1
|
Dokduang H, Katenak A, Kittirat Y, Tomacha J, Promraksa B, Taing L, Na Nakorn S, Klanrit P, Namwat N, Titapun A, Loilome W. Chemical composition and anticancer potential of water extracts derived from ground powder of Thai germinated brown rice ( Oryza sativa L.). Nat Prod Res 2025:1-8. [PMID: 39862045 DOI: 10.1080/14786419.2025.2457017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Powdered germinated Thai rice (Oryza sativa L.) is widely utilised as a dietary supplement to support health and prevent diseases. This study investigated the bioactive compound profile of water extracts from beverage powder made from Thai germinated brown rice (GBRE) and assessed its anticancer effects on cholangiocarcinoma, lung cancer, and liver cancer cell lines. Proton nuclear magnetic resonance (1H-NMR) revealed 23 metabolites, including amino acids, sugar, phenolic compounds and nitrogenous compounds. Additionally, GBRE exhibited anticancer properties by effectively inhibiting cancer cell growth, inducing cell cycle arrest, and reducing cell migration. Our findings highlight the nutritional benefits and anticancer potential of germinated brown rice powder in impeding cancer cell progression. This study demonstrates the nutritional benefits and anticancer effects of germinated brown rice powder in inhibiting cancer cell progression. Incorporating germinated brown rice powder for a nutraceutical supplement can be served as a potential strategy for cancer prevention or therapeutic intervention.
Collapse
Affiliation(s)
- Hasaya Dokduang
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, Mahasarakham University, Mahasarakham, Thailand
- Biomedical Science Research Unit, Mahasarakham University, Mahasarakham, Thailand
| | - Anukoon Katenak
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | | | - Jittima Tomacha
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Bundit Promraksa
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Leakkhaing Taing
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Kampong Speu Institute of Technology, Kampong Speu, Cambodia
| | - Saran Na Nakorn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
2
|
Qamar ZU, Uzair M, Hameed A, Zafar SA, Li X. Identification of a novel mutation in the OsMRP5 gene in low phytate Basmati rice mutant and development of CAPS marker for marker-assisted breeding. FRONTIERS IN PLANT SCIENCE 2024; 15:1455219. [PMID: 39741669 PMCID: PMC11687226 DOI: 10.3389/fpls.2024.1455219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025]
Abstract
Low phytate level is a desirable trait because it promotes mineral bioavailability and thus offers a solution to tackle mineral deficiencies. The objectives of the present study were to characterize low phytate (lpa) Basmati rice mutants for the identification of novel mutations in target gene(s) and to develop a PCR-based CAPS (cleaved amplified polymorphic sequence) marker for low phytate Basmati rice. For this purpose, cultivar Super Basmati (Q4) was irradiated with gamma rays (60Co source) and three mutants named Q1 (lpa-5-9), Q2 (lpa-9-13), and Q3 (lpa-59-14) were isolated. Four genes previously been reported for the low phytic acid trait in rice were sequenced in these mutants and no mutation was observed in Q1 and Q2. However, in Q3 (lpa14) mutant a novel mutation in OsMRP5 gene (LOC_Os03g04920`) was detected. Sequence analysis displayed a substitution in the first exon of OsMRP5 at position 1142 bp resulting in the amino acid change from glycine (Gly) to alanine (Ala) at position 381a.a. To facilitate low-phytate breeding program, CAPS marker was developed to confirm this mutation site using the restriction digestion by AluI restriction enzyme. After enzyme digestion, Q3 produces four bands (32, 220, 154, and 32 bp) while Q4 (parent cultivar Super Basmati) produces only 3 bands (32, 374, and 32 bp). These results showed that this CAPS marker is 100% linked with this mutation and can be used for future breeding programs. Present findings provided insights in molecular basis of low phytate trait in rice paving the way for developing low-phytate rice varieties through marker-assisted breeding.
Collapse
Affiliation(s)
- Zia-ul- Qamar
- Plant Breeding & Genetics Division, Marker Assisted Breeding Group (MABG), Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Muhammad Uzair
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| | - Amjad Hameed
- Plant Breeding & Genetics Division, Marker Assisted Breeding Group (MABG), Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Syed Adeel Zafar
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Xueyong Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Kumar A, Mahapatra S, Nayak L, Biswal M, Sahoo U, Lal MK, Nayak AK, Pati K. Tuber crops could be a potential food component for lowering starch digestibility and estimated glycemic index in rice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8519-8528. [PMID: 38953558 DOI: 10.1002/jsfa.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Rice is considered a high estimated glycemic index (eGI) food because of its higher starch digestibility, which leads to type II diabetes and obesity as a result of a sedentary life style. Furthermore, the incresaing diabetes cases in rice-consuming populations worldwide need alternative methods to reduce the glycemic impact of rice, with dietary prescriptions based on the eGI value of food being an attractive and practical concept. Rice is often paired with vegetables, pulses, tubers and roots, a staple food group in Africa, Latin America and Asia, which are rich in fibre and health-promoting compounds. RESULTS Rice from four categories (high protein, scented, general and pigmented) was analyzed for eGI and resistant starch (RS) content. Among the genotypes, Improved Lalat had the lowest eGI (53.12) with a relatively higher RS content (2.17%), whereas Hue showed the lowest RS (0.19%) with the highest eGI (76.3) value. The addition of tuber crops to rice caused a significant lowering of eGI where the maximum beneficial effect was shown by elephant foot yam (49.37) followed by yam bean (53.07) and taro (54.43). CONCLUSION The present study suggests that combining rice with suitable tuber crops can significantly reduce its eGI value, potentially reducing the burden of diet-associated lifestyle diseases particularly diabetics. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | - Upasana Sahoo
- ICAR-National Rice Research Institute, Cuttack, India
| | - Milan Kumar Lal
- ICAR-National Rice Research Institute, Cuttack, India
- Division of Crop Physiology, Biochemistry & Postharvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| | | | - Kalidas Pati
- Regional Centre, ICAR-Central Tuber Crops Research Institute, Bhubaneswar, India
| |
Collapse
|
4
|
Yang L, Xu Z, Xiao X, Cui B, Luo Y, Fan L, Fan Y, Song S, Zhang Y, Pei H. Predictive modeling of rice milling degree for three typical Chinese rice varieties using interpretative machine learning methods. J Food Sci 2024; 89:6553-6574. [PMID: 39218808 DOI: 10.1111/1750-3841.17330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Brown rice over-milling causes high economic and nutrient loss. The rice degree of milling (DOM) detection and prediction remain a challenge for moderate processing. In this study, a self-established grain image acquisition platform was built. Degree of bran layer remaining (DOR) datasets is established with image capturing and processing (grain color, texture, and shape features extraction). The mapping relationship between DOR and the DOM is in-depth analyzed. Rice grain DOR typical machine learning and deep learning prediction models are established. The results indicate that the optimized Catboost model can be established with cross-validation and grid search method, with the best accuracy improving from 84.28% to 91.24%, achieving precision 91.31%, recall 90.89%, and F1-score 91.07%. Shapley additive explanations analysis indicates that color, texture, and shape feature affect Catboost prediction accuracy, the feature importance: color > texture > shape. The YCbCr-Cb_ske and GLCM-Contrast features make the most significant contribution to rice milling quality prediction. The feature importance provides theoretical and practical guidance for grain DOM prediction model. PRACTICAL APPLICATION: Rice milling degree prediction and detection are valuable for rice milling process in practical application. In this paper, image processing and machine learning methods provide an automated, nondestructive, and cost-effective way to predict the quality of rice. The study may serve as a valuable reference for improving rice milling methods, retaining rice nutrition, and reducing broken rice yield.
Collapse
Affiliation(s)
- Liu Yang
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zilong Xu
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xuan Xiao
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Bo Cui
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yang Luo
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Lanlan Fan
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yuchao Fan
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Shaoyun Song
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Cereals and Oils Machinery Engineering Center, Wuhan, China
| | - Yonglin Zhang
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Cereals and Oils Machinery Engineering Center, Wuhan, China
| | - Houchang Pei
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
5
|
Uthman YA, Ibrahim KG, Abubakar MB, Sulaiman I, Imam MU. Neuroprotective effects of brown rice consumption in an iron-induced parkinsonism in Drosophila. Nutr Neurosci 2024:1-11. [PMID: 39235924 DOI: 10.1080/1028415x.2024.2399988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
OBJECTIVES Iron (Fe) accumulation and resultant oxidative stress play a significant role in the neuronal death observed in Parkinson's disease (PD). Brown rice (BR) possesses antioxidant properties able to reduce cellular oxidative damage. Thus, we hypothesized that BR may ameliorate Fe-induced parkinsonism due to oxidative stress. METHODS Two - to three-day-old male flies were concurrently exposed to Fe (ferrous sulphate, 1 mM) and interventions, divided into eight groups: control; Fe; BR; white rice (WR); L-dopa (1 mM); Fe (1 mM) + BR; Fe (1 mM) + WR; and Fe (1 mM) + L-dopa (1 mM). The flies were exposed for 15 days to their respective diets, and their behavior, relevant biomarkers, and the expression of related genes were evaluated. RESULTS Chronic exposure to Fe caused cognitive and locomotor deficits by increasing Fe levels (p = 0.027) in flies' heads, as well as heightened aggression and grooming episodes (p < 0.001). The elevated iron levels induced changes consistent with oxidative stress, evidenced by increased MDA levels (p < 0.001), and reduced activity of catalase (p < 0.001) and glutathione peroxidase (GPx) (p < 0.001), along with decreased dopamine levels (p < 0.001). Additionally, there was dysregulation in the mRNA expression of malvolio, ferritin, Nrf2, DJ-1, GPx, and catalase (p < 0.05). BR prevented the Fe-induced effects (Fe + BR group) even more effectively than L-Dopa (p < 0.001). CONCLUSION The findings indicate that BR has the potential to mitigate Fe-induced ROS-mediated damage in a Drosophila model of PD-like disease by modulating key players in the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yaaqub Abiodun Uthman
- Center for Advanced Medical Research and Training (CAMRET), Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
- Department of Physiology, Faculty of Basic Medical Sciences, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| | - Kasimu Ghandi Ibrahim
- Center for Advanced Medical Research and Training (CAMRET), Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
- Department of Physiology, Faculty of Basic Medical Sciences, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
- School of Physiology, Faculty of Health Sciences, University of the Witawatersrand, Johannesburg, South Africa
| | - Murtala Bello Abubakar
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ismail Sulaiman
- Center for Advanced Medical Research and Training (CAMRET), Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Life Sciences, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| | - Mustapha Umar Imam
- Center for Advanced Medical Research and Training (CAMRET), Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| |
Collapse
|
6
|
Nurjannah KAI, Mustopa AZ, Masniawati A, Fatimah F, Irawan H, Wibowo DS, Manguntungi B, Mamangkey J, Juanssilfero AB, Mahrup, Mazaya M, Johannes E, Bachtiar Z. Nutritional profiling and in silico analysis of pharmacological activities from local rice Pulu Mandoti fermented with Pleurotus spp. World J Microbiol Biotechnol 2024; 40:187. [PMID: 38702565 DOI: 10.1007/s11274-024-03979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/03/2024] [Indexed: 05/06/2024]
Abstract
Pulu Mandoti, a local red rice (Oryza sativa L.) variety popular among Sulawesi residents, has gained recognition for its perceived health benefits, especially as a preferred dietary option for individuals with diabetes or those seeking to prevent obesity. Given the increasing consumption of mushrooms, particularly Pleurotus species, renowned for their nutritional and medicinal attributes, this study delves into the transformative effects of Pleurotus spp. fermentation on Pulu Mandoti, the indigenous rice variety. Proximate analysis disclosed elevated dry matter (91.99 ± 0.61%), crude protein (8.55 ± 0.15%), and crude fat (1.34 ± 0.05%) in Pleurotus cystidiosus fermentation compared to Pleurotus ostreatus and Pleurotus djamor. Concurrently, antioxidant and antidiabetic activities were notably improved in all Pleurotus fermentations. Pulu Mandoti fermented with P. cystidiosus outperformed other treatments, aligning with molecular docking results pinpointing 11-Eicosenoic acid, methyl ester, and butylated hydroxytoluene as optimal interactors with antioxidant receptors 5O0x and 2CKJ. Butylated hydroxytoluene demonstrated interactions with the antidiabetic receptor 2QV4, along with 9-Octadecenoic acid, methyl ester. These compounds, previously unreported in Pleurotus, displayed promising attributes as antioxidants and antidiabetic agents. Furthermore, the investigation delved into the fatty acid profiles, emphasizing the diverse range of potential bioactive compounds in fermented Pulu Mandoti. The findings of this research present a potential functional food rich in natural antioxidants and antidiabetic compounds, highlighting the yet undiscovered capabilities of Pleurotus spp. fermentation in augmenting the nutritional composition and bioactivity of indigenous rice varieties, specifically Pulu Mandoti.
Collapse
Grants
- B-1409/III.6/PR.03.06/4/2023 This project is funded through "Pendanaan Rumah Program Artificial Intelligence, Big Data dan Teknologi Komputasi untuk Biodiversitas dan Citra Satelit" year 2023. Funding acqusition by Dr. Fatimah, Laboratory of Genomics, National Research and Innovation Agency/Badan Riset dan Inovasi Nasional (BRIN), Indonesia.
- B-1409/III.6/PR.03.06/4/2023 This project is funded through "Pendanaan Rumah Program Artificial Intelligence, Big Data dan Teknologi Komputasi untuk Biodiversitas dan Citra Satelit" year 2023. Funding acqusition by Dr. Fatimah, Laboratory of Genomics, National Research and Innovation Agency/Badan Riset dan Inovasi Nasional (BRIN), Indonesia.
- B-1409/III.6/PR.03.06/4/2023 This project is funded through "Pendanaan Rumah Program Artificial Intelligence, Big Data dan Teknologi Komputasi untuk Biodiversitas dan Citra Satelit" year 2023. Funding acqusition by Dr. Fatimah, Laboratory of Genomics, National Research and Innovation Agency/Badan Riset dan Inovasi Nasional (BRIN), Indonesia.
- B-1409/III.6/PR.03.06/4/2023 This project is funded through "Pendanaan Rumah Program Artificial Intelligence, Big Data dan Teknologi Komputasi untuk Biodiversitas dan Citra Satelit" year 2023. Funding acqusition by Dr. Fatimah, Laboratory of Genomics, National Research and Innovation Agency/Badan Riset dan Inovasi Nasional (BRIN), Indonesia.
- B-1409/III.6/PR.03.06/4/2023 This project is funded through "Pendanaan Rumah Program Artificial Intelligence, Big Data dan Teknologi Komputasi untuk Biodiversitas dan Citra Satelit" year 2023. Funding acqusition by Dr. Fatimah, Laboratory of Genomics, National Research and Innovation Agency/Badan Riset dan Inovasi Nasional (BRIN), Indonesia.
- B-1409/III.6/PR.03.06/4/2023 This project is funded through "Pendanaan Rumah Program Artificial Intelligence, Big Data dan Teknologi Komputasi untuk Biodiversitas dan Citra Satelit" year 2023. Funding acqusition by Dr. Fatimah, Laboratory of Genomics, National Research and Innovation Agency/Badan Riset dan Inovasi Nasional (BRIN), Indonesia.
- B-1409/III.6/PR.03.06/4/2023 This project is funded through "Pendanaan Rumah Program Artificial Intelligence, Big Data dan Teknologi Komputasi untuk Biodiversitas dan Citra Satelit" year 2023. Funding acqusition by Dr. Fatimah, Laboratory of Genomics, National Research and Innovation Agency/Badan Riset dan Inovasi Nasional (BRIN), Indonesia.
- B-1409/III.6/PR.03.06/4/2023 This project is funded through "Pendanaan Rumah Program Artificial Intelligence, Big Data dan Teknologi Komputasi untuk Biodiversitas dan Citra Satelit" year 2023. Funding acqusition by Dr. Fatimah, Laboratory of Genomics, National Research and Innovation Agency/Badan Riset dan Inovasi Nasional (BRIN), Indonesia.
- B-1409/III.6/PR.03.06/4/2023 This project is funded through "Pendanaan Rumah Program Artificial Intelligence, Big Data dan Teknologi Komputasi untuk Biodiversitas dan Citra Satelit" year 2023. Funding acqusition by Dr. Fatimah, Laboratory of Genomics, National Research and Innovation Agency/Badan Riset dan Inovasi Nasional (BRIN), Indonesia.
- B-1409/III.6/PR.03.06/4/2023 This project is funded through "Pendanaan Rumah Program Artificial Intelligence, Big Data dan Teknologi Komputasi untuk Biodiversitas dan Citra Satelit" year 2023. Funding acqusition by Dr. Fatimah, Laboratory of Genomics, National Research and Innovation Agency/Badan Riset dan Inovasi Nasional (BRIN), Indonesia.
- B-1409/III.6/PR.03.06/4/2023 This project is funded through "Pendanaan Rumah Program Artificial Intelligence, Big Data dan Teknologi Komputasi untuk Biodiversitas dan Citra Satelit" year 2023. Funding acqusition by Dr. Fatimah, Laboratory of Genomics, National Research and Innovation Agency/Badan Riset dan Inovasi Nasional (BRIN), Indonesia.
- B-1409/III.6/PR.03.06/4/2023 This project is funded through "Pendanaan Rumah Program Artificial Intelligence, Big Data dan Teknologi Komputasi untuk Biodiversitas dan Citra Satelit" year 2023. Funding acqusition by Dr. Fatimah, Laboratory of Genomics, National Research and Innovation Agency/Badan Riset dan Inovasi Nasional (BRIN), Indonesia.
- B-1409/III.6/PR.03.06/4/2023 This project is funded through "Pendanaan Rumah Program Artificial Intelligence, Big Data dan Teknologi Komputasi untuk Biodiversitas dan Citra Satelit" year 2023. Funding acqusition by Dr. Fatimah, Laboratory of Genomics, National Research and Innovation Agency/Badan Riset dan Inovasi Nasional (BRIN), Indonesia.
Collapse
Affiliation(s)
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Cibinong, Bogor, 16911, Indonesia.
| | - Andi Masniawati
- Department of Biology, Universitas Hasanuddin, Makassar, South Sulawesi, 90245, Indonesia
| | - Fatimah Fatimah
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Cibinong, Bogor, 16911, Indonesia.
| | - Herman Irawan
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Cibinong, Bogor, 16911, Indonesia
| | - Des Saputro Wibowo
- Research Center for Applied Microbiology-Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Jakarta Pusat, Indonesia
| | - Baso Manguntungi
- Department of Biotechnology, Faculty of Mathematics and Natural Sciences, Universitas Sulawesi, Barat, Majene, Indonesia
| | - Jendri Mamangkey
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Cibinong, Bogor, 16911, Indonesia
- Department of Biology Education, Faculty of Education and Teacher Training, Universitas Kristen Indonesia, Jl. Mayjen Sutoyo No. 2, Cawang, Jakarta Timur, 13630, Jakarta, Indonesia
| | - Ario Betha Juanssilfero
- Research Center for Applied Microbiology-Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Jakarta Pusat, Indonesia
| | - Mahrup
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Cibinong, Bogor, 16911, Indonesia
| | - Maulida Mazaya
- Research Center for Computing, Research Organization for Electronics and Informatics, Cibinong Science Center, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta-Bogor KM 46, Cibinong, 16911, West Java, Indonesia
| | - Eva Johannes
- Department of Biology, Universitas Hasanuddin, Makassar, South Sulawesi, 90245, Indonesia
| | - Zubaidi Bachtiar
- Department of Bioengineering, Lombok Institute of Technology, Lombok, Indonesia
| |
Collapse
|
7
|
Han DH, Kim HJ, Kim SH, Kim ID, Adhikari A, Kim JH. Effect of illite pretreatment on germinated Brown rice with Special Reference to amino acids, antioxidants, texture, and mineral elements. Heliyon 2024; 10:e28843. [PMID: 38665585 PMCID: PMC11043867 DOI: 10.1016/j.heliyon.2024.e28843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The pretreatment process of various foods has been reported to improve their nutritional properties. The soaking of brown rice improves the texture and nutrients, which are crucial for cooking and maintaining its high functional value. Illite, a clay mineral, has recently been discovered to improve the nutritional value of seeds. Based on these findings, we soaked brown rice with different concentrations of illite solution for different durations and allowed the germination to perform analyses. Soaking the brown rice for 6 h with a germination period of 48 h was determined to be the optimal condition because of its higher sprout length. In addition, this optimal condition had improved textural characteristics such as reduced hardness, gumminess, chewiness, and cohesiveness, and it also had increased adhesiveness and stabilized resilience and springiness. The treatment solutions were free from heavy metal contaminants, whereas the mineral contents such as K, Ca, Fe, Mg, and Na were significantly increased with the increase in illite concentration. Moreover, our results showed that illite treatment could preserve the color appearance and seed germination. The ratio of essential amino acids to non-essential amino acids and antioxidants (phenolic contentγ-oryzanol, and flavonoid) of germinated brown rice was considerably increased with illite treatment. In germinated brown rice, an increase in DPPH and superoxide dismutase levels, a slight decrease in flavonoids, and no difference in polyphenol content were observed. These findings suggest that pre-soaking brown rice seeds with the appropriate concentration of illite could enhance their nutritional properties, which might attract consumers' interest to include this in their daily diet.
Collapse
Affiliation(s)
- Dong-Heun Han
- Illite Team, Economy Division, Yeongdong-gun Office, South Korea
| | - Hwa-Jin Kim
- Illite Team, Economy Division, Yeongdong-gun Office, South Korea
| | - So-Hyun Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Il-Doo Kim
- International Institute of Research and Development Kyungpook National University, Daegu, South Korea
| | - Arjun Adhikari
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Jeong-Ho Kim
- Department of Green Technology Convergence, Konkuk University, Chungcheongbuk-do, 27478, South Korea
| |
Collapse
|
8
|
Wang C, Zheng K, Wang D, Yu H, Zhao Y, Fang H, Zhang J. Effects of adding bile acids to dietary storage japonica brown rice on growth performance, meat quality, and intestinal microbiota of growing-finishing Min pigs. Front Vet Sci 2024; 11:1349754. [PMID: 38711539 PMCID: PMC11070551 DOI: 10.3389/fvets.2024.1349754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/21/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction This study investigated the effects of storage japonica brown rice (SJBR) and bile acids (BA) on the growth performance, meat quality, and intestinal microbiota of growing-finishing Min pigs. Methods A total of 24 healthy Min pigs with a similar body weight of 42.25 ± 2.13 kg were randomly divided into three groups with eight replicates of one pig each. The groups were as follows: CON (50% corn), SJBR (25% corn +25% SJBR), and SJBR + BA (25% corn +25% SJBR +0.025% hyodeoxycholic acid). The experimental period lasted from day 90 (the end of the nursery phase) to day 210 (the end of the finishing phase). Results The results showed the following: (1) Compared with the CON group, there was no significant difference in the average daily gain (ADG) and average daily feed intake (ADFI) of the SJBR and SJBR + BA groups, and the feed conversion ratio (FCR) was significantly decreased (p < 0.05). (2) Compared with the CON group, the total protein (TP) content in the serum was significantly increased, and the blood urea nitrogen (BUN) content was significantly decreased (p < 0.05) in the SJBR and SJBR + BA groups; moreover, HDL-C was significantly higher by 35% (p < 0.05) in the SJBR + BA group. (3) There were no significant differences in carcass weight, carcass length, pH, drip loss, cooking loss, and shear force among the groups; the eye muscle area was significantly increased in the SJBR group compared with the CON group (p < 0.05); back fat thickness was significantly decreased in the SJBR + BA group compared with the SJBR group (p < 0.05); and the addition of SJBR significantly increased the mRNA expression of MyHC I in the longissimus dorsi (LD) muscle of growing-finishing Min pigs (p < 0.05). (4) The cecal bacteria were detected using 16S rDNA, and the proportion of Lactobacillus was increased gradually at the genus level, but there was no significant difference among the different groups. Conclusion In conclusion, 25% SJBR can improve the growth performance and increase the abundance of intestinal beneficial bacteria, and based on this, adding bile acids can reduce the back fat thickness of growing-finishing Min pigs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Zhang
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
9
|
Song J, Lee J, Lee H, Jeong HS, Lee J, Kim Y. Protective Effects of Cereal Grain Extracts on Alcohol-Induced Hepatocyte Damage. Prev Nutr Food Sci 2024; 29:40-46. [PMID: 38576882 PMCID: PMC10987386 DOI: 10.3746/pnf.2024.29.1.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/06/2024] Open
Abstract
This study investigated the protective effects of cereal grains on alcohol-induced hepatocyte damage. Cereal grains were extracted with methanol, and their radical scavenging properties and total phenolic contents were examined. Black rice extract exhibited the highest total polyphenol content and radical scavenging capacity. Treatment with sorghum extract increased the viability of cells exposed to alcohol by up to 81.6%. All cereal grain extracts decreased reactive oxygen species and malondialdehyde production and glutathione depletion in HepG2 cells exposed to ethanol. In particular, black rice and sorghum extracts exhibited greater antioxidant effects than other cereal grains. Treatment with black rice extract increased the levels of alanine aminotransferase and aspartate aminotransferase of alcohol-exposed cells to control levels. Overall, black rice extract showed a greater protective effect compared with other cereal grains against alcohol exposure in HepG2 cells and could improve alcohol-induced liver problems.
Collapse
Affiliation(s)
- Jinhee Song
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | - Jaemin Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | - Hana Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | - Heon Sang Jeong
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | - Younghwa Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan 48434, Korea
| |
Collapse
|
10
|
Daniel IK, Njue OM, Sanad YM. Antimicrobial Effects of Plant-Based Supplements on Gut Microbial Diversity in Small Ruminants. Pathogens 2023; 13:31. [PMID: 38251338 PMCID: PMC10819137 DOI: 10.3390/pathogens13010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Every year in the United States, approximately 48 million people are affected by bacterial illnesses that are transmitted through food, leading to 3000 fatalities. These illnesses typically stem from food animals and their by-products, which may harbor dangerous pathogens like Salmonella enterica, Listeria monocytogenes, enterohemorrhagic Escherichia coli O157:H7, and Campylobacter jejuni. Factors that contribute to contamination include manure used as a soil amendment, exposure to polluted irrigation water, and contact with animals. To improve food safety, researchers are studying pre-slaughter intervention methods to eliminate bacterial contamination in live animals. While small ruminants are vital to global agriculture and income generation for small farms, traditional feeding practices involve supplements and antibiotics to boost performance, which contributes to antibiotic resistance. Hence, researchers are looking for friendly bacterial strains that enhance both animal and human health without impacting livestock productivity. The global trend is to minimize the use of antibiotics as feed supplements, with many countries prohibiting or limiting their use. The aim of this review is to provide a comprehensive insight on the antioxidant capabilities, therapeutic attributes, and applications of bioactive compounds derived from sweet potato tops (SPTs), rice bran (RB) and radish tops (RTs). This overview provides an insight on plant parts that are abundant in antioxidant and prebiotic effects and could be used as value-added products in animal feed and pharmaceutical applications. This review was based on previous findings that supplementation of basal diets with natural supplements represents a multifaceted intervention that will become highly important over time. By remarkably reducing the burden of foodborne pathogens, they apply to multiple species, are cheap, do not require withdrawal periods, and can be applied at any time in food animal production.
Collapse
Affiliation(s)
- Ian K. Daniel
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Obadiah M. Njue
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| | - Yasser M. Sanad
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
11
|
Yang X, Nabi Mandal MS, Diao H, Du J, Pu X, Li X, Yang J, Zeng Y, Li Z, Li J, Hossain A, Ali MK. Geographic differences and variation of functional components of brown rice in 690 mini-core collections from global germplasms. Heliyon 2023; 9:e23035. [PMID: 38149206 PMCID: PMC10750027 DOI: 10.1016/j.heliyon.2023.e23035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Objective To understand the geographic differences and variations in the functional components of brown rice cores collected from global rice germplasms. Methods Four functional components, γ-aminobutyric acid (GABA), resistant starch (RS), total flavonoids, and alkaloids, in brown rice from 690 mini-core collections from 31 countries from five continents and the International Rice Research Institute, were analyzed using a spectrophotometry colorimetric method, and the results were statistically validated. Conclusion The highest average amounts of functional components were obtained in Asian germplasms, except for GABA, and total flavonoids were highest in brown rice from Europe and Oceania, followed by Asia. The highest coefficient of variation for GABA was observed in Asia; that for RS and total flavonoids was observed in Africa, followed by Asia; and that for alkaloids was observed in America, followed by Asia. Overall, Asian countries were the most prominent and representative zones with the highest genotypic potential for functional components of brown rice. Forty-one rice accessions with enriched functional components originated mostly from biodiversity-rich areas in China, followed by those in the Philippines. Late sowing favored the enrichment of these components in brown rice. The current study provides a reference for rice breeding with enriched functional constituents, and guidelines for screening functional rice that could be used for human chronic disease research.
Collapse
Affiliation(s)
- Xiaomeng Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province/Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Scientific Observation Station of Rice Germplasm Resources of Yunnan, Ministry of Agriculture, Kunming, Yunnan, 650205, China
| | - Md Siddikun Nabi Mandal
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province/Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Scientific Observation Station of Rice Germplasm Resources of Yunnan, Ministry of Agriculture, Kunming, Yunnan, 650205, China
- Bangladesh Wheat and Maize Research Institute, Dinajpur, 5200, Bangladesh
| | - Henan Diao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, Heilongjiang, 164300, China
| | - Juan Du
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province/Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Scientific Observation Station of Rice Germplasm Resources of Yunnan, Ministry of Agriculture, Kunming, Yunnan, 650205, China
| | - Xiaoying Pu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province/Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Scientific Observation Station of Rice Germplasm Resources of Yunnan, Ministry of Agriculture, Kunming, Yunnan, 650205, China
| | - Xia Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province/Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Scientific Observation Station of Rice Germplasm Resources of Yunnan, Ministry of Agriculture, Kunming, Yunnan, 650205, China
| | - Jiazhen Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province/Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Scientific Observation Station of Rice Germplasm Resources of Yunnan, Ministry of Agriculture, Kunming, Yunnan, 650205, China
| | - Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province/Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Scientific Observation Station of Rice Germplasm Resources of Yunnan, Ministry of Agriculture, Kunming, Yunnan, 650205, China
| | - Zichao Li
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jianbin Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Akbar Hossain
- Bangladesh Wheat and Maize Research Institute, Dinajpur, 5200, Bangladesh
| | - Muhammad Kazim Ali
- Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
12
|
Li A, Zhang J, Wang X, Wang R, Zhang Y, Wang R, Zhu J, Xiong Q. Differences in the metabolites of brown and milled rice grains of semiwaxy and conventional japonica varieties. J Food Sci 2023; 88:5309-5323. [PMID: 37960988 DOI: 10.1111/1750-3841.16828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
In this study, we analyzed the differences in metabolites between semiwaxy japonica rice (Yangnongxiang 28 [YNX28]) and conventional japonica rice (Hongyang 5 [HY5]) before and after brown rice milling. The metabolites of brown and milled rice grains from the two rice varieties were analyzed by LC-MS-based nontargeted metabolomics. A total of 266 differentially abundant metabolites (DMs) were tentatively identified in brown rice grains of YNX28 (YNX28B) compared with milled rice grains of YNX28 (YNX28H), and these included 248 upregulated and 12 downregulated DMs. A total of 273 (234 upregulated and 39 downregulated) DMs were tentatively identified in brown rice grains of HY5 (HY5B) compared with milled rice grains of this variety (HY5H). Kyoto Encyclopedia of Genes and Genomes pathway involved and enrichment analyses revealed that 53 and 7 metabolite pathways were enriched and significantly enriched (p < 0.05), respectively, in the DMs identified in YNX28B compared with YNX28H, and the main enriched pathways were related to starch and sucrose metabolism, glycerol phospholipid metabolism, arginine and proline metabolism, and glycine, serine and threonine metabolism. Forty-six metabolite pathways were enriched in DMs identified in HY5B compared with HY5H, and these included 16 pathways that were significantly enriched (p < 0.05); in addition, the main enriched pathways were related to starch and sucrose metabolism, glycerol phospholipid metabolism, arginine and proline metabolism, and glycine, serine and threonine metabolism. This study provides a theoretical reference for further on the changes in metabolites during rice processing and provides a basis for improving the nutritional quality in rice. PRACTICAL APPLICATION: Original data were obtained regarding the changes of different metabolites in semiwaxy japonica rice and conventional japonica rice before and after processing. The purpose of this study was to investigate the difference of metabolite loss in two rice varieties before and after processing. This paper reports on the differences of metabolites between the two types of japonica rice before and after processing, as well as the changes of key metabolites before and after processing, it also provides important theoretical basis for developing new rice varieties with good nutritional quality.
Collapse
Affiliation(s)
- Ao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Jiao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Xiaoyu Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Ruizhi Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Runnan Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Jinyan Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Qiangqiang Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Maiti S, Banik A. Strategies to fortify the nutritional values of polished rice by implanting selective traits from brown rice: A nutrigenomics-based approach. Food Res Int 2023; 173:113271. [PMID: 37803581 DOI: 10.1016/j.foodres.2023.113271] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
Whole-grain cereals are important components of a healthy diet. It reduces the risk of many deadly diseases like cardiovascular diseases, diabetes, cancer, etc. Brown rice is an example of whole grain food, which is highly nutritious due to the presence of various bioactive compounds (flavonoids, phenolics, vitamins, phytosterols, oils, etc.) associated with the rice bran layer of brown rice. White rice is devoid of the nutritious rice bran layer and thus lacks the bioactive compounds which are the major attractants of brown rice. Therefore, to confer health benefits to the public at large, the nutrigenomic potential of white rice may be improved by integrating the phytochemicals associated with the rice bran layer of brown rice into it via biofortification processes like conventional breeding, agronomic practices, metabolic engineering, CRISPR/Cas9 technology, and RNAi techniques. Thus, this review article focuses on improving the nutritional qualities of white/polished rice through biofortification processes, utilizing new breeding technologies (NBTs).
Collapse
Affiliation(s)
- Somdatta Maiti
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Avishek Banik
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
14
|
Beaulieu JC, Boue SM, Goufo P. Health-promoting germinated rice and value-added foods: a comprehensive and systematic review of germination effects on brown rice. Crit Rev Food Sci Nutr 2023; 63:11570-11603. [PMID: 35816149 DOI: 10.1080/10408398.2022.2094887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the last 30 years, thousands of articles have appeared examining the effects of soaking and germinating brown rice (BR). Variable germination conditions and methods have been employed to measure different health-beneficial parameters in a diverse germplasm of BR. Research results may therefore appear inconsistent with occasional anomalies, and it may be difficult to reach consensus concerning expected trends. Herein, we amassed a comprehensive review on germinated brown rice (GBR), attempting to codify 133 peer-reviewed articles regarding the effects on 164 chemical parameters related to health and nutrition in BR and in value-added food products. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-2020) approach was used to direct the flow of the literature search. A pair-wise comparison t-test was performed to deliver an overall approach indicating when a given compound has been found to significantly increase or decrease through germination, which was grouped into GABA and polyamines, γ-Oryzanol and phytosterols, phenolic compounds, vitamins, proteins and amino acids, starchy carbohydrates, free sugars, lipids, minerals and phytic acid. This resource will stimulate interest in germinating rice and optimistically help increase both production and consumption of highly nutritious, health-beneficial rice with pigmented bran.
Collapse
Affiliation(s)
- John C Beaulieu
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Stephen M Boue
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Piebiep Goufo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
15
|
He B, Shi J, Liu K, Cheng J, Wang W, Wang Y, Li A. Evaluation of the Available Energy Value and Amino Acid Digestibility of Brown Rice Stored for 6 Years and Its Application in Pig Diets. Animals (Basel) 2023; 13:3381. [PMID: 37958136 PMCID: PMC10649413 DOI: 10.3390/ani13213381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Long-term storage may reduce the nutritional quality of brown rice, so the present study aimed to evaluate the nutritional values of long-term-stored nutrition in pig diets. In Exp. 1, 18 Landrace × Yorkshire (L × Y) barrows with an initial body weight (IBW) of 25.48 ± 3.21 kg were randomly assigned to three treatments, including a corn-based diet, one-year-stored brown rice (BR1) diet, and six-year-stored brown rice (BR6) diet, to determine the digestible energy (DE) and metabolizable energy (ME) values of stored brown rice. In Exp. 2, 24 barrows (L × Y; IBW: 22.16 ± 2.42 kg) fixed with ileal T-cannula were randomly allotted to four dietary treatments, including a corn diet, two stored brown rice diets, and a nitrogen-free diet, to evaluate the amino acid (AA) digestibility of the stored brown rice. In Exp. 3 and 4, 108 crossbred weaned piglets (L × Y; IBW: 9.16 ± 0.89 kg) and 90 crossbred growing pigs (L × Y; IBW: 48.28 ± 3.51 kg) were allotted to three treatment diets, including a control diet and two stored brown rice diets, respectively, to investigate the application of stored brown rice in weaned piglets and fully grown pig diets. The results indicated that there was no significant difference in the DE and ME values between corn and stored brown rice (p > 0.05), while the apparent ileal digestibility (AID) of arginine, histidine, asparagine + aspartic acid (Asx), and the standardized ileal digestibility (SID) of arginine and histidine were higher in the stored brown rice diet compared to the corn diet (p < 0.05). Compared to the corn, the stored brown rice showed no significant effects on growth performance, nutrient-apparent total tract digestibility (ATTD), and serum biochemical indices (p > 0.05) but showed decreased activity in the various digestive enzymes in the duodenum, jejunum, and ileum of the weaned piglets (p < 0.05). Also, the stored brown rice diet showed no significant effects on growth performance, carcass traits, meat quality, as well as the fatty acid profiles in the longissimus dorsi muscle of fully grown pigs compared with the corn diet (p > 0.05). In conclusion, the brown rice stored for 6 years under good conditions had no obvious changes in the available energy and nutrient values. Although it may reduce digestive enzyme activity in the small intestines of the piglets, the stored brown rice showed no obvious adverse effects on growth performance and meat quality and can be effectively used in pig diets.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongwei Wang
- Institute of Grain Quality and Nutrition, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (B.H.); (J.S.); (K.L.); (J.C.); (W.W.)
| | - Aike Li
- Institute of Grain Quality and Nutrition, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (B.H.); (J.S.); (K.L.); (J.C.); (W.W.)
| |
Collapse
|
16
|
Kobayashi K, Wang X, Wang W. Genetically Modified Rice Is Associated with Hunger, Health, and Climate Resilience. Foods 2023; 12:2776. [PMID: 37509868 PMCID: PMC10379675 DOI: 10.3390/foods12142776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
While nearly one in nine people in the world deals with hunger, one in eight has obesity, and all face the threat of climate change. The production of rice, an important cereal crop and staple food for most of the world's population, faces challenges due to climate change, the increasing global population, and the simultaneous prevalence of hunger and obesity worldwide. These issues could be addressed at least in part by genetically modified rice. Genetic engineering has greatly developed over the century. Genetically modified rice has been approved by the ISAAA's GM approval database as safe for human consumption. The aim behind the development of this rice is to improve the crop yield, nutritional value, and food safety of rice grains. This review article provides a summary of the research data on genetically modified rice and its potential role in improving the double burden of malnutrition, primarily through increasing nutritional quality as well as grain size and yield. It also reviews the potential health benefits of certain bioactive components generated in genetically modified rice. Furthermore, this article discusses potential solutions to these challenges, including the use of genetically modified crops and the identification of quantitative trait loci involved in grain weight and nutritional quality. Specifically, a quantitative trait locus called grain weight on chromosome 6 has been identified, which was amplified by the Kasa allele, resulting in a substantial increase in grain weight and brown grain. An overexpressing a specific gene in rice, Oryza sativa plasma membrane H+-ATPase1, was observed to improve the absorption and assimilation of ammonium in the roots, as well as enhance stomatal opening and photosynthesis rate in the leaves under light exposure. Cloning research has also enabled the identification of several underlying quantitative trait loci involved in grain weight and nutritional quality. Finally, this article discusses the increasing threats of climate change such as methane-nitrous oxide emissions and global warming, and how they may be significantly improved by genetically modified rice through modifying a water-management technique. Taken together, this comprehensive review will be of particular importance to the field of bioactive components of cereal grains and food industries trying to produce high-quality functional cereal foods through genetic engineering.
Collapse
Affiliation(s)
- Kaori Kobayashi
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA
| | - Xiaohui Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Weiqun Wang
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
17
|
Jung SM, Kaur A, Amen RI, Oda K, Rajaram S, Sabatè J, Haddad EH. Effect of the Fermented Soy Q-CAN ® Product on Biomarkers of Inflammation and Oxidation in Adults with Cardiovascular Risk, and Canonical Correlations between the Inflammation Biomarkers and Blood Lipids. Nutrients 2023; 15:3195. [PMID: 37513613 PMCID: PMC10383246 DOI: 10.3390/nu15143195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Systemic low-grade inflammation plays a key role in the development of cardiovascular disease (CVD) but the process may be modulated by consuming fermented soy foods. Here, we aim to evaluate the effect of a fermented soy powder Q-CAN® on inflammatory and oxidation biomarkers in subjects with cardiovascular risk. In a randomized crossover trial, 27 adults (mean age ± SD, 51.6 ± 13.5 y) with a mean BMI ± SD of 32.3 ± 7.3 kg/m2 consumed 25 g daily of the fermented soy powder or an isoenergic control powder of sprouted brown rice for 12 weeks each. Between-treatment results showed a 12% increase in interleukin-1 receptor agonist (IL-1Ra) in the treatment group, whereas within-treatment results showed 23% and 7% increases in interleukin-6 (IL-6) and total antioxidant status (TAS), respectively. The first canonical correlation coefficient (r = 0.72) between inflammation markers and blood lipids indicated a positive association between high-sensitivity C-reactive protein (hsCRP) and IL-1Ra with LDL-C and a negative association with HDL-C that explained 62% of the variability in the biomarkers. These outcomes suggest that blood lipids and inflammatory markers are highly correlated and that ingestion of the fermented soy powder Q-CAN® may increase IL-1Ra, IL-6, and TAS in individuals with CVD risk factors.
Collapse
Affiliation(s)
- Sarah M Jung
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
- Rongxiang Xu College of Health and Human Services, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Amandeep Kaur
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Rita I Amen
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Keiji Oda
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Sujatha Rajaram
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Joan Sabatè
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ella H Haddad
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
18
|
Hasan M, Quan NV, Anh LH, Khanh TD, Xuan TD. Salinity Treatments Promote the Accumulations of Momilactones and Phenolic Compounds in Germinated Brown Rice. Foods 2023; 12:2501. [PMID: 37444239 DOI: 10.3390/foods12132501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
This is the first investigation, conducted in a completely randomized design (CRD), to determine the effects of different salinity levels (75 and 150 mM) and germination periods (3, 4, and 5 days) on momilactone and phenolic accumulations in germinated brown rice (GBR) var. Koshihikari. Particularly, the identification of bioactive compounds was confirmed using electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy (1H and 13C). Momilactone A (MA) and momilactone B (MB) amounts were determined by ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS), whereas other compounds were quantified by spectrophotometry and high-performance liquid chromatography (HPLC). Accordingly, GBR under B2 treatment (75 mM salinity for 4 days) showed the greatest total phenolic and flavonoid contents (14.50 mg gallic acid and 11.06 mg rutin equivalents, respectively, per g dry weight). GBR treated with B2 also accumulated the highest quantities of MA, MB, ρ-coumaric, ferulic, cinnamic, salicylic acids, and tricin (18.94, 41.00, 93.77, 139.03, 46.05, 596.26, and 107.63 µg/g DW, respectively), which were consistent with the strongest antiradical activities in DPPH and ABTS assays (IC50 = 1.58 and 1.78 mg/mL, respectively). These findings have implications for promoting the value of GBR consumption and rice-based products that benefit human health.
Collapse
Affiliation(s)
- Mehedi Hasan
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
| | - Nguyen Van Quan
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
| | - La Hoang Anh
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
| | - Tran Dang Khanh
- Agricultural Genetics Institute, Pham Van Dong Street, Hanoi 122000, Vietnam
- Center for Agricultural Innovation, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
| | - Tran Dang Xuan
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
| |
Collapse
|
19
|
Prasad C T M, Kodde J, Angenent GC, Hay FR, McNally KL, Groot SPC. Identification of the rice Rc gene as a main regulator of seed survival under dry storage conditions. PLANT, CELL & ENVIRONMENT 2023; 46:1962-1980. [PMID: 36891587 DOI: 10.1111/pce.14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 05/04/2023]
Abstract
Seed deterioration during storage results in poor germination, reduced vigour, and non-uniform seedling emergence. The aging rate depends on storage conditions and genetic factors. This study aims to identify these genetic factors determining the longevity of rice (Oryza sativa L.) seeds stored under experimental aging conditions mimicking long-term dry storage. Genetic variation for tolerance to aging was studied in 300 Indica rice accessions by storing dry seeds under an elevated partial pressure of oxygen (EPPO) condition. A genome-wide association analysis identified 11 unique genomic regions for all measured germination parameters after aging, differing from those previously identified in rice under humid experimental aging conditions. The significant single nucleotide polymorphism in the most prominent region was located within the Rc gene, encoding a basic helix-loop-helix transcription factor. Storage experiments using near-isogenic rice lines (SD7-1D (Rc) and SD7-1d (rc) with the same allelic variation confirmed the role of the wildtype Rc gene, providing stronger tolerance to dry EPPO aging. In the seed pericarp, a functional Rc gene results in accumulation of proanthocyanidins, an important sub-class of flavonoids having strong antioxidant activity, which may explain the variation in tolerance to dry EPPO aging.
Collapse
Affiliation(s)
- Manjunath Prasad C T
- Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
- Department of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jan Kodde
- Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Gerco C Angenent
- Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Fiona R Hay
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | | - Steven P C Groot
- Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
20
|
Zhang D, Huang S, Wang Q, Shang B, Liu J, Xing X, Hong Y, Liu H, Duan X, Sun H. Lipidomics and volatilomics reveal the changes in lipids and their volatile oxidative degradation products of brown rice during accelerated aging. Food Chem 2023; 421:136157. [PMID: 37099952 DOI: 10.1016/j.foodchem.2023.136157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023]
Abstract
Brown rice exhibits higher nutritional value and attracts more and more attentions; however, lipid alteration in brown rice during aging is poorly understood. In this study, lipidomics and volatilomics were employed to investigate free fatty acids, triglycerides, and volatile oxidative degradation products of lipids in brown rice during accelerated aging for 70 days. The results showed that the total free fatty acids in brown rice increased significantly (2.90-4.14 times) while triglycerides decreased remarkably at the initial stage of aging. Monounsaturated and polyunsaturated aldehydes, ketones, and acids increased obviously in brown rice during accelerated aging for 70 days. The screening of significantly different compounds indicated that the enzymatic hydrolysis of triglycerides (EHT) and enzymatic oxidation of lipids (EOL) were the main biochemical behaviors at the initial stage of aging (0-28 day) while automatic oxidation of lipids (AOL) was the primary chemical reaction for 28-70 days aging.
Collapse
Affiliation(s)
- Dong Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Shanshan Huang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qian Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Bo Shang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Jianlei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiaoting Xing
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yu Hong
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Hui Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiaoliang Duan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Hui Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| |
Collapse
|
21
|
Ma Y, Zhang S, Feng D, Duan N, Rong L, Wu Z, Shen Y. Effect of different doses of nitrogen fertilization on bioactive compounds and antioxidant activity of brown rice. Front Nutr 2023; 10:1071874. [PMID: 36819670 PMCID: PMC9936061 DOI: 10.3389/fnut.2023.1071874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Brown rice as a whole grain food is associated with various chronic diseases' reduced risks. In this study, the effects of different doses of nitrogen fertilization (0, 160, 210, 260, 315, and 420 kg N/ 100 m2) on bioactive compounds and antioxidant activity of brown rice (yanfeng47) were investigated. At nitrogen level of 210-260 kg N/100 m2, the content of TFC (302.65 mg/100 g), β-sitosterol (1762.92 mg/100 g), stigmasterol (1358.735 mg/100 g), DPPH (74.57%), and OH free radical scavenging (74.19%) was the highest. The major phenolic acid was p-hydroxybenzoic acid. There were significant positive linear relationships between TFC (0.872, 0.843), β-sitosterol (0.896, 0.657), stigmasterol (0.543, 0.771), p-hydroxybenzoic acid (0.871, 0.875), and DPPH, OH antioxidant activity. These indicated that TFC and phytosterols were the most important components in brown rice that had strong antioxidant activity. Composite score of principal components indicated 210 Kg N/100 m2 exhibited a more ideal dose of nitrogen for nutritional composition and antioxidant activity of brown rice.
Collapse
Affiliation(s)
- Yichao Ma
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Shuang Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Daguang Feng
- College of Science, Shenyang Agricultural University, Shenyang, China
| | - Nuoqi Duan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Liyan Rong
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China,*Correspondence: Zhaoxia Wu,
| | - Yixiao Shen
- College of Food Science, Shenyang Agricultural University, Shenyang, China,Yixiao Shen,
| |
Collapse
|
22
|
Pasion EA, Misra G, Kohli A, Sreenivasulu N. Unraveling the genetics underlying micronutrient signatures of diversity panel present in brown rice through genome-ionome linkages. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:749-771. [PMID: 36573652 PMCID: PMC10952705 DOI: 10.1111/tpj.16080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Rice (Oryza sativa) is an important staple crop to address the Hidden Hunger problem not only in Asia but also in Africa where rice is fast becoming an important source of calories. The brown rice (whole grain with bran) is known to be more nutritious due to elevated mineral composition. The genetics underlying brown rice ionome (sum total of such mineral composition) remains largely unexplored. Hence, we conducted a comprehensive study to dissect the genetic architecture of the brown rice ionome. We used genome-wide association studies, gene set analysis, and targeted association analysis for 12 micronutrients in the brown rice grains. A diverse panel of 300 resequenced indica accessions, with more than 1.02 million single nucleotide polymorphisms, was used. We identified 109 candidate genes with 5-20% phenotypic variation explained for the 12 micronutrients and identified epistatic interactions with multiple micronutrients. Pooling all candidate genes per micronutrient exhibited phenotypic variation explained values ranging from 11% to almost 40%. The key donor lines with larger concentrations for most of the micronutrients possessed superior alleles, which were absent in the breeding lines. Through gene regulatory networks we identified enriched functional pathways for central regulators that were detected as key candidate genes through genome-wide association studies. This study provided important insights on the ionome variations in rice, on the genetic basis of the genome-ionome relationships and on the molecular mechanisms underlying micronutrient signatures.
Collapse
Affiliation(s)
| | - Gopal Misra
- International Rice Research InstituteLos BañosLaguna4030Philippines
| | - Ajay Kohli
- International Rice Research InstituteLos BañosLaguna4030Philippines
| | | |
Collapse
|
23
|
Gruneck L, Marriott LK, Gentekaki E, Kespechara K, Sharpton TJ, Denny J, Shannon J, Popluechai S. A Non-Randomized Trial Investigating the Impact of Brown Rice Consumption on Gut Microbiota, Attention, and Short-Term Working Memory in Thai School-Aged Children. Nutrients 2022; 14:5176. [PMID: 36501207 PMCID: PMC9738792 DOI: 10.3390/nu14235176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
While dietary fiber has been shown to influence the composition of gut microbiota and cognitive function in adults, much less is known about the fiber-microbiome-cognition association in children. We profiled gut microbiota using quantitative PCR (qPCR) and evaluated cognitive function using the Corsi block-tapping test (CBT) and the psychomotor vigilance test (PVT) before, during, and after the dietary intervention of 127 school-aged children in northern Thailand. While we found that Sinlek rice (SLR) consumption did not significantly alter the abundance of gut microbiota or the cognitive performance of school-aged children, we did find age to be associated with variations in both the gut microbiota profiles and cognitive outcomes. Gammaproteobacteria was significantly lower in the control and SLR groups during the middle time points of both phases (Weeks 4 and 61), and its abundance was associated with age. Cognitive performance using CBT and PVT were also found to be age-sensitive, as older children outperformed younger children on both of these cognitive assessments. Finally, a multiple factor analysis (MFA) revealed that age and cognitive performance best explain individual variation in this study. Collectively, these findings further describe the influence of host variables on the microbial profiles and cognitive outcomes of school-aged children consuming Sinlek rice in Thailand.
Collapse
Affiliation(s)
- Lucsame Gruneck
- Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
| | - Lisa K. Marriott
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR 97201, USA
| | - Eleni Gentekaki
- Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
| | | | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
| | - Justin Denny
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jackilen Shannon
- Division of Oncologic Sciences, Oregon Health & Science University, Portland, OR 97331, USA
| | - Siam Popluechai
- Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
| |
Collapse
|
24
|
Wei S, Wang N, Huang X, Xu G, Xu X, Xu D, Jin Y, Yang N, Wu F. Effect of germination on the quality characteristics and volatile compounds of fermented brown rice cake. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Traditional rice-based fermented products: Insight into their probiotic diversity and probable health benefits. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Improving the eating quality of brown rice by defatting combined with hydrothermal treatment. Food Res Int 2022; 162:112020. [DOI: 10.1016/j.foodres.2022.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/23/2022]
|
27
|
Formulation of germinated brown rice fermented products functionalized by probiotics. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Wu SJ, Li KJ, Tsai MH, Ng LT. Comparative effects of black pigmented and non-pigmented brown rice on hypolipidemic activity and their mechanisms of action in high fat diet-induced hamsters. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Ed Nignpense B, Latif S, Francis N, Blanchard C, Santhakumar AB. The impact of simulated gastrointestinal digestion on the bioaccessibility and antioxidant activity of purple rice phenolic compounds. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Fukui M, Islam MZ, Lai HM, Kitamura Y, Kokawa M. Effects of roasting on storage degradability and processing suitability of brown rice powder. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Widely-Targeted Metabolic Profiling in Lycium barbarum Fruits under Salt-Alkaline Stress Uncovers Mechanism of Salinity Tolerance. Molecules 2022; 27:molecules27051564. [PMID: 35268665 PMCID: PMC8911562 DOI: 10.3390/molecules27051564] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Wolfberry (Lycium barbarum L.) is an important economic crop widely grown in China. The effects of salt-alkaline stress on metabolites accumulation in the salt-tolerant Ningqi1 wolfberry fruits were evaluated across 12 salt-alkaline stress gradients. The soil pH, Na+, K+, Ca2+, Mg2+, and HCO3− contents decreased at a gradient across the salt-alkaline stress gradients. Based on the widely-targeted metabolomics approach, we identified 457 diverse metabolites, 53% of which were affected by salt-alkaline stress. Remarkably, soil salt-alkaline stress enhanced metabolites accumulation in wolfberry fruits. Amino acids, alkaloids, organic acids, and polyphenols contents increased proportionally across the salt-alkaline stress gradients. In contrast, nucleic acids, lipids, hydroxycinnamoyl derivatives, organic acids and derivatives and vitamins were significantly reduced by high salt-alkaline stress. A total of 13 salt-responsive metabolites represent potential biomarkers for salt-alkaline stress tolerance in wolfberry. Specifically, we found that constant reductions of lipids and chlorogenic acids; up-regulation of abscisic acid and accumulation of polyamines are essential mechanisms for salt-alkaline stress tolerance in Ningqi1. Overall, we provide for the first time some extensive metabolic insights into salt-alkaline stress tolerance and key metabolite biomarkers which may be useful for improving wolfberry tolerance to salt-alkaline stress.
Collapse
|
32
|
Kim S, Cho JH, Kim HB, Song M. Evaluation of brown rice to replace corn in weanling pig diet. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:1344-1354. [PMID: 34957448 PMCID: PMC8672259 DOI: 10.5187/jast.2021.e112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/20/2022]
Abstract
This study was conducted to evaluate the effects of brown rice
(Japonica) on growth performance, nutrient digestibility,
and blood parameters of weanling pigs. A total of 60 weanling pigs (28-day-old,
30 barrows and 30 gilts, 6.73 ± 0.77 kg body weight [BW]) were randomly
allotted to 2 dietary treatments (6 pigs per pen; 5 replicates per treatment) in
a randomized complete block design with the initial BW and sex as blocks. The
dietary treatments were a typical nursery diet based on corn and soybean meal
(CON) and the CON replaced 50% of corn with brown rice (BR). Pigs were fed
respective dietary treatments for 5 weeks. For the last week of experiment
period, pigs were fed respective dietary treatments containing 0.2% chromic
oxide as an indigestible marker. Fecal samples were collected from randomly
selected 1 pig in each pen daily for the last 3 d after the 4-d adjustment
period. Blood was collected from randomly selected 1 pig in each pen on d 0, 3,
7, and 14 after weaning. Compared with pig fed CON diet, pigs fed the BR diet
were found to have higher (p < 0.05) final BW, overall
average daily gain, and apparent ileal digestibility (AID) and apparent total
tract digestibility (ATTD) of dry matter and energy. However, there were no
significant differences between the groups with respect to average daily feed
intake, gain to feed ratio, frequency of diarrhea, and the AID and ATTD of crude
protein during overall experimental period. Similarly, there were no significant
differences on blood parameters between the groups. Thus, the findings of this
study indicate that brown rice (Japonica) can be used to
replace 50% of corn in the diet of pigs during the nursery period without
negatively affecting growth performance, nutrient digestibility, or blood
parameters.
Collapse
Affiliation(s)
- Sheena Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Jin Ho Cho
- Division of Food and Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
33
|
Sapwarobol S, Saphyakhajorn W, Astina J. Biological Functions and Activities of Rice Bran as a Functional Ingredient: A Review. Nutr Metab Insights 2021; 14:11786388211058559. [PMID: 34898989 PMCID: PMC8655829 DOI: 10.1177/11786388211058559] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Rice bran (RB) is a nutrient-rich by-product of the rice milling process. It consists of pericarp, seed coat, nucellus, and aleurone layer. RB is a rich source of a protein, fat, dietary fibers, vitamins, minerals, and phytochemicals (mainly oryzanols and tocopherols), and is currently mostly used as animal feed. Various studies have revealed the beneficial health effects of RB, which result from its functional components including dietary fiber, rice bran protein, and gamma-oryzanol. The health effects of RB including antidiabetic, lipid-lowering, hypotensive, antioxidant, and anti-inflammatory effects, while its consumption also improves bowel function. These health benefits have drawn increasing attention to RB in food applications and as a nutraceutical product to mitigate metabolic risk factors in humans. This review therefore focuses on RB and its health benefits.
Collapse
Affiliation(s)
- Suwimol Sapwarobol
- The Medical Food Research Group, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Weeraya Saphyakhajorn
- Graduate Program in Food and Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Junaida Astina
- Graduate Program in Food and Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
34
|
Bhar S, Bose T, Dutta A, Mande SS. A perspective on the benefits of consumption of parboiled rice over brown rice for glycaemic control. Eur J Nutr 2021; 61:615-624. [PMID: 34613432 DOI: 10.1007/s00394-021-02694-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE Rice is a staple food for over 3.5 billion people worldwide. The nutritional content of rice varies with different post-harvest processing techniques. Major varieties include brown rice (BR), white rice (WR) and parboiled rice (PBR). While consumption of BR is advocated due to its higher nutritional content compared to other varieties, some studies have indicated lower post-prandial blood glucose (PPBG) levels when PBR is consumed. This apparent benefit of PBR consumption is not well publicised and no commentaries on underlying mechanisms are available in literature. METHODS In this review, we looked into differential nutrient content of PBR, as compared to BR and WR, and tried to understand how their consumption could be associated with glycaemic control. Various roles played by these nutrients in mechanisms of insulin secretion, insulin resistance, nutrient absorption and T2DM-associated inflammation were reviewed from literature-based evidence. RESULTS We report differential nutritional factors in PBR, with respect to BR (and WR), such as higher calcium and selenium content, lower phytic acids, and enriched vitamin B6 which might aid PBR's ability to provide better glycaemic control than BR. CONCLUSION Our interpretation of reviewed literature leads us to suggest the possible benefits of PBR consumption in glycaemic control and its inclusion as the preferred rice variant in diets of T2DM patients and at-risk individuals.
Collapse
Affiliation(s)
- Subhrajit Bhar
- TCS Research, Tata Consultancy Services Ltd, 54-B Hadapsar Industrial Estate, Pune, 411 013, India
| | - Tungadri Bose
- TCS Research, Tata Consultancy Services Ltd, 54-B Hadapsar Industrial Estate, Pune, 411 013, India
| | - Anirban Dutta
- TCS Research, Tata Consultancy Services Ltd, 54-B Hadapsar Industrial Estate, Pune, 411 013, India.
| | - Sharmila S Mande
- TCS Research, Tata Consultancy Services Ltd, 54-B Hadapsar Industrial Estate, Pune, 411 013, India.
| |
Collapse
|
35
|
Chumsri P, Chaijan M, Panpipat W. A comparison of nutritional values, physicochemical features and
in vitro
bioactivities of Southern Thai short‐grain brown rice with commercial long‐grain varieties. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Paramee Chumsri
- Food Technology and Innovation Research Centre of Excellence Department of Food Industry School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat Thailand
| | - Manat Chaijan
- Food Technology and Innovation Research Centre of Excellence Department of Food Industry School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat Thailand
| | - Worawan Panpipat
- Food Technology and Innovation Research Centre of Excellence Department of Food Industry School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat Thailand
| |
Collapse
|
36
|
Wu H, Nakamura T, Guo Y, Hirooka M, Zhang G, Munemasa S, Murata Y, Fujita A, Nakamura Y. White rice ethanol extract is qualitatively, but not quantitatively, equivalent to that of brown rice as an antioxidant source. Biosci Biotechnol Biochem 2021; 85:2161-2168. [PMID: 34279597 DOI: 10.1093/bbb/zbab133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/08/2021] [Indexed: 12/23/2022]
Abstract
The purpose of this study is to compare the potentials to exhibit biologically active antioxidant actions between white rice (WR) and brown rice (BR) in in vitro assays and a cellular model. The Trolox equivalent (TE) per 1 mg ethanol extract of WR for the 1,1-diphenyl-2-picrylhydrazyl assay was slightly higher than that of BR, whereas the TE per 1 g whole WR was much lower than that for BR. This tendency was very comparable to those for the oxygen radical absorbance capacity and total polyphenol content. Both of the ethanol extracts also similarly suppressed the hydrogen peroxide-induced cytotoxicity and enhanced the gene expression of drug-metabolizing enzymes. Based on the α-tocopherol quantity, its contribution to the cytoprotective effect of the rice extracts is very limited. Taken together, the ethanol extract of WR might be a qualitatively, but not quantitatively, equivalent source of antioxidative phytochemicals to that of BR.
Collapse
Affiliation(s)
- Hongyan Wu
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yingnan Guo
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Miho Hirooka
- Faculty of Agriculture, Okayama University, Okayama, Japan
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Akiko Fujita
- Laboratory of Taste Analysis, Engineering Division, Satake Corporation, Higashi-Hiroshima, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
37
|
Oppong D, Panpipat W, Chaijan M. Chemical, physical, and functional properties of Thai indigenous brown rice flours. PLoS One 2021; 16:e0255694. [PMID: 34343208 PMCID: PMC8330919 DOI: 10.1371/journal.pone.0255694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022] Open
Abstract
Thai indigenous brown rice flours from Nakhon Si Thammarat, Thailand, namely Khai Mod Rin (KMRF) and Noui Khuea (NKRF), were assessed for quality aspects in comparison with brown Jasmine rice flour (JMRF) and commercial rice flour (CMRF) from Chai Nat 1 variety. All the rice flours had different chemical composition, physical characteristic, and techno-functionality. The KMRF, NKRF, and JMRF were classified as a low amylose type (19.56-21.25% dw). All rice flours had low total extractable phenolic content (0.1-0.3 mg GAE/g dw) with some DPPH● scavenging activity (38.87-46.77%). The variations in the bulk density (1.36-1.83 g/cm3), water absorption capacity (0.71-1.17 g/g), solubility (6.93-13.67%), oil absorption capacity (1.39-2.49 g/g), and swelling power (5.71-6.84 g/g) were noticeable. The least gelation concentration ranged from 4.0 to 8.0% where KMRF was easier to form gel than JMRF, and NKRF/CMRF. The foam capacity of the flours was relatively low (1.30-2.60%). The pasting properties differed among rice flours and the lowest pasting temperature was observed in CMRF. Overall, the chemical, physical, functional, and pasting qualities of flours were substantially influenced by rice variety. The findings offered fundamental information on Thai indigenous rice flour that can be used in food preparations for specific uses.
Collapse
Affiliation(s)
- David Oppong
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| |
Collapse
|
38
|
Demeekul K, Sukumolanan P, Bootcha R, Panprom C, Petchdee S. A Cardiac Protection of Germinated Brown Rice During Cardiopulmonary Bypass Surgery and Simulated Myocardial Ischemia. J Inflamm Res 2021; 14:3307-3319. [PMID: 34290516 PMCID: PMC8289443 DOI: 10.2147/jir.s321241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The potential cardio-protective property of germinated brown rice (GBR) has been revealed by ameliorating risk factors related to cardiovascular diseases. This study hypothesized that the combination of GBR and cardioplegic solution could protect the cardiomyocytes exposed to simulated ischemic reperfusion injury in vitro study and preserve cardiac function during cardiopulmonary bypass surgery in animal models. Methods Primary porcine cardiomyocytes were isolated and experimented cell viability against simulated ischemic reperfusion injury. In a cardiac surgical animal model, six pigs were randomly assigned to receive the two types of cardioplegic solution: i) St. Thomas cardioplegic solution (20 cc/kg); and ii) St. Thomas cardioplegic solution plus GBR (1 mg/kg). During open-heart surgery, the aorta was cross-clamped for 20 minutes, followed by reperfusion for 1 hour. Cardiopulmonary bypass parameters were recorded until the end of the procedure. Furthermore, hemodynamic parameters and arterial blood gas characteristics of animals among groups were monitored at different time points, including baseline before cardiopulmonary bypass (T1), during cardiopulmonary bypass (T2), during aortic clamp on (T3), and aortic clamp off (T4). Results Primarily, GBR cotreatment with cardioplegic solution essentially resulted in the improvement of cell viability in primary porcine cardiomyocytes against simulated ischemic reperfusion induction. The findings from cardiac surgery demonstrated that mean arterial pressure and heart rate are constantly stable in cardioplegic solution combined with the GBR group, while the trend of potassium and lactase concentration was decreased in the animals receiving GBR group. Consistently, all parameters from arterial blood gas showed better outcomes in animals receiving GBR; however, there were no statistically significant differences between groups, except hepatic enzymes. Conclusion Therefore, GBR might exert cardio-protective effects against ischemic reperfusion injury in the porcine cardiac surgery model due to anti-inflammatory response. These protective actions of GBR may explain the benefits gained from applying GBR products as a possible therapeutic supplement on cardiac diseases.
Collapse
Affiliation(s)
- Kanokwan Demeekul
- Graduate School, Program of Bio-Veterinary Science, Kasetsart University, Kamphaeng Saen, Nakorn Pathom, Thailand
| | - Pratch Sukumolanan
- Veterinary Clinical Study Program, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakorn Pathom, Thailand
| | - Ratikorn Bootcha
- Kasetsart University Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kamphaeng Saen, Nakorn Pathom, Thailand
| | - Chattida Panprom
- Kasetsart University Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kamphaeng Saen, Nakorn Pathom, Thailand
| | - Soontaree Petchdee
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, KamphaengSaen Campus, Kamphaeng Saen, Thailand
| |
Collapse
|
39
|
Kasote D, Sreenivasulu N, Acuin C, Regina A. Enhancing health benefits of milled rice: current status and future perspectives. Crit Rev Food Sci Nutr 2021; 62:8099-8119. [PMID: 34036858 DOI: 10.1080/10408398.2021.1925629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Milled rice is an essential part of the regular diet for approximately half of the world's population. Its remarkable commercial value and consumer acceptance are mostly due to its promising cooking qualities, appealing sensory properties, and longer shelf life. However, the significant loss of the nutrient-rich bran layer during milling makes it less nutritious than the whole grain. Thus, enhancing the nutritive value of milled rice is vital in improving the health and wellbeing of rice consumers, particularly for those residing in the low-economic zones where rice is the primary source of calories and nutrition. This article provides a critical review on multiple frontiers of recent interventions, such as (1) infusing the genetic diversity to enrich amylose and resistant starch to reduce glycaemic index, (2) enhancing the minerals and vitamins through complementary fortification and biofortification as short and long-term interventions, and (3) developing transgenic solutions to improve the nutrient levels of milled rice. Additionally, the review highlights the benefits of functional ingredients of milled rice to human health and the potential of enhancing them in rice to address the triple burden of malnutrition. The potential merit of milled rice concerning food safety is also reviewed in this article.
Collapse
Affiliation(s)
- Deepak Kasote
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI), South Asia Regional Centre, Varanasi, Uttar Pradesh (U.P.), India
| | - Nese Sreenivasulu
- Rice Breeding and Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Cecilia Acuin
- Rice Breeding and Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Ahmed Regina
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI), South Asia Regional Centre, Varanasi, Uttar Pradesh (U.P.), India
| |
Collapse
|
40
|
Golzarand M, Toolabi K, Eskandari Delfan S, Mirmiran P. The effect of brown rice compared to white rice on adiposity indices, lipid profile, and glycemic markers: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2021; 62:7395-7412. [PMID: 33905269 DOI: 10.1080/10408398.2021.1914541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A few randomized controlled trials (RCTs) have assessed the effect of brown rice consumption on metabolic parameters compared to white rice, with inconsistent findings. Therefore, the present systematic review and meta-analysis was designed to evaluate the effect of brown rice on adiposity indices, lipid profile, and glycemic markers in adult subjects compared to white rice. In this study, PubMed/Medline, Scopus, Web of Sciences, and Embase databases were comprehensively searched until March 2021. Thirteen RCTs were selected and then included in the meta-analysis. As reported, brown rice significantly reduced weight by -1.63 kg (95% CI: -2.15 to -1.11, I2=97%, n = 6), body mass index (BMI) by -0.58 kg/m2 (95% CI: -0.78 to -0.37, I2=96%, n = 6), and waist circumference by -2.56 cm (95% CI: -4.86 to -0.26, I2=88%, n = 5) compared with white rice. Moreover, it had no significant effect on lipid profile and glycemic markers. Besides, pre-germinated brown rice significantly declined weight (-1.75 kg, 95% CI: -2.70 to -0.81, I2=99%, n = 4), total cholesterol (-24.22 mg/dl, 95% CI: -33.03 to -15.41, I2=78%, n = 5), triglyceride (TG) (-43.28 mg/dl, 95% CI: -74.05 to -12.50, I2=90%, n = 5), low-density lipoprotein (LDL) (-20.05 mg/dl, 95% CI: -29.57 to -10.52, I2=71%, n = 5), and fasting blood glucose (FBG) (-15.83 mg/dl, 95% CI: -25.20 to -6.46, I2=91%, n = 5). In accordance with Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach, the certainly of the included evidence was low and very low. The results of the present study indicate that, brown rice has anti-obesity effects in comparison with white rice; however, it has no beneficial effects on lipid profile and glycemic markers. Contrary to brown rice, it was shown that, pre-germinated brown rice significantly decreases body weight and improves lipid profile and FBG levels compared to white rice. Accordingly, our results indicate that, pre-germinated brown rice has better functional effects on promoting lipid profile and FBG compared to brown rice.
Collapse
Affiliation(s)
- Mahdieh Golzarand
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Karamollah Toolabi
- Department of Surgery, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Effect of Rice Grain ( Oryza sativa L.) Enrichment with Selenium on Foliar Leaf Gas Exchanges and Accumulation of Nutrients. PLANTS 2021; 10:plants10020288. [PMID: 33546440 PMCID: PMC7913717 DOI: 10.3390/plants10020288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022]
Abstract
An agronomic itinerary for Se biofortification of two rice cultivars (Ariete and Ceres) through foliar fertilization with sodium selenate and sodium selenite with different concentrations (25, 50, 75 and 100 g Se.ha-1), was implemented in experimental fields. The selenium toxicity threshold was not exceeded, as shown by the eco-physiological data obtained through leaf gas exchanges. The highest Se enrichment in paddy grains was obtained with selenite for both cultivars, especially at the highest doses, i.e., 75 and 100 g Se.ha-1, with approximately a 5.0-fold increase compared with control values. In paddy grains, Zn was the most affected element by the treatments with Se with decreases up to 54%. When comparing the losses between rough and polished grains regardless of the cultivars, Se species and concentrations, it was observed that only Cu, Mg and Zn exhibited losses <50%. The remaining elements generally had losses >70%. The loss of Se is more pronounced in Ceres cultivar than in Ariete but rarely exceeds 50%. The analysis by µ-EDXRF showed that, in Ariete cultivar, Se is mostly homogeneously distributed in the grain regardless of any treatments, while in Ceres cultivar, the Se distribution seems to favor accumulation in the periphery, perhaps in the bran.
Collapse
|
42
|
Fukushima A, Uchino G, Akabane T, Aiseki A, Perera I, Hirotsu N. Phytic Acid in Brown Rice Can Be Reduced by Increasing Soaking Temperature. Foods 2020; 10:foods10010023. [PMID: 33374851 PMCID: PMC7824421 DOI: 10.3390/foods10010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/23/2022] Open
Abstract
Phytic acid (PA) is a storage form of phosphorus in seeds. Phytase enzyme is activated at germination and hydrolyses PA into myo-inositol and inorganic phosphate. PA inhibits the absorption of minerals in the human intestine by chelation. Its degradation, therefore, is a key factor to improve mineral bioavailability in rice. Germinated brown rice (GBR) is favoured because it improves the availability of nutrients, and thus have a positive effect on health. In this study, we show the effects of soaking temperature on phytase activity and PA content in GBR. Rice phytase showed thermostability and its activity peaked at 50 °C. After 36 h of soaking, phytase activity was significantly increased at 50 °C and PA content was significantly decreased, compared to that at 30 °C. Zinc (Zn) analysis revealed that there was no significant difference in Zn content among different temperature treatments. Calculated total daily absorbed Zn (TAZ) was significantly higher in GBR compared with non-soaked seeds. Moreover, brown rice grains germinated at 50 °C showed a higher TAZ value than that at 30 °C. Seed germination and seed water soaking at high temperatures reduce PA content in brown rice showing a potentially effective way to improve mineral bioavailability in brown rice.
Collapse
Affiliation(s)
- Ayaka Fukushima
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan; (A.F.); (T.A.)
| | - Gun Uchino
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan; (G.U.); (A.A.)
| | - Tatsuki Akabane
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan; (A.F.); (T.A.)
| | - Ayaka Aiseki
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan; (G.U.); (A.A.)
| | - Ishara Perera
- Grain Legume and Oil Crops Research and Development Centre, Department of Agriculture, Angunakolapelessa 82220, Sri Lanka;
| | - Naoki Hirotsu
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan; (A.F.); (T.A.)
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan; (G.U.); (A.A.)
- Correspondence: ; Tel.: +81-276-82-9027
| |
Collapse
|
43
|
Kongkachuichai R, Charoensiri R, Meekhruerod A, Kettawan A. Effect of processing conditions on bioactive compounds and glycemic index of the selected landrace rice variety in pre-diabetes. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Kadowaki M, Kubota M, Watanabe R. Physiological Multifunctions of Rice Proteins of Endosperm and Bran. J Nutr Sci Vitaminol (Tokyo) 2020; 65:S42-S47. [PMID: 31619644 DOI: 10.3177/jnsv.65.s42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although it is considered a staple food, rice intake is under serious debate for its physiological usefulness, especially for diabetic patients, because of starch content. However, rice protein, the second major component of rice, has gained attention recently for its newly-discovered functions, which were previously unknown. Rice protein, a plant protein, shows multiple beneficial functions on lipid metabolism and diabetes and its complications, nephropathy, fatty liver and osteoporosis. Rice proteins of endosperm and bran, an ingredient of white rice and an unused product of brown rice, respectively, are valuable components for human health.
Collapse
Affiliation(s)
- Motoni Kadowaki
- Faculty of Agriculture, Niigata University.,Fuculty of Engineering, Niigata Institute of Technology
| | | | - Reiko Watanabe
- Department of Health and Nutrition, University of Niigata Prefecture
| |
Collapse
|
45
|
Abstract
Rice, a staple food for more than half of the world's population, is grown in >100 countries with 90% of the total global production from Asia. Although there are more than 110,000 cultivated varieties of rice that vary in quality and nutritional content, after post-harvest processing, rice can be categorized as either white or brown. Regional and cultural preferences as well as need for stability during storage and transport are the final determinants of market availability and final consumption. In addition to calories, rice is a good source of magnesium, phosphorus, manganese, selenium, iron, folic acid, thiamin and niacin; but it is low in fiber and fat. Although brown rice is promoted as being "healthier" because of bioactive compounds, including minerals and vitamins not present in white rice after polishing, white rice is more widely consumed than brown. This is for several reasons, including cooking ease, palatability, and shelf life. Polished rice has a higher glycemic load and may impact glucose homeostasis but when combined with other foods, it can be considered part of a "healthy" plate. With the projected increase in the global population, rice will remain a staple. However, it will be important to encourage intake of the whole grain (brown rice) and to identify ways to harness the phytonutrients that are lost during milling. Furthermore, as the world faces environmental challenges, changing demographics and consumer demands, farmers, healthcare providers, food manufacturers and nutritionists must work collaboratively to assure adequate supply, nutritional integrity and sustainability of rice production systems globally.
Collapse
|
46
|
Ren C, Hong B, Zheng X, Wang L, Zhang Y, Guan L, Yao X, Huang W, Zhou Y, Lu S. Improvement of germinated brown rice quality with autoclaving treatment. Food Sci Nutr 2020; 8:1709-1717. [PMID: 32180978 PMCID: PMC7063372 DOI: 10.1002/fsn3.1459] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 12/28/2022] Open
Abstract
Germinated brown rice (GBR) is a popular functional food containing considerable amounts of beneficial nutrients and bioactive compounds. Here, autoclaving at 115°C for 20 min was employed to process GBR (AGBR) to evaluate the effect of autoclaving on the nutritional and health function of GBR in microstructure, taste value, aroma, as well as the physiological ingredients. The results showed that autoclaving treatment influenced the starch gelatinization and aroma to improve the taste of cooked AGBR. Autoclaving treatment significantly increased the gamma‐aminobutyric acid (GABA) and ferulic acid levels of AGBR (p < .05). In addition, consuming AGBR for 1 month significantly decreased the fasting plasma glucose (FPG), 0.5, 1, and 2 hr postprandial plasma glucose (PPG), triglyceride (TG), total cholesterol (TC), high‐density lipoprotein cholesterol (HDL‐c), and low‐density lipoprotein cholesterol (LDL‐c) in metabolic syndrome (MS) patients (p < .05). Therefore, autoclaving treatment, as a promising processing strategy, may both improve the sensory attributes and the nutrition of GBR.
Collapse
Affiliation(s)
- Chuanying Ren
- Food Processing Research Institute Heilongjiang Academy of Agricultural Sciences Harbin China
| | - Bin Hong
- Food Processing Research Institute Heilongjiang Academy of Agricultural Sciences Harbin China
| | - Xianzhe Zheng
- College of Engineering Northeast Agricultural University Harbin China
| | - Liqun Wang
- Food Processing Research Institute Heilongjiang Academy of Agricultural Sciences Harbin China
| | - Yinglei Zhang
- Food Processing Research Institute Heilongjiang Academy of Agricultural Sciences Harbin China
| | - Lijun Guan
- Food Processing Research Institute Heilongjiang Academy of Agricultural Sciences Harbin China
| | - Xinmiao Yao
- Food Processing Research Institute Heilongjiang Academy of Agricultural Sciences Harbin China
| | - Wengong Huang
- Institute of Industrial Crops Heilongjiang Academy of Agricultural Sciences Harbin China
| | - Ye Zhou
- Food Processing Research Institute Heilongjiang Academy of Agricultural Sciences Harbin China
| | - Shuwen Lu
- Food Processing Research Institute Heilongjiang Academy of Agricultural Sciences Harbin China
| |
Collapse
|
47
|
Tanimoto S, Kondo R, Mabuchi R, Watanabe E, Nobayashi K, Fujita Y. Antioxidant Activity and Taste-active Component Distribution in the Bran Layer of Rice Grain. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shota Tanimoto
- Faculty of Human Culture and Science, Prefectural University of Hiroshima
| | - Rumi Kondo
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima
| | - Ryota Mabuchi
- Faculty of Human Culture and Science, Prefectural University of Hiroshima
| | | | | | | |
Collapse
|
48
|
Ma ZF, Zhang H, Teh SS, Wang CW, Zhang Y, Hayford F, Wang L, Ma T, Dong Z, Zhang Y, Zhu Y. Goji Berries as a Potential Natural Antioxidant Medicine: An Insight into Their Molecular Mechanisms of Action. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2437397. [PMID: 30728882 PMCID: PMC6343173 DOI: 10.1155/2019/2437397] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/01/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
Goji berries (Lycium fruits) are usually found in Asia, particularly in northwest regions of China. Traditionally, dried goji berries are cooked before they are consumed. They are commonly used in Chinese soups and as herbal tea. Moreover, goji berries are used for the production of tincture, wine, and juice. Goji berries are high antioxidant potential fruits which alleviate oxidative stress to confer many health protective benefits such as preventing free radicals from damaging DNA, lipids, and proteins. Therefore, the aim of the review was to focus on the bioactive compounds and pharmacological properties of goji berries including their molecular mechanisms of action. The health benefits of goji berries include enhancing hemopoiesis, antiradiation, antiaging, anticancer, improvement of immunity, and antioxidation. There is a better protection through synergistic and additive effects in fruits and herbal products from a complex mixture of phytochemicals when compared to one single phytochemical.
Collapse
Affiliation(s)
- Zheng Feei Ma
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, 15200 Kelantan, Malaysia
| | - Hongxia Zhang
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Sue Siang Teh
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Department of Food Science, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur 53300, Malaysia
| | - Chee Woon Wang
- Department of Biochemistry, Faculty of Medicine, MAHSA University, Bandar Saujana Putra, Jenjarom, 42610 Selangor, Malaysia
| | - Yutong Zhang
- Jinzhou Medical University, Jinzhou 121000, China
| | - Frank Hayford
- Department of Nutrition and Dietetics, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P. O. Box KB143, Korle-Bu, Accra, Ghana
| | - Liuyi Wang
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Tong Ma
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine of Fudan University, Shanghai 200032, China
| | - Zihan Dong
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yan Zhang
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yifan Zhu
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
49
|
Okonogi S, Kaewpinta A, Junmahasathien T, Yotsawimonwat S. Effect of rice variety and modification on antioxidant and anti-inflammatory activities. Drug Discov Ther 2018; 12:206-213. [PMID: 30224593 DOI: 10.5582/ddt.2018.01041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effects of variety and modification of rice on its antioxidant and anti-inflammatory activities were investigated. White rice varieties; Jasmine (JM) and Saohai (SH), and pigmented rice varieties; Doisket (DS) and Homnil (HN) were used. The modified rice samples were obtained from chemical modification using etherification reaction. The activities of the modified rice samples were compared with the ethanol extracts of the raw rice at the same rice concentration. Antioxidant activity was measured by the free radical scavenging activity tests and ferric reducing power assay. Results indicated that the ethanol extracts of raw rice had higher antioxidant activity than the modified rice. Among the raw rice tested, the pigmented rice showed higher antioxidant activity than white rice. Trolox equivalent antioxidant capacity values from free radical scavenging activity test were revealed that 50% ethanol extracts of HN and DS possessed the highest antioxidant activity. Ferric reducing power assay showed that 50% ethanol extracts of DS had the highest antioxidant activity. The anti-inflammatory activity was evaluated in vitro using a lipopolysaccharide-stimulated RAW264.7 macrophage cell model with enzyme-linked immunosorbent assay. Absolute ethanol extracts of HN reduced interleukin-6 secretion whereas that of DS suppressed interleukin-6 and tumor necrosis factor -α secretion. These results indicate that variety of rice, chemical modification, and extracting solvent were the factors that play an important role on antioxidant and anti-inflammatory activity. This study supports the potential use of the pigmented rice, especially DS, as a promising choice of a natural source because of its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University.,Research Center of Pharmaceutical Nanotechnology, Chiang Mai University
| | - Adchareeya Kaewpinta
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University.,Interdisciplinary Program in Nanoscience and Nanotechnology, Chiang Mai University
| | - Taepin Junmahasathien
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University.,Research Center of Pharmaceutical Nanotechnology, Chiang Mai University
| | | |
Collapse
|
50
|
Grosso G. Dietary Antioxidants and Prevention of Non-Communicable Diseases. Antioxidants (Basel) 2018; 7:antiox7070094. [PMID: 30029504 PMCID: PMC6071097 DOI: 10.3390/antiox7070094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Giuseppe Grosso
- NNEdPro Global Centre for Nutrition and Health, St John's Innovation Centre, Cambridge CB4 0WS, UK.
| |
Collapse
|