1
|
Tonon CR, Monte MG, Balin PS, Fujimori ASS, Ribeiro APD, Ferreira NF, Vieira NM, Cabral RP, Okoshi MP, Okoshi K, Zornoff LAM, Minicucci MF, Paiva SAR, Gomes MJ, Polegato BF. Liraglutide Pretreatment Does Not Improve Acute Doxorubicin-Induced Cardiotoxicity in Rats. Int J Mol Sci 2024; 25:5833. [PMID: 38892020 PMCID: PMC11172760 DOI: 10.3390/ijms25115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Doxorubicin is an effective drug for cancer treatment; however, cardiotoxicity limits its use. Cardiotoxicity pathophysiology is multifactorial. GLP-1 analogues have been shown to reduce oxidative stress and inflammation. In this study, we evaluated the effect of pretreatment with liraglutide on doxorubicin-induced acute cardiotoxicity. A total of 60 male Wistar rats were allocated into four groups: Control (C), Doxorubicin (D), Liraglutide (L), and Doxorubicin + Liraglutide (DL). L and DL received subcutaneous injection of liraglutide 0.6 mg/kg daily, while C and D received saline for 2 weeks. Afterwards, D and DL received a single intraperitoneal injection of doxorubicin 20 mg/kg; C and L received an injection of saline. Forty-eight hours after doxorubicin administration, the rats were subjected to echocardiogram, isolated heart functional study, and euthanasia. Liraglutide-treated rats ingested significantly less food and gained less body weight than animals that did not receive the drug. Rats lost weight after doxorubicin injection. At echocardiogram and isolated heart study, doxorubicin-treated rats had systolic and diastolic function impairment. Myocardial catalase activity was statistically higher in doxorubicin-treated rats. Myocardial protein expression of tumor necrosis factor alpha (TNF-α), phosphorylated nuclear factor-κB (p-NFκB), troponin T, and B-cell lymphoma 2 (Bcl-2) was significantly lower, and the total NFκB/p-NFκB ratio and TLR-4 higher in doxorubicin-treated rats. Myocardial expression of OPA-1, MFN-2, DRP-1, and topoisomerase 2β did not differ between groups (p > 0.05). In conclusion, doxorubicin-induced cardiotoxicity is accompanied by decreased Bcl-2 and phosphorylated NFκB and increased catalase activity and TLR-4 expression. Liraglutide failed to improve acute doxorubicin-induced cardiotoxicity in rats.
Collapse
Affiliation(s)
- Carolina R. Tonon
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Marina G. Monte
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Paola S. Balin
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Anderson S. S. Fujimori
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Ana Paula D. Ribeiro
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Natália F. Ferreira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Nayane M. Vieira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Ronny P. Cabral
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Marina P. Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Leonardo A. M. Zornoff
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Marcos F. Minicucci
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Sergio A. R. Paiva
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Mariana J. Gomes
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA;
| | - Bertha F. Polegato
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| |
Collapse
|
2
|
Tao Z, Yuan H, Liu M, Liu Q, Zhang S, Liu H, Jiang Y, Huang D, Wang T. Yeast Extract: Characteristics, Production, Applications and Future Perspectives. J Microbiol Biotechnol 2023; 33:151-166. [PMID: 36474327 PMCID: PMC9998214 DOI: 10.4014/jmb.2207.07057] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
Yeast extract is a product prepared mainly from waste brewer's yeast, which is rich in nucleotides, proteins, amino acids, sugars and a variety of trace elements, and has the advantages of low production cost and abundant supply of raw material. Consequently, yeast extracts are widely used in various fields as animal feed additives, food flavoring agents and additives, cosmetic supplements, and microbial fermentation media; however, their full potential has not yet been realized. To improve understanding of current research knowledge, this review summarizes the ingredients, production technology, and applications of yeast extracts, and discusses the relationship between their properties and applications. Developmental trends and future prospects of yeast extract are also previewed, with the aim of providing a theoretical basis for the development and expansion of future applications.
Collapse
Affiliation(s)
- Zekun Tao
- State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
| | - Haibo Yuan
- State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
| | - Meng Liu
- State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
| | - Qian Liu
- State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
| | - Siyi Zhang
- State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
| | - Hongling Liu
- State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
| | - Yi Jiang
- State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
| | - Di Huang
- State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
| | - Tengfei Wang
- State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P.R. China
| |
Collapse
|
3
|
Loranthus tanakae Franch. & Sav. Suppresses Inflammatory Response in Cigarette Smoke Condensate Exposed Bronchial Epithelial Cells and Mice. Antioxidants (Basel) 2022; 11:antiox11101885. [PMID: 36290608 PMCID: PMC9598098 DOI: 10.3390/antiox11101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Loranthus tanakae Franch. & Sav. found in China, Japan, and Korea is traditionally used for managing arthritis and respiratory diseases. In this study, we analyzed the components of L. tanakae 70% ethanol extract (LTE) and investigated the therapeutic effects of LTE on pulmonary inflammation using cells exposed to cigarette smoke condensate (CSC) and lipopolysaccharide (LPS) in vitro and in vivo in mice and performed a network analysis between components and genes based on a public database. We detected quercitrin, afzelin, rhamnetin 3-rhamnoside, and rhamnocitrin 3-rhamnoside in LTE, which induced a significant reduction in inflammatory mediators including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and inflammatory cells in CSC exposed H292 cells and in mice, accompanied by a reduction in inflammatory cell infiltration into lung tissue. In addition, LTE increased translocation into the nuclei of nuclear factor erythroid-2-related factor 2 (Nrf2). By contrast, the activation of nuclear factor (NF)-κB, induced by CSC exposure, decreased after LTE application. These results were consistent with the network pharmacological analysis. In conclusion, LTE effectively attenuated pulmonary inflammation caused by CSC+LPS exposure, which was closely involved in the enhancement of Nrf2 expression and suppression of NF-κB activation. Therefore, LTE may be a potential treatment option for pulmonary inflammatory diseases including chronic obstructive pulmonary disease (COPD).
Collapse
|
4
|
Zhang H, Guan R, Zhang Z, Li D, Xu J, Gong Y, Chen X, Lu W. LncRNA Nqo1-AS1 Attenuates Cigarette Smoke-Induced Oxidative Stress by Upregulating its Natural Antisense Transcript Nqo1. Front Pharmacol 2021; 12:729062. [PMID: 34566651 PMCID: PMC8456124 DOI: 10.3389/fphar.2021.729062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
Evidence of the involvement of long noncoding RNAs (lncRNAs) in the pathogenesis of chronic obstructive pulmonary disease (COPD) is growing but still largely unknown. This study aims to explore the expression, functions and molecular mechanisms of Fantom3_F830212L20, a lncRNA that transcribes in an antisense orientation to Nqo1.We name this lncRNA as Nqo1 antisense transcript 1 (Nqo1-AS1). The distribution, expression level and protein coding potential of Nqo1-AS1 were determined. The effects of Nqo1-AS1 on cigarette smoke (CS)-induced oxidative stress were also evaluated. The results showed that Nqo1-AS1 were mainly located in the cytoplasm of mouse alveolar epithelium and had a very low protein coding potential. Nqo1-AS1 (or its human homologue) was increased with the increase of CS exposure. Nqo1-AS1 overexpression enhanced the mRNA and protein levels of Nqo1 and Serpina1 mRNA expression, and attenuated CS-induced oxidative stress, whereas knockdown of Nqo1-AS1 significantly decreased Nqo1 and Serpina1 mRNA expressions, and aggravated CS-induced oxidative stress. Nqo1-AS1 increased Nqo1 mRNA stability and upregulated Nqo1 expression through antisense pairing with Nqo1 3′UTR. In conclusion, these results suggest that Nqo1-AS1 attenuates CS-induced oxidative stress by increasing Nqo1 mRNA stability and upregulating Nqo1 expression, which might serve as a novel approach for the treatment of COPD.
Collapse
Affiliation(s)
- Haiyun Zhang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hosptial, Southern Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruijuan Guan
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zili Zhang
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Defu Li
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingyi Xu
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuxin Gong
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hosptial, Southern Medical University, Guangzhou, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hosptial, Southern Medical University, Guangzhou, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Wang T, Cheng K, Yu CY, Li QM, Tong YC, Wang C, Yang ZB, Wang T. Effects of a yeast-derived product on growth performance, antioxidant capacity, and immune function of broilers. Poult Sci 2021; 100:101343. [PMID: 34325110 PMCID: PMC8334739 DOI: 10.1016/j.psj.2021.101343] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
Yeast culture plus enzymatically hydrolyzed yeast cell wall (YC-EHY) contains crude protein, mannan-oligosaccharide, β-glucan and yeast culture. This study was carried out to explore the effects of dietary YC-EHY at different levels on growth performance, antioxidant capacity, and immune function of broiler chickens. A total of 320 one-day-age male broiler chicks were allocated into 4 groups and were fed with a basal diet supplemented with 0 mg/kg (the control group), 50 mg/kg, 100 mg/kg, 150 mg/kg YC-EHY for 42 d. Dietary YC-EHY improved average daily gain and feed efficiency during the starter, grower, and overall periods as well as average body weight of broiler chickens on 42 d (linear and quadratic, P < 0.05). Broiler chickens fed with YC-EHY quadratically increased jejunal sucrase activity on 21 d (quadratic, P < 0.05), and linearly and quadratically enhanced maltase activity on 21 and 42 d (linear and quadratic, P < 0.05). Supplementing YC-EHY linearly and quadratically enhanced jejunal superoxide dismutase (SOD) activity on 21 and 42 d and glutathione peroxidase (GPX) activity on 42 d whereas decreased malonaldehyde (MDA) concentration on 42 d (linear and quadratic, P < 0.05). Consistently, the jejunal genes expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and SOD1 on 21 and 42 d, heme oxygenase-1 (HO-1) and GPX1 on 42 d were enhanced by YC-EHY supplementation (linear and quadratic, P < 0.05). The concentrations of jejunal immunoglobulin G (IgG) on 21 and 42 d and secreted immunoglobulin A (SIgA) on 42 d were linearly and quadratically elevated by supplementing YC-EHY (linear and quadratic, P < 0.05). Dietary YC-EHY quadratically increased jejunal IgG and IgM genes expression on 21 d (quadratic, P < 0.05), and linearly and quadratically enhanced the genes expression of IgG and IgM on 42 d (linear and quadratic, P < 0.05). Overall, this study indicated that supplementing YC-EHY could exert beneficial effects on growth performance, intestinal antioxidant capacity and immune function in broiler chickens.
Collapse
Affiliation(s)
- Ting Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kang Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Cai Yun Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qi Ming Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi Chun Tong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zai Bin Yang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
6
|
Aesculetin Inhibits Airway Thickening and Mucus Overproduction Induced by Urban Particulate Matter through Blocking Inflammation and Oxidative Stress Involving TLR4 and EGFR. Antioxidants (Basel) 2021; 10:antiox10030494. [PMID: 33809902 PMCID: PMC8004275 DOI: 10.3390/antiox10030494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
Particulate matter (PM) is a mixture of solid and liquid air pollutant particles suspended in the air, varying in composition, size, and physical features. PM is the most harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing diverse respiratory diseases. Aesculetin, a coumarin derivative present in the Sancho tree and chicory, is known to have antioxidant and anti-inflammatory effects in the vascular and immune system. However, its effect on PM-induced airway thickening and mucus hypersecretion is poorly understood. The current study examined whether naturally-occurring aesculetin inhibited airway thickening and mucus hypersecretion caused by urban PM10 (uPM10, particles less than 10 μm). Mice were orally administrated with 10 mg/kg aesculetin and exposed to 6 μg/mL uPM10 for 8 weeks. To further explore the mechanism(s) involved in inhibition of uPM10-induced mucus hypersecretion by aesculetin, bronchial epithelial BEAS-2B cells were treated with 1–20 µM aesculetin in the presence of 2 μg/mL uPM10. Oral administration of aesculetin attenuated collagen accumulation and mucus hypersecretion in the small airways inflamed by uPM10. In addition, aesculetin inhibited uPM10-evoked inflammation and oxidant production in lung tissues. Further, aesculetin accompanied the inhibition of induction of bronchial epithelial toll-like receptor 4 (TLR4) and epidermal growth factor receptor (EFGR) elevated by uPM10. The inhibition of TLR4 and EGFR accompanied bronchial mucus hypersecretion in the presence of uPM10. Oxidative stress was responsible for the epithelial induction of TLR4 and EGFR, which was disrupted by aesculetin. These results demonstrated that aesculetin ameliorated airway thickening and mucus hypersecretion by uPM10 inhalation by inhibiting pulmonary inflammation via oxidative stress-stimulated TLR4 and EGFR. Therefore, aesculetin may be a promising agent for treating airway mucosa-associated disorders elicited by urban coarse particulates.
Collapse
|
7
|
Kim SM, Ryu HW, Kwon OK, Hwang D, Kim MG, Min JH, Zhang Z, Kim SY, Paik JH, Oh SR, Ahn KS, Lee JW. Callicarpa japonica Thunb. ameliorates allergic airway inflammation by suppressing NF-κB activation and upregulating HO-1 expression. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113523. [PMID: 33129947 DOI: 10.1016/j.jep.2020.113523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Callicarpa japonica Thunb., as an herbal medicine has been used for the treatment of inflammatory diseases in China and Korea. MATERIALS AND METHODS Ultra performance liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometer (UPLC-PDA-QTof MS) was used to detect the major phenylethanoid glycosides in the C. japonica extract. BALB/c mice were intraperitoneally sensitized by ovalbumin (OVA) (on days 0 and 7) and challenged by OVA aerosol (on days 11-13) to induce airway inflammatory response. The mice were also administered with C. japonica Thunb. (CJT) (20 and 40 mg/kg Per oral) on days 9-13. CJT pretreatment was conducted in lipopolysaccharide (LPS)-stimulated RAW264.7 or phorbol 12-myristate 13-acetate (PMA)-stimulated A549 cells. RESULTS CJT administration significantly reduced the secretion of Th2 cytokines, TNF-α, IL-6, immunoglobulin E (IgE) and histamine, and the recruitment of eosinophils in an OVA-exposed mice. In histological analyses, the amelioration of inflammatory cell influx and mucus secretion were observed with CJT. The OVA-induced airway hyperresponsiveness (AHR), iNOS expression and NF-κB activation were effectively suppressed by CJT administration. In addition, CJT led to the upregulation of HO-1 expression. In an in vitro study, CJT pretreatment suppressed the LPS-induced TNF-α secretion in RAW264.7 cells and attenuated the PMA-induced IL-6, IL-8 and MCP-1 secretion in A549 cells. These effects were accompanied by downregulated NF-κB phosphorylation and by upregulated HO-1 expression. CONCLUSION These results suggested that CJT has protective activity against OVA-induced airway inflammation via downregulation of NF-κB activation and upregulation of HO-1, suggesting that CJT has preventive potential for the development of allergic asthma.
Collapse
Affiliation(s)
- Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea; College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Republic of Korea.
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea.
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea.
| | - Daseul Hwang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea.
| | - Min Gu Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea.
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea.
| | - Zhiyun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, PR China.
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea.
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea.
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea.
| |
Collapse
|
8
|
Uddin MA, Barabutis N. P53 in the impaired lungs. DNA Repair (Amst) 2020; 95:102952. [PMID: 32846356 PMCID: PMC7437512 DOI: 10.1016/j.dnarep.2020.102952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Our laboratory is focused on investigating the supportive role of P53 towards the maintenance of lung homeostasis. Acute lung injury, acute respiratory distress syndrome, chronic obstructive pulmonary disease, pulmonary fibrosis, bronchial asthma, pulmonary arterial hypertension, pneumonia and tuberculosis are respiratory pathologies, associated with dysfunctions of this endothelium defender (P53). Herein we review the evolving role of P53 towards the aforementioned inflammatory disorders, to potentially reveal new therapeutic possibilities in pulmonary disease.
Collapse
Affiliation(s)
- Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA.
| |
Collapse
|
9
|
Nediani C, Giovannelli L. Oxidative Stress and Inflammation as Targets for Novel Preventive and Therapeutic Approches in Non Communicable Diseases. Antioxidants (Basel) 2020; 9:antiox9040290. [PMID: 32244285 PMCID: PMC7222209 DOI: 10.3390/antiox9040290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023] Open
Abstract
As recently reported by the World Health Organization (WHO), Non-Communicable Diseases (NCDs) has been rising over the last century representing the main cause of death and disability for the general population regardless of age, region, or gender [...].
Collapse
Affiliation(s)
- Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", viale Morgagni 50, 50134 Florence, Italy
- Correspondence:
| | - Lisa Giovannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy;
| |
Collapse
|