 µm) on the intestinal barrier integrity in rats. Moreover, the effect of melatonin treatment with MP exposure was also assessed. The PE-MP particle uptake, histopathological changes, Alcian blue staining, Muc2 mRNA, proinflammatory cytokines (IL-1β and TNF-α), and cleaved caspase-3, as well as tight junction proteins (claudin-1, myosin light-chain kinase (MLCK), occludin, and zonula occludens-1 (ZO-1)) were assessed. Oral administration of PE-MP resulted in apparent jejunal histopathological alterations; significantly decreased mucin secretion, occludin, ZO-1, and claudin-1 expression; and significantly upregulated MLCK mRNA, IL-1β concentration, and cleaved caspase-3 expression. Melatonin reversed these altered parameters and improved the PE-MP-induced histopathological and ultrastructure changes. This study highlighted the PE-MP's toxic effect on intestinal barrier integrity and revealed the protective effect of melatonin.
Collapse
Affiliation(s)
- Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Rania E. Sliem
- Department of Zoology, Faculty of Science, Benha University, Benha 13518, Egypt; (R.E.S.); (S.E.R.)
| | - Heba Bayoumi
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (H.B.); (A.E.)
| | - Hend Elsayed Nasr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Manar Shabanah
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35511, Egypt;
| | - Amira Elalfy
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (H.B.); (A.E.)
| | - Shaimaa E. Radwaan
- Department of Zoology, Faculty of Science, Benha University, Benha 13518, Egypt; (R.E.S.); (S.E.R.)
| | - Mohammed A. Gebba
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (M.A.G.)
- Department of Anatomy and Embryology, Faculty of Medicine, Merit University, Sohag 82524, Egypt
| | - Heba M. Mansour
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12573, Egypt;
| | - Amul M. Badr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11451, Egypt; (A.M.B.); (M.F.A.); (S.S.A.); (H.M.)
| | - Marwa Fathy Amer
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11451, Egypt; (A.M.B.); (M.F.A.); (S.S.A.); (H.M.)
| | - Sara S. Ashour
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11451, Egypt; (A.M.B.); (M.F.A.); (S.S.A.); (H.M.)
| | - Heba Morsi
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11451, Egypt; (A.M.B.); (M.F.A.); (S.S.A.); (H.M.)
| | | | - Bodour Baioumy
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (M.A.G.)
| | | | - Amina A. Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| |
Collapse
|
10
|
Gładysz AK, Stępniak J, Karbownik-Lewińska M. Exogenous Melatonin Protects against Oxidative Damage to Membrane Lipids Caused by Some Sodium/Iodide Symporter Inhibitors in the Thyroid. Antioxidants (Basel) 2023; 12:1688. [PMID: 37759991 PMCID: PMC10525497 DOI: 10.3390/antiox12091688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The thyroid gland is the primary site of sodium/iodide symporter (NIS), an intrinsic plasma membrane protein responsible for the active uptake of iodine, which is indispensable for thyroid hormone synthesis. Since exposure of the thyroid to NIS inhibitors can potentially have harmful effects on the entire organism, it is important to investigate the potential protective effects of known antioxidants, such as melatonin and indole-3-propionic acid (IPA), against pro-oxidative action of classic NIS inhibitors. The study aimed to check if and to what extent melatonin and IPA interact with some confirmed NIS inhibitors regarding their effects on oxidative damage to membrane lipids in the thyroid. For comparison with the thyroid gland, in which NIS is typically present, the liver tissue-not possessing NIS-was applied in the present study. Thyroid and liver homogenates were incubated in the presence of tested NIS inhibitors (i.e., NaClO3, NH4SCN, KSeCN, KNO3, NaF, KClO4, and BPA) in different ranges of concentrations with/without melatonin (5 mM) or IPA (5 mM). The malondialdehyde+4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. NaClO3 increased LPO in the thyroid and in the liver, but these pro-oxidative effects were not prevented by either melatonin or IPA. Instead, pro-oxidative effects of NH4SCN observed in both tissues were prevented by both indole substances. KSeCN and NaF increased LPO only in the thyroid, and these pro-oxidative effects were prevented by melatonin and IPA. KNO3, KClO4, and BPA did not increase LPO, which can be due to their low concentrations resulting from restricted solubility. In conclusion, as melatonin prevented oxidative damage to membrane lipids in the thyroid caused by some sodium/iodide symporter inhibitors, this indoleamine shoud be considered as a potential protective agent when produced appropriately in living organisms but also as an exogenous substance recommended to individuals overexposed to NIS inhibitors.
Collapse
Affiliation(s)
- Aleksandra K. Gładysz
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St., 90-752 Lodz, Poland; (A.K.G.); (J.S.)
| | - Jan Stępniak
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St., 90-752 Lodz, Poland; (A.K.G.); (J.S.)
| | - Małgorzata Karbownik-Lewińska
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St., 90-752 Lodz, Poland; (A.K.G.); (J.S.)
- Polish Mother’s Memorial Hospital—Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
| |
Collapse
|
11
|
Dogaru BG, Munteanu C. The Role of Hydrogen Sulfide (H 2S) in Epigenetic Regulation of Neurodegenerative Diseases: A Systematic Review. Int J Mol Sci 2023; 24:12555. [PMID: 37628735 PMCID: PMC10454626 DOI: 10.3390/ijms241612555] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
This review explores the emerging role of hydrogen sulfide (H2S) in modulating epigenetic mechanisms involved in neurodegenerative diseases. Accumulating evidence has begun to elucidate the multifaceted ways in which H2S influences the epigenetic landscape and, subsequently, the progression of various neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease. H2S can modulate key components of the epigenetic machinery, such as DNA methylation, histone modifications, and non-coding RNAs, impacting gene expression and cellular functions relevant to neuronal survival, inflammation, and synaptic plasticity. We synthesize recent research that positions H2S as an essential player within this intricate network, with the potential to open new therapeutic avenues for these currently incurable conditions. Despite significant progress, there remains a considerable gap in our understanding of the precise molecular mechanisms and the potential therapeutic implications of modulating H2S levels or its downstream targets. We conclude by identifying future directions for research aimed at exploiting the therapeutic potential of H2S in neurodegenerative diseases.
Collapse
Affiliation(s)
- Bombonica Gabriela Dogaru
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Clinical Rehabilitation Hospital, 400437 Cluj-Napoca, Romania
| | - Constantin Munteanu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
| |
Collapse
|