1
|
Harčárová P, Lomozová Z, Kallivretaki M, Karlíčková J, Kučera R, Mladěnka P. Different behavior of food-related benzoic acids toward iron and copper. Food Chem 2025; 462:141014. [PMID: 39226645 DOI: 10.1016/j.foodchem.2024.141014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Benzoic acids, which are commonly found in food, are also produced by human microbiota from other dietary phenolics. The aim was to investigate the interactions of 8 food-related benzoic acids with the physiological metals iron and copper under different (patho)physiologically relevant pH conditions in terms of chelation, reduction, impact on the metal-based Fenton chemistry, and copper-based hemolysis. Only 3,4-dihydroxybenzoic acid behaved as a protective substance under all conditions. It chelated iron, reduced both iron and copper, and protected against the iron and copper-based Fenton reaction. Conversely, 2,4,6-trihydroxybenzoic acid did not chelate iron and copper, reduced both metals, potentiated the Fenton reaction, and worsened copper-based hemolysis of rat red blood cells. The other tested compounds showed variable effects on the Fenton reaction. Interestingly, prooxidative benzoic acids mildly protected human erythrocytes against Cu-induced lysis. In conclusion, 3,4-dihydroxybenzoic acid seems to have a protective effect against copper and iron-based toxicity under different conditions.
Collapse
Affiliation(s)
- Patrícia Harčárová
- The Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Zuzana Lomozová
- The Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Maria Kallivretaki
- The Department of Chemistry, School of Sciences and Engineering, The University of Crete, University Campus-Voutes, 70013 Heraklion, Crete, Greece
| | - Jana Karlíčková
- The Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Radim Kučera
- The Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic.
| |
Collapse
|
2
|
Parada T, Pardo P, Saurina J, Sentellas S. Characterization of dark chocolates based on polyphenolic profiles and antioxidant activity. J Food Sci 2024; 89:8857-8867. [PMID: 39495576 DOI: 10.1111/1750-3841.17451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 11/06/2024]
Abstract
Dark chocolates were characterized according to geographical origin, cocoa variety, and cocoa content using the methylxanthine and polyphenolic composition and antioxidant activity as the data. The main study objective was to uncover sample patterns and identify possible markers of quality, variety, or origin to deal with authentication or fraud detection issues. In the study, a set of 26 dark chocolates from different varieties (e.g., Criollo, Forastero, and Trinitario) harvested in Africa, America, and Asia was analyzed. The optimized sample treatment consisted of defatting the chocolate (1 g of sample with 5 mL of cyclohexane for 15 min, three times) and then extracting the analytes by sonication with methanol/water 60:40 (v:v) for 15 min. The filtered extracts were analyzed by reversed-phase high-performance liquid chromatography with UV and spectrophotometric methods (Folin-Ciocalteu, ferric reducing antioxidant power, and aluminum methods) to determine individual phenolics and overall indexes of antioxidant and flavonoid content. Results from this chocolate set indicated that American samples are richer than African counterparts in alkaloids and phenolics (e.g., 1.7 vs. 1.1 mg g-1 caffeine and 14.5 vs. 12.5 mg g-1 total flavanols, respectively). Regarding cocoa varieties, Criollo cocoa was richer in bioactive compounds and antioxidant capacity (e.g., 16, 15, and 12 mg g-1 total flavanols for Criollo, Forastero, and Trinitario, respectively). These results indicate that the analytes resulted in potential descriptors of varietal or geographical attributes.
Collapse
Affiliation(s)
- Tamara Parada
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Pablo Pardo
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Barcelona, Spain
- Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Santa Coloma de Gramenet, Spain
| | - Sonia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Barcelona, Spain
- Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Santa Coloma de Gramenet, Spain
- Departament de Recerca i Universitats, Serra Húnter Fellow, Generalitat de Catalunya, Barcelona, Spain
| |
Collapse
|
3
|
Ran Y, Li F, Xu Z, Zeng K, Ming J. Recent advances in dietary polyphenols (DPs): antioxidant activities, nutrient interactions, delivery systems, and potential applications. Food Funct 2024; 15:10213-10232. [PMID: 39283683 DOI: 10.1039/d4fo02111h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Dietary polyphenols (DPs) have garnered growing interest because of their potent functional properties and health benefits. Nevertheless, the antioxidant capabilities of these substances are compromised by their multifarious structural compositions. Furthermore, most DPs are hydrophobic and unstable when subjected to light, heat, and varying pH conditions, restricting their practical application. Delivery systems based on the interactions of DPs with food constituents such as proteins, polypeptides, polysaccharides, and metal ions are being created as a viable option to improve the functional activities and bioavailability of DPs. In this review, the latest discoveries on the dietary sources, structure-antioxidant activity relationships, and interactions with nutrients of DPs are discussed. It also innovatively highlights the application progress of polyphenols and their green nutraceutical delivery systems. The conclusion drawn is that the various action sites and structures of DPs are beneficial for predicting and designing polyphenols with enhanced antioxidant attributes. The metal complexation of polyphenols and green encapsulation systems display promising outcomes for stabilizing DPs during food processing and in vivo digestion. In the future, more novel targeted delivery systems of DPs for nutrient fortification and intervention should be developed. To expand their usage in customized food products, they should meet the requirements of specific populations for personalized food and nutrition.
Collapse
Affiliation(s)
- Yalin Ran
- College of Food Science, Southwest University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Fuhua Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, People's Republic of China
| | - Kaihong Zeng
- Department of Health Management Center & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
4
|
Bulgaru V, Gurev A, Baerle A, Dragancea V, Balan G, Cojocari D, Sturza R, Soran ML, Ghendov-Mosanu A. Phytochemical, Antimicrobial, and Antioxidant Activity of Different Extracts from Frozen, Freeze-Dried, and Oven-Dried Jostaberries Grown in Moldova. Antioxidants (Basel) 2024; 13:890. [PMID: 39199136 PMCID: PMC11351914 DOI: 10.3390/antiox13080890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
In this paper, the qualitative and quantitative profile is evaluated of the bioactive compounds, antioxidant activity (AA), microbiostatic properties, as well as the color parameters of jostaberry extracts, obtained from frozen (FJ), freeze-dried (FDJ), and oven-dried berries (DJ). The optimal extraction conditions by ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) were selected after determination of the total polyphenol content (TPC), total flavonoid content (TFC), total antocyanin content (TA), AA by 2,2-diphenyl-1-picrylhydrazyl-hydrate (DPPH), and the free radical cation 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonates (ABTS). Non-conventional extraction methods are less destructive to anthocyanins, while drying the berries reduced TA, regardless of the extraction method. The oven-drying process reduced the concentration of TA in DJ extracts by 99.4% and of ascorbic acid by 92.42% compared to FJ. AA was influenced by the jostaberry pretreatment methods. The DPPH and ABTS tests recorded values (mg Trolox equivalent/g dry weight) between 17.60 and 35.26 and 35.64 and 109.17 for FJ extracts, between 7.50 and 7.96 and 45.73 and 82.22 for FDJ, as well as between 6.31 and 7.40 and 34.04 and 52.20 for DJ, respectively. The jostaberry pretreatment produced significant changes in all color parameters. Mutual information analysis, applied to determine the influence of ultrasound and microwave durations on TPC, TFC, TA, AA, pH, and color parameters in jostaberry extracts, showed the greatest influence on TA (0.367 bits) and TFC (0.329 bits). The DPPH and ABTS inhibition capacity of all FJ' extracts had higher values and varied more strongly, depending on pH, heat treatment, and storage time, compared to the AA values of FDJ' and DJ' extracts. A significant antimicrobial effect was observed on all bacterial strains studied for FJP. FDJP was more active on Bacillus cereus, Staphylococcus aureus, and Escherichia coli. DJP was more active on Salmonella Abony and Pseudomonas aeruginosa. The antifungal effect of DJP was stronger compared to FDJP. Jostaberry extracts obtained under different conditions can be used in food production, offering a wide spectrum of red hues.
Collapse
Affiliation(s)
- Viorica Bulgaru
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor St., MD-2045 Chisinau, Moldova; (V.B.); (A.G.); (A.B.); (V.D.); (R.S.); (A.G.-M.)
| | - Angela Gurev
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor St., MD-2045 Chisinau, Moldova; (V.B.); (A.G.); (A.B.); (V.D.); (R.S.); (A.G.-M.)
| | - Alexei Baerle
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor St., MD-2045 Chisinau, Moldova; (V.B.); (A.G.); (A.B.); (V.D.); (R.S.); (A.G.-M.)
| | - Veronica Dragancea
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor St., MD-2045 Chisinau, Moldova; (V.B.); (A.G.); (A.B.); (V.D.); (R.S.); (A.G.-M.)
| | - Greta Balan
- Department of Preventive Medicine, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 165 Stefan cel Mare Blvd., MD-2004 Chisinau, Moldova; (G.B.); (D.C.)
| | - Daniela Cojocari
- Department of Preventive Medicine, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 165 Stefan cel Mare Blvd., MD-2004 Chisinau, Moldova; (G.B.); (D.C.)
| | - Rodica Sturza
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor St., MD-2045 Chisinau, Moldova; (V.B.); (A.G.); (A.B.); (V.D.); (R.S.); (A.G.-M.)
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Aliona Ghendov-Mosanu
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor St., MD-2045 Chisinau, Moldova; (V.B.); (A.G.); (A.B.); (V.D.); (R.S.); (A.G.-M.)
| |
Collapse
|
5
|
Zhang B, Lan W, Wang Z, Shao Z, Xie J. Modified chitosan with different phenolic acids: Characterization, physicochemical properties, and biological activity. Food Chem 2024; 441:138337. [PMID: 38199114 DOI: 10.1016/j.foodchem.2023.138337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/12/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
This study synthesized five phenolic acid-chitosan copolymers utilizing the carbodiimide-mediated chemical crosslinking reaction. Comprehensive evaluations were conducted on their structural attributes, physicochemical properties, and biological activities. Fourier transform infrared confirmed successful grafting of phenolic acids onto chitosan via amide linkages. Additionally, ultraviolet-visible absorption spectroscopy and proton nuclear magnetic resonance analyses revealed novel absorption peaks between 200 and 400 nm and 6.0-8.0 ppm, respectively, attributable to the incorporated phenolic acids. Notably, the chitosan-gentisate acid copolymer exhibited significantly enhanced biological activity (p < 0.05) compared to pure chitosan and the other four conjugates, attributed to its highest grafting degree of approximately 295.93 mg/g. These modified chitosan derivatives effectively preserved the quality of sea bass (Lateolabrax japonicus) during refrigerated storage, extending its shelf-life by up to 9 days, 7 days, and 4 days relative to control, chitosan, and gentisate acid groups.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Zhicheng Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhe Shao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
6
|
Branković J, Matejić V, Simijonović D, Vukić MD, Kačaniova M, Živanović M, Mirić A, Košarić J, Branković M, Petrović VP. Novel N-pyrocatechoyl and N-pyrogalloyl hydrazone antioxidants endowed with cytotoxic and antibacterial activity. Arch Pharm (Weinheim) 2024; 357:e2300725. [PMID: 38346258 DOI: 10.1002/ardp.202300725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 05/08/2024]
Abstract
Over the years, pharmacological agents bearing antioxidant merits arose as beneficial in the prophylaxis and treatment of various health conditions. Hazardous effects of radical species hyperproduction disrupt normal cell functioning, thus increasing the possibility for the development of various oxidative stress-associated disorders, such as cancer. Contributing to the efforts for efficient antioxidant drug discovery, a thorough in vitro and in silico assessment of antioxidant properties of 14 newly synthesized N-pyrocatechoyl and N-pyrogalloyl hydrazones (N-PYRs) was accomplished. All compounds exhibited excellent antioxidant potency against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. The extensive in silico analysis revealed multiple favorable features of N-PYRs to inactivate harmful radical species, which supported the obtained in vitro results. Also, in silico experiments provided insights into the preferable antioxidant pathways. Prompted by these findings, the cytotoxicity effects and the influence on the redox status of cancer HCT-116 cells and healthy fibroblasts MRC-5 were evaluated. These investigations exposed four analogs exhibiting both cytotoxicity and selectivity toward cancer cells. Furthermore, the frequently uncovered antimicrobial potency of hydrazone-type hybrids encouraged investigations on G+ and G- bacterial strains, which revealed the antibacterial potency of several N-PYRs. These findings highlighted the N-PYRs as excellent antioxidant agents endowed with cytotoxic and antibacterial features.
Collapse
Affiliation(s)
- Jovica Branković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Vesna Matejić
- Department of Chemistry and Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Čačak, Serbia
| | - Dušica Simijonović
- Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Milena D Vukić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Miroslava Kačaniova
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Marko Živanović
- Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Ana Mirić
- Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Košarić
- Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Marija Branković
- Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir P Petrović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
7
|
Sung B, Hwang D, Baek A, Yang B, Lee S, Park J, Kim E, Kim M, Lee E, Chang Y. Gadolinium-Based Magnetic Resonance Theranostic Agent with Gallic Acid as an Anti-Neuroinflammatory and Antioxidant Agent. Antioxidants (Basel) 2024; 13:204. [PMID: 38397802 PMCID: PMC10885874 DOI: 10.3390/antiox13020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Studies in the field have actively pursued the incorporation of diverse biological functionalities into gadolinium-based contrast agents, aiming at the amalgamation of MRI imaging and therapeutic capabilities. In this research, we present the development of Gd-Ga, an anti-neuroinflammatory MR contrast agent strategically designed to target inflammatory mediators for comprehensive imaging diagnosis and targeted lesion treatment. Gd-Ga is a gadolinium complex composed of 1,4,7-tris(carboxymethylaza)cyclododecane-10-azaacetylamide (DO3A) conjugated with gallic acid (3,4,5-trihydroxybenzoic acid). Upon intravenous administration in LPS-induced mouse models, Gd-Ga demonstrated a remarkable three-fold increase in signal-to-noise (SNR) variation compared to Gd-DOTA, particularly evident in both the cortex and hippocampus 30 min post-MR monitoring. In-depth investigations, both in vitro and in vivo, into the anti-neuroinflammatory properties of Gd-Ga revealed significantly reduced protein expression levels of pro-inflammatory mediators compared to the LPS group. The alignment between in silico predictions and phantom studies indicates that Gd-Ga acts as an anti-neuroinflammatory agent by directly binding to MD2. Additionally, the robust antioxidant activity of Gd-Ga was confirmed by its effective scavenging of NO and ROS. Our collective findings emphasize the immense potential of this theranostic complex, where a polyphenol serves as an anti-inflammatory drug, presenting an exceptionally efficient platform for the diagnosis and treatment of neuroinflammation.
Collapse
Affiliation(s)
- Bokyung Sung
- ICT Convergence Research Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea;
| | - Dongwook Hwang
- Department of Biomedical Science, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- Theranocure Co., Ltd., 90 Chilgokjungang-daero 136-gil, Buk-gu, Daegu 41405, Republic of Korea; (B.Y.); (S.L.)
| | - Ahrum Baek
- Institute of Biomedical Engineering Research, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (A.B.); (E.L.)
| | - Byeongwoo Yang
- Theranocure Co., Ltd., 90 Chilgokjungang-daero 136-gil, Buk-gu, Daegu 41405, Republic of Korea; (B.Y.); (S.L.)
- Department of Medical & Biological Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Sangyun Lee
- Theranocure Co., Ltd., 90 Chilgokjungang-daero 136-gil, Buk-gu, Daegu 41405, Republic of Korea; (B.Y.); (S.L.)
- Department of Medical & Biological Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jangwoo Park
- Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; (J.P.); (E.K.)
| | - Eunji Kim
- Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; (J.P.); (E.K.)
- Center for Data Analytics Innovation, Office of National R&D Evaluation and Analysis, Korea Institute of S&T Evaluation and Planning, 1339, Wonjung-ro, Maengdong-myeon, Eumseong-gun 27740, Republic of Korea
| | - Minsup Kim
- TARS Scientific, Nowon-gu, Seoul 01662, Republic of Korea;
| | - Eunshil Lee
- Institute of Biomedical Engineering Research, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (A.B.); (E.L.)
| | - Yongmin Chang
- Department of Biomedical Science, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- Institute of Biomedical Engineering Research, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (A.B.); (E.L.)
- Department of Medical & Biological Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Guchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Department of Radiology, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
8
|
Mouren A, Pollet E, Avérous L. Synthesis and Assessment of Novel Sustainable Antioxidants with Different Polymer Systems. Polymers (Basel) 2024; 16:413. [PMID: 38337302 DOI: 10.3390/polym16030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Antioxidants are essential to the polymer industry. The addition of antioxidants delays oxidation and material degradation during their processing and usage. Sustainable phenolic acids such as 4-hydroxybenzoic acid or 3,4-dihydroxybenzoic acid were selected. They were chemically modified by esterification to obtain various durable molecules, which were tested and then compared to resveratrol, a biobased antioxidant, and Irganox 1076, a well-known and very efficient fossil-based antioxidant. Different sensitive matrices were used, such as a thermoplastic polyolefin (a blend of PP and PE) and a purposely synthesized thermoplastic polyurethane. Several formulations were then produced, with the different antioxidants in varying amounts. The potential of these different systems was analyzed using various techniques and processes. In addition to antioxidant efficiency, other parameters were also evaluated, such as the evolution of the sample color. Finally, an accelerated aging protocol was set up to evaluate variations in polymer properties and estimate the evolution of the potential of different antioxidants tested over time and with aging. In conclusion, these environmentally friendly antioxidants make it possible to obtain high-performance materials with an efficiency comparable to that of the conventional ones, with variations according to the type of matrix considered.
Collapse
Affiliation(s)
- Agathe Mouren
- BioTeam/ICPEES ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg CEDEX 2, France
| | - Eric Pollet
- BioTeam/ICPEES ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg CEDEX 2, France
| | - Luc Avérous
- BioTeam/ICPEES ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg CEDEX 2, France
| |
Collapse
|
9
|
Pérez M, Dominguez-López I, Lamuela-Raventós RM. The Chemistry Behind the Folin-Ciocalteu Method for the Estimation of (Poly)phenol Content in Food: Total Phenolic Intake in a Mediterranean Dietary Pattern. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17543-17553. [PMID: 37948650 PMCID: PMC10682990 DOI: 10.1021/acs.jafc.3c04022] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023]
Abstract
The Folin-Ciocalteu assay is a reference method for the quantification of total (poly)phenols in food. This review explains the fundamental mechanism of the redox reaction on which the method is based and looks at some of the practical considerations concerning its application. To accurately estimate the antioxidant capacity of (poly)phenolic compounds, a thorough knowledge of their structural characteristics is essential, as the two are closely associated. Therefore, to help researchers interpret the results of the Folin-Ciocalteu method, this review also summarizes some of the main phenolic structural features. Finally, we have used the Folin-Ciocalteu method to estimate the total phenolic intake associated with high adherence to a Mediterranean diet, ranked as one of the healthiest dietary patterns, which is characterized by a high consumption of (poly)phenol-rich food such as wine, virgin olive oil, fruits, vegetables, whole grains, nuts, and legumes.
Collapse
Affiliation(s)
- Maria Pérez
- Polyphenol
Research Group, Department of Nutrition, Food Science and Gastronomy,
XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition
and Food Safety (INSA-UB), University of
Barcelona, 08028 Barcelona, Spain
- Consorcio
CIBER, M.P. Fisiopatología de la Obesidad y Nutrición
(CIBERObn), Instituto de Salud Carlos III
(ISCIII), 28029 Madrid, Spain
| | - Inés Dominguez-López
- Polyphenol
Research Group, Department of Nutrition, Food Science and Gastronomy,
XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition
and Food Safety (INSA-UB), University of
Barcelona, 08028 Barcelona, Spain
- Consorcio
CIBER, M.P. Fisiopatología de la Obesidad y Nutrición
(CIBERObn), Instituto de Salud Carlos III
(ISCIII), 28029 Madrid, Spain
| | - Rosa M. Lamuela-Raventós
- Polyphenol
Research Group, Department of Nutrition, Food Science and Gastronomy,
XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition
and Food Safety (INSA-UB), University of
Barcelona, 08028 Barcelona, Spain
- Consorcio
CIBER, M.P. Fisiopatología de la Obesidad y Nutrición
(CIBERObn), Instituto de Salud Carlos III
(ISCIII), 28029 Madrid, Spain
| |
Collapse
|
10
|
Rodríguez Madrera R, Pando Bedriñana R. The Phenolic Composition, Antioxidant Activity and Microflora of Wild Elderberry in Asturias (Northern Spain): An Untapped Resource of Great Interest. Antioxidants (Basel) 2023; 12:1986. [PMID: 38001839 PMCID: PMC10669248 DOI: 10.3390/antiox12111986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The objective of this study is the characterization of the phenolic profile and antioxidant activity of elderberries (Sambucus nigra L.) from a collection of 79 wild specimens in northern Spain to assess variations in the species at the local level and evaluate its interest as a source of biocompounds. Also, a first study was carried out on the microflora present in this fruit, providing information relevant to its commercial exploitation. Moreover, the phenolic composition, antioxidant capacity and microbial composition in overripe fruits were determined, seeking a better use for this currently wasted resource. A wide variability in levels of phenolics was detected. Elderberries showed high antioxidant activity related to a high cyanidin derivative content, making them of interest to industry. Microflorae were present in very variable concentration ranges, so their levels should be monitored in those applications that require strict control. Overripe fruits are of interest as a source of anthocyanidins, since their concentration and antioxidant capacity remain after the optimal ripening period, promoting sustainability and a better use of natural resources. The database generated is of particular interest for further breeding trials based on the phenolic profile and antioxidant activity of the samples.
Collapse
Affiliation(s)
- Roberto Rodríguez Madrera
- Área de Tecnología de los Alimentos, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), E-33300 Villaviciosa, Spain;
| | | |
Collapse
|
11
|
Petrosyan H, Nigaryan A, Hovhannisyan H, Soloyan A, Vardapetyan V, Martiryan A. Evaluation of antioxidant activity and heavy metals content in licorice ( Glycyrrhiza glabra L.) growing wild in Armenia. Heliyon 2023; 9:e22442. [PMID: 38045204 PMCID: PMC10689948 DOI: 10.1016/j.heliyon.2023.e22442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
In this study, for the first time an analysis of the metal content in extracts obtained from licorice roots grown in the forests of five different regions in Armenia was conducted. Our findings indicated that the concentrations of metals in the extracts did not exceed the permissible limits set by regulatory standards. Furthermore, we investigated the quantitative composition of flavonoids, tannins, and anthocyanins in the licorice roots, which had not been previously studied. Our results revealed that the composition of these substances is significantly influenced by the soil characteristics of the region. To assess the antioxidant properties of the licorice extract, we employed the approach known as the kinetics of competitive reaction method. Our study successfully demonstrated that the extract derived from the roots of the licorice plant, collected from all five regions under study, exhibited notable antioxidant properties.
Collapse
Affiliation(s)
- H.R. Petrosyan
- Yerevan State University, 1 A. Manoogian Street, 0025, Yerevan, Armenia
| | - A.A. Nigaryan
- Yerevan State University, 1 A. Manoogian Street, 0025, Yerevan, Armenia
| | - H.A. Hovhannisyan
- Yerevan State University, 1 A. Manoogian Street, 0025, Yerevan, Armenia
| | - A.M. Soloyan
- Yerevan State University, 1 A. Manoogian Street, 0025, Yerevan, Armenia
| | - V.V. Vardapetyan
- Yerevan State University, 1 A. Manoogian Street, 0025, Yerevan, Armenia
| | - A.I. Martiryan
- Yerevan State University, 1 A. Manoogian Street, 0025, Yerevan, Armenia
| |
Collapse
|
12
|
Sentellas S, Saurina J. Authentication of Cocoa Products Based on Profiling and Fingerprinting Approaches: Assessment of Geographical, Varietal, Agricultural and Processing Features. Foods 2023; 12:3120. [PMID: 37628119 PMCID: PMC10453789 DOI: 10.3390/foods12163120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Cocoa and its derivative products, especially chocolate, are highly appreciated by consumers for their exceptional organoleptic qualities, thus being often considered delicacies. They are also regarded as superfoods due to their nutritional and health properties. Cocoa is susceptible to adulteration to obtain illicit economic benefits, so strategies capable of authenticating its attributes are needed. Features such as cocoa variety, origin, fair trade, and organic production are increasingly important in our society, so they need to be guaranteed. Most of the methods dealing with food authentication rely on profiling and fingerprinting approaches. The compositional profiles of natural components -such as polyphenols, biogenic amines, amino acids, volatile organic compounds, and fatty acids- are the source of information to address these issues. As for fingerprinting, analytical techniques, such as chromatography, infrared, Raman, and mass spectrometry, generate rich fingerprints containing dozens of features to be used for discrimination purposes. In the two cases, the data generated are complex, so chemometric methods are usually applied to extract the underlying information. In this review, we present the state of the art of cocoa and chocolate authentication, highlighting the pros and cons of the different approaches. Besides, the relevance of the proposed methods in quality control and the novel trends for sample analysis are also discussed.
Collapse
Affiliation(s)
- Sonia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain;
- Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), 08921 Santa Coloma de Gramenet, Spain
- Serra Húnter Fellow Programme, Generalitat de Catalunya, Via Laietana 2, 08003 Barcelona, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain;
- Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
13
|
Mir-Cerdà A, Granados M, Saurina J, Sentellas S. Green Extraction of Antioxidant Compounds from Olive Tree Leaves Based on Natural Deep Eutectic Solvents. Antioxidants (Basel) 2023; 12:antiox12050995. [PMID: 37237861 DOI: 10.3390/antiox12050995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Agri-food industries generate a large amount of waste that offers great revalorization opportunities within the circular economy framework. In recent years, new methodologies for the extraction of compounds with more eco-friendly solvents have been developed, such as the case of natural deep eutectic solvents (NADES). In this study, a methodology for extracting phenolic compounds from olive tree leaves using NADES has been optimized. The conditions established as the optimal rely on a solvent composed of choline chloride and glycerol at a molar ratio of 1:5 with 30% water. The extraction was carried out at 80 °C for 2 h with constant agitation. The extracts obtained have been analyzed by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) in MRM mode. The comparison with conventional ethanol/water extraction has shown that NADES, a more environmentally friendly alternative, has improved extraction efficiency. The main polyphenols identified in the NADES extract were Luteolin-7-O-glucoside, Oleuropein, 3-Hydroxytyrosol, Rutin, and Luteolin at the concentrations of 262, 173, 129, 34, and 29 mg kg-1 fresh weight, respectively.
Collapse
Affiliation(s)
- Aina Mir-Cerdà
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
- Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E08921 Santa Coloma de Gramenet, Spain
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
- Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E08921 Santa Coloma de Gramenet, Spain
| | - Sonia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
- Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E08921 Santa Coloma de Gramenet, Spain
- Serra Húnter Fellow Programme, Generalitat de Catalunya, Via Laietana 2, E08003 Barcelona, Spain
| |
Collapse
|
14
|
An overview of the extraction and characterization of bioactive phenolic compounds from agri-food waste within the framework of circular bioeconomy. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
15
|
Characterization and Classification of Spanish Honeydew and Blossom Honeys Based on Their Antioxidant Capacity. Antioxidants (Basel) 2023; 12:antiox12020495. [PMID: 36830053 PMCID: PMC9952669 DOI: 10.3390/antiox12020495] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Honey is a very appreciated product for its nutritional characteristics and its benefits for human health, comprising antioxidant, anti-inflammatory, antifungal, and antibacterial activities. These attributes depend on the specific composition of each honey variety, with the botanical origin as one of the distinctive features. Indeed, honeydew and blossom honeys show different physicochemical properties, being the antioxidant capacity, mainly relying on the phenolic compound content, one of the most important. In this work, Folin-Ciocalteu (FC) index, total flavonoid content (TFC), and the antioxidant capacity based on the ferric reducing antioxidant power (FRAP) assay were determined for a total of 73 honeys (50 blossom honeys and 23 honeydew honeys). Mean content of oxidizable species (FC index) ranges from 0.17 to 0.7 mg eq. gallic acid g-1, with honeydew honeys being the ones with higher values. Regarding TFC, mean values above 1.5 mg eq. quercetin g-1 (method applied in the absence of NaNO2) were obtained for honeydew honeys and heather honey. Lower and not discriminatory values (below 0.3 mg eq. epicatechin g-1) were obtained in the presence of NaNO2. The maximum antioxidant capacity was observed for thyme honeys (2.2 mg eq. Trolox g-1) followed by honeydew and heather honeys. Individually, only the FC index was able to discriminate between honeydew and blossom honeys, while the other spectroscopic indexes tested allowed the differentiation of some honey types according to the botanical origin. Thus, a holistic treatment of the results was performed using partial least square discriminant analysis (PLS-DA) for classification purposes using FC, TFC, and FRAP results as data. Honeydew and blossom honey were satisfactorily discriminated (error 5%). In addition, blossom honeys can be perfectly classified according to their botanical origin based on two-class PLS-DA classification models.
Collapse
|
16
|
Wang Y, luo M, Li T, Xie C, Li S, Lei B. Multi-layer-structured bioactive glass nanopowder for multistage-stimulated hemostasis and wound repair. Bioact Mater 2023; 25:319-332. [PMID: 36844363 PMCID: PMC9946820 DOI: 10.1016/j.bioactmat.2023.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/13/2023] Open
Abstract
Current treatments for full-thickness skin injuries are still unsatisfactory due to the lack of hierarchically stimulated dressings that can integrate the rapid hemostasis, inflammation regulation, and skin tissue remodeling into the one system instead of single-stage boosting. In this work, a multilayer-structured bioactive glass nanopowder (BGN@PTE) is developed by coating the poly-tannic acid and ε-polylysine onto the BGN via facile layer-by-layer assembly as an integrative and multilevel dressing for the sequential management of wounds. In comparison to BGN and poly-tannic acid coated BGN, BGN@PTE exhibited the better hemostatic performance because of its multiple dependent approaches to induce the platelet adhesion/activation, red blood cells (RBCs) aggregation and fibrin network formation. Simultaneously, the bioactive ions from BGN facilitate the regulation of the inflammatory response while the poly-tannic acid and antibacterial ε-polylysine prevent the wound infection, promoting the wound healing during the inflammatory stage. In addition, BGN@PTE can serve as a reactive oxygen species scavenger, alleviate the oxidation stress in wound injury, induce the cell migration and angiogenesis, and promote the proliferation stage of wound repair. Therefore, BGN@PTE demonstrated the significantly higher wound repair capacity than the commercial bioglass dressing Dermlin™. This multifunctional BGN@PTE is a potentially valuable dressing for full-thickness wound management and may be expected to extend to the other wounds therapy.
Collapse
Affiliation(s)
- Yidan Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Meng luo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Ting Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Chenxi Xie
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Sihua Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China,State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710054, China,Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China,Corresponding author. Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
17
|
Yang BW, Yang S, Kim S, Baek AR, Sung B, Kim YH, Lee JT, Lee SY, Kim HK, Choi G, Park JA, Nam SW, Lee GH, Chang Y. Flavonoid-Conjugated Gadolinium Complexes as Anti-Inflammatory Theranostic Agents. Antioxidants (Basel) 2022; 11:antiox11122470. [PMID: 36552678 PMCID: PMC9774776 DOI: 10.3390/antiox11122470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
In this study, we designed, synthesized, and evaluated gadolinium compounds conjugated with flavonoids as potential theranostic agents for the treatment of inflammation. These novel theranostic agents combine a molecular imaging agent and one of three flavonoids (galangin, chrysin, and 7-hydroxyflavone) as anti-inflammatory drugs as a single integrated platform. Using these agents, MR imaging showed contrast enhancement (>10 in CNR) at inflamed sites in an animal inflammation model, and subsequent MR imaging used to monitor the therapeutic efficacy of these integrated agents revealed changes in inflamed regions. The anti-inflammatory effects of these agents were demonstrated both in vitro and in vivo. Furthermore, the antioxidant efficacy of the agents was evaluated by measuring their reactive oxygen species scavenging properties. For example, Gd-galangin at 30 μM showed a three-fold higher ROS scavenging of DPPH. Taken together, our findings provide convincing evidence to indicate that flavonoid-conjugated gadolinium compounds can be used as potentially efficient theranostic agents for the treatment of inflammation.
Collapse
Affiliation(s)
- Byeong Woo Yang
- Department of Medical & Biological Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Sohyeon Yang
- Department of Medical Science, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Soyeon Kim
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Ah Rum Baek
- Institute of Biomedical Engineering Research, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Bokyung Sung
- Department of Medical & Biological Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Yeoun-Hee Kim
- R&D Center, Etnova Therapeutics Corp., 124, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13207, Republic of Korea
| | - Jung Tae Lee
- Institute of Biomedical Engineering Research, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Sang Yun Lee
- Department of Medical & Biological Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Hee-Kyung Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, 88 Dongnae-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Garam Choi
- R&D Center, Etnova Therapeutics Corp., 124, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13207, Republic of Korea
| | - Ji-Ae Park
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Gang-Ho Lee
- Department of Chemistry, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Yongmin Chang
- Department of Medical & Biological Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Department of Medical Science, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Institute of Biomedical Engineering Research, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Department of Radiology, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea
- Correspondence: ; Tel.: +82-53-420-5471
| |
Collapse
|
18
|
Moazzen A, Öztinen N, Ak-Sakalli E, Koşar M. Structure-antiradical activity relationships of 25 natural antioxidant phenolic compounds from different classes. Heliyon 2022; 8:e10467. [PMID: 36091954 PMCID: PMC9459676 DOI: 10.1016/j.heliyon.2022.e10467] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, 11 hydroxybenzoic acids, 6 hydroxycinnamic acids, 6 flavonoids, and 2 synthetic phenolic antioxidants were evaluated according to their scavenging capacity and structure relationships. The IC50 was calculated for all compounds and the effects of the concentration of antioxidant and the length of the reaction on antioxidant capacity were taken into consideration. Based on the data of tested phenolics some structure-activity relationships were suggested and discussed in detail. Poor correspondence of the results between ABTS+• and DPPH• assays was attained, indicating that the antioxidant properties of each compound differ with regards to the applied method. Nevertheless, it can be argued that the number of electron-donating substituents (-OH and -OCH3) and their configuration has a significant impact on the antioxidant capacity. Undoubtedly, concerns about the reliability of these assays demand further in-depth investigations to give detailed insight into the structure and antioxidant activity relationships.
Collapse
|
19
|
Tapia-Quirós P, Montenegro-Landívar MF, Vecino X, Alvarino T, Cortina JL, Saurina J, Granados M, Reig M. A green approach to phenolic compounds recovery from olive mill and winery wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155552. [PMID: 35489508 DOI: 10.1016/j.scitotenv.2022.155552] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study was to evaluate the recovery of phenolic compounds from olive mill and winery wastes by conventional solid-liquid extraction (SLE) using water as the extraction solvent. The studied variables were extraction time (5-15 min), temperature (25-90 °C), solid-to-liquid ratio (1:10-1:100 (kg/L)), pH (3-10) and application of multiple extractions (1-3). The extraction efficiency was evaluated in terms of total phenolic content (TPC), determined by high performance liquid chromatography (HPLC-UV), but also from the recovery of some representative phenolic compounds. The optimized conditions were one extraction step, 10 min, 25 °C, 1:30 (kg/L), pH 5 for olive pomace, and one extraction step, 10 min, 70 °C, 1:100 (kg/L), pH 5 for winery residues. The extraction method is simple and suitable for scaling-up in industry, and the aqueous extracts are fully compatible with further purification schemes based on the use of membranes or resins. The optimized technique was applied to a set of different representative residues from olive mill and winery industries, to assess their suitability as sources for phenolic compounds recovery. The phenolic content in the extracts was evaluated by chromatographic analysis and by the Folin-Ciocalteu assay (FC). Furthermore, the antioxidant capacity was determined by 2,2-azinobis-3-etilbenzotiazolina-6-sulfonat (ABTS), 2,-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Because of their high contents in phenolic compounds and great antioxidant capacity, olive pomace and lees filters were identified as especially suited sources for phenolic compounds recovery.
Collapse
Affiliation(s)
- Paulina Tapia-Quirós
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain.
| | - Maria Fernanda Montenegro-Landívar
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain.
| | - Xanel Vecino
- CINTECX, University of Vigo, Chemical Engineering Department, 36310 Vigo, Spain.
| | - Teresa Alvarino
- Galician Water Research Center Foundation (Cetaqua Galicia), University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - José Luis Cortina
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; CETAQUA, Carretera d'Esplugues, 75, 08940 Cornellà de Llobregat, Spain.
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Mònica Reig
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain.
| |
Collapse
|
20
|
ALNasser MN, Mellor IR, Carter WG. A Preliminary Assessment of the Nutraceutical Potential of Acai Berry ( Euterpe sp.) as a Potential Natural Treatment for Alzheimer's Disease. Molecules 2022; 27:4891. [PMID: 35956841 PMCID: PMC9370152 DOI: 10.3390/molecules27154891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by progressive neuronal atrophy and the loss of neuronal function as a consequence of multiple pathomechanisms. Current AD treatments primarily operate at a symptomatic level to treat a cholinergic deficiency and can cause side effects. Hence, there is an unmet need for healthier lifestyles to reduce the likelihood of AD as well as improved treatments with fewer adverse reactions. Diets rich in phytochemicals may reduce neurodegenerative risk and limit disease progression. The native South American palm acai berry (Euterpe oleraceae) is a potential source of dietary phytochemicals beneficial to health. This study aimed to screen the nutraceutical potential of the acai berry, in the form of aqueous and ethanolic extracts, for the ability to inhibit acetyl- and butyryl-cholinesterase (ChE) enzymes and scavenge free radicals via 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) or 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays. In addition, this study aimed to quantify the acai berry's antioxidant potential via hydrogen peroxide or hydroxyl scavenging, nitric oxide scavenging, lipid peroxidation inhibition, and the ability to reduce ferric ions. Total polyphenol and flavonoid contents were also determined. Acai aqueous extract displayed a concentration-dependent inhibition of acetyl- and butyryl-cholinesterase enzymes. Both acai extracts displayed useful concentration-dependent free radical scavenging and antioxidant abilities, with the acai ethanolic extract being the most potent antioxidant and displaying the highest phenolic and flavonoid contents. In summary, extracts of the acai berry contain nutraceutical components with anti-cholinesterase and antioxidant capabilities and may therefore provide a beneficial dietary component that limits the pathological deficits evidenced in AD.
Collapse
Affiliation(s)
- Maryam N. ALNasser
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box No. 400, Al-Ahsa 31982, Saudi Arabia;
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Ian R. Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Wayne G. Carter
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| |
Collapse
|
21
|
Quantitative Structure-Property Relationship (QSPR) of Plant Phenolic Compounds in Rapeseed Oil and Comparison of Antioxidant Measurement Methods. Processes (Basel) 2022. [DOI: 10.3390/pr10071281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Natural antioxidants are known for their ability to scavenge free radicals and protect oils from oxidation. Our aim was to study the structural properties such as the number of hydroxyl groups and Bors criteria of phenolic substances leading to high antioxidant activity in oil in order to analyze common trends and differences in widespread in vitro antioxidant assays. Therefore, 20 different phenolic substances were incorporated into rapeseed oil and were measured using pressurized differential scanning calorimetry (P-DSC) and the Rancimat method. The Bors criteria had the highest influence on the antioxidant effect in rapeseed oil, which is why myricetin (MYR), fulfilling all Bors criteria, reached the highest result of the flavonoids. In the Rancimat test and P-DSC, MYR obtained an increase in oxidation induction time (OIT) of 231.1 ± 44.6% and 96.8 ± 1.8%, respectively. Due to differences in the measurement parameters, the results of the Rancimat test and P-DSC were only partially in agreement. Furthermore, we compared the results to in vitro assays (ABTS, DPPH, FC and ORAC) in order to evaluate their applicability as alternative rapid methods. These analysis showed the highest correlation of the oil methods with the results of the DPPH assay, which is, therefore, most suitable to predict the antioxidant behavior of oil.
Collapse
|
22
|
El Moujahed S, Dinica RM, Cudalbeanu M, Avramescu SM, Msegued Ayam I, Ouazzani Chahdi F, Kandri Rodi Y, Errachidi F. Characterizations of Six Pomegranate ( Punica granatum L.) Varieties of Global Commercial Interest in Morocco: Pomological, Organoleptic, Chemical and Biochemical Studies. Molecules 2022; 27:molecules27123847. [PMID: 35744970 PMCID: PMC9227946 DOI: 10.3390/molecules27123847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/10/2022] Open
Abstract
Pomegranate variety properties are important not only to demonstrate their diversity but also to satisfy the current market need for high-quality fruits. This study aims to characterize pomological and physico-chemical features as well as the antioxidant capacity of Moroccan local cultivars (Djeibi, Mersi, Sefri 1 and Sefri 2) compared to the imported ones (Mollar de Elche and Hicaz). The pomological characteristics of varieties were relatively diverse. The juice varieties (PJ) displayed a marketed variability in organoleptic and quality properties, such as the flavor, juice yield, and micro/macronutrients contents. Interrelationships among the analyzed properties and PJ varieties were investigated by principal component analysis (PCA). Dimension of the data set was reduced to two components by PCA accounting for 64.53% of the variability observed. The rinds varieties (PR) were studied for their total phenolics, flavonoids, and condensed tannins quantifications. PR varieties extracts exhibited different levels of free radical scavenging activity and local varieties revealed a greater potential with stability over time. The HPLC-DAD analyses of PR extracts revealed (+) catechin as the major compound, where the highest content was found for the local varieties. The SEC analysis showed the molecular weight distribution of phenolic compounds with a high size of condensed tannins formed by the polymerization of the catechin monomer. Given these properties, this research provides an easy selection of high-quality fruits as potential candidates for local market needs.
Collapse
Affiliation(s)
- Sara El Moujahed
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Street, B.P. 2202, Fez 30050, Morocco; (F.O.C.); (Y.K.R.)
- Laboratory of Organic Chemistry, Faculty of Sciences and Environment, Dunarea de Jos University of Galati, 111 Domneasca Street, 800201 Galati, Romania
- Correspondence: (S.E.M.); or (R.-M.D.)
| | - Rodica-Mihaela Dinica
- Laboratory of Organic Chemistry, Faculty of Sciences and Environment, Dunarea de Jos University of Galati, 111 Domneasca Street, 800201 Galati, Romania
- Correspondence: (S.E.M.); or (R.-M.D.)
| | - Mihaela Cudalbeanu
- Research Center for Environmental Protection and Waste Management (PROTMED), University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (M.C.); (S.M.A.)
| | - Sorin Marius Avramescu
- Research Center for Environmental Protection and Waste Management (PROTMED), University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (M.C.); (S.M.A.)
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Soseaua Panduri, 050663 Bucharest, Romania
| | - Iman Msegued Ayam
- Laboratory of Functional Ecology and Engineering Environment, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Street, B.P. 2202, Fez 30050, Morocco; (I.M.A.); (F.E.)
| | - Fouad Ouazzani Chahdi
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Street, B.P. 2202, Fez 30050, Morocco; (F.O.C.); (Y.K.R.)
| | - Youssef Kandri Rodi
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Street, B.P. 2202, Fez 30050, Morocco; (F.O.C.); (Y.K.R.)
| | - Faouzi Errachidi
- Laboratory of Functional Ecology and Engineering Environment, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Street, B.P. 2202, Fez 30050, Morocco; (I.M.A.); (F.E.)
| |
Collapse
|
23
|
Otero C, Miranda-Rojas S, Llancalahuén FM, Fuentes JA, Atala C, González-Silva G, Verdugo D, Sierra-Rosales P, Moreno A, Gordillo-Fuenzalida F. Biochemical characterization of Peumus boldus fruits: Insights of its antioxidant properties through a theoretical approach. Food Chem 2022; 370:131012. [PMID: 34500293 DOI: 10.1016/j.foodchem.2021.131012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/29/2021] [Accepted: 08/29/2021] [Indexed: 11/17/2022]
Abstract
Peumus boldus is an endemic tree species from Chile whose leaves have been the focus of study for decades given that their infusions are reported to relieve rheumatic symptoms, headache, dyspepsia, urinary tract inflammation, and symptoms of other illnesses. These health properties have been studied mainly using leaves and bark, then it is relevant to know more about these properties in different parts of the plant. Considering the importance of P. boldus fruits in the diet of some rural populations, we analyzed their properties to explore its impact on the Chilean population health. Liquid chromatography and mass spectrometry analysis confirmed the presence of alkaloids such as boldine, although aporphine N-methyl-laurotetanine was the most abundant. In addition, flavonoids catechin, chrysin and quercetin were also found in the extract. Cytotoxicity and anti-inflammatory activities of the fruit extract were invitro tested by using a murine macrophage cell model, observing that a diluted fraction of the extract was not cytotoxic, but showed anti-inflammatory activity, which is likely attributed to antioxidants activities. By means of quantum chemical calculations, we calculated the redox potential of the respective alkaloids and flavonoids found in the extract. Results suggest a synergistic effect between alkaloids and flavonoids, where boldine and N-methyl-laurotetanine showed similar antioxidant properties. Finally, we present a description of the oxidation mechanisms for both groups of molecules which will sustain P. boldus fruit biological properties, in order to give this kind of fruits scientific value focusing on human health.
Collapse
Affiliation(s)
- Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, República 252, Santiago, Chile
| | - Sebastián Miranda-Rojas
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 275, Santiago, Chile
| | - Felipe M Llancalahuén
- Laboratorio de Patofisiología Integrativa, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; Núcleo Milenio de Enfermedades Asociadas a Canales Iónicos (MiNICAD), Universidad de Chile, Santiago 8380453, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Cristian Atala
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Avenida Universidad 330, Valparaíso, Chile
| | - Gloria González-Silva
- Laboratorio de Microbiología Aplicada, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avda. San Miguel 3605, Talca, Chile
| | - Diego Verdugo
- Laboratorio de Microbiología Aplicada, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avda. San Miguel 3605, Talca, Chile
| | - Paulina Sierra-Rosales
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O Box 8940577, San Joaquín, Santiago, Chile
| | - Adrián Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago, Chile
| | - Felipe Gordillo-Fuenzalida
- Laboratorio de Microbiología Aplicada, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avda. San Miguel 3605, Talca, Chile.
| |
Collapse
|
24
|
Vidal-Casanella O, Moreno-Merchan J, Granados M, Nuñez O, Saurina J, Sentellas S. Total Polyphenol Content in Food Samples and Nutraceuticals: Antioxidant Indices versus High Performance Liquid Chromatography. Antioxidants (Basel) 2022; 11:324. [PMID: 35204207 PMCID: PMC8868288 DOI: 10.3390/antiox11020324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/25/2023] Open
Abstract
Total polyphenol content and antioxidant capacity were estimated in various food and nutraceutical samples, including cranberries, raspberries, artichokes, grapevines, green tea, coffee, turmeric, and other medicinal plant extracts. Samples were analyzed by using two antioxidant assays-ferric reducing antioxidant power (FRAP) and Folin-Ciocalteu (FC)-and a reversed-phase high-performance liquid chromatography (HPLC), with a focus on providing compositional fingerprints dealing with polyphenolic compounds. A preliminary data exploration via principal component analysis (PCA) revealed that HPLC fingerprints were suitable chemical descriptors to classify the analyzed samples according to their nature. Moreover, chromatographic data were correlated with antioxidant data using partial least squares (PLS) regression. Regression models have shown good prediction capacities in estimating the antioxidant activity from chromatographic data, with determination coefficients (R2) of 0.971 and 0.983 for FRAP and FC assays, respectively.
Collapse
Affiliation(s)
- Oscar Vidal-Casanella
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain; (O.V.-C.); (J.M.-M.); (M.G.); (O.N.); (S.S.)
| | - Javier Moreno-Merchan
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain; (O.V.-C.); (J.M.-M.); (M.G.); (O.N.); (S.S.)
| | - Merce Granados
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain; (O.V.-C.); (J.M.-M.); (M.G.); (O.N.); (S.S.)
| | - Oscar Nuñez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain; (O.V.-C.); (J.M.-M.); (M.G.); (O.N.); (S.S.)
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Avenue Prat de la Riba 171, Edifici de Recerca (Gaudí), E-08921 Santa Coloma de Gramenet, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain; (O.V.-C.); (J.M.-M.); (M.G.); (O.N.); (S.S.)
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Avenue Prat de la Riba 171, Edifici de Recerca (Gaudí), E-08921 Santa Coloma de Gramenet, Spain
| | - Sonia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain; (O.V.-C.); (J.M.-M.); (M.G.); (O.N.); (S.S.)
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Avenue Prat de la Riba 171, Edifici de Recerca (Gaudí), E-08921 Santa Coloma de Gramenet, Spain
- Serra Húnter Fellow, Generalitat de Catalunya, Rambla de Catalunya 19-21, E-08007 Barcelona, Spain
| |
Collapse
|
25
|
Tapia-Quirós P, Montenegro-Landívar MF, Reig M, Vecino X, Cortina JL, Saurina J, Granados M. Recovery of Polyphenols from Agri-Food By-Products: The Olive Oil and Winery Industries Cases. Foods 2022; 11:362. [PMID: 35159513 PMCID: PMC8834469 DOI: 10.3390/foods11030362] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The production of olive oil and wine are two of the main agri-food economic activities in Southern Europe. They generate large amounts of solid and liquid wastes (e.g., olive pomace, olive mill wastewater, grape pomace, grape stems, wine lees, and wine processing wastewater) that represent a major environmental problem. Consequently, the management of these residues has become a big challenge for these industries, since they are harmful to the environment but rich in bioactive compounds, such as polyphenols. In recent years, the recovery of phenolic compounds has been proposed as a smart strategy for the valorization of these by-products, from a circular economy perspective. This review aims to provide a comprehensive description of the state of the art of techniques available for the analysis, extraction, and purification of polyphenols from the olive mill and winery residues. Thus, the integration and implementation of these techniques could provide a sustainable solution to the olive oil and winery sectors.
Collapse
Affiliation(s)
- Paulina Tapia-Quirós
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - María Fernanda Montenegro-Landívar
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Mònica Reig
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Chemical Engineering Department, Research Center in Technologies, Energy and Industrial Processes—CINTECX, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain
| | - José Luis Cortina
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Water Technology Center—CETAQUA, Carretera d’Esplugues, 75, 08940 Cornellà de Llobregat, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
| |
Collapse
|
26
|
Montenegro-Landívar MF, Tapia-Quirós P, Vecino X, Reig M, Valderrama C, Granados M, Cortina JL, Saurina J. Recovery of Added-Value Compounds from Orange and Spinach Processing Residues: Green Extraction of Phenolic Compounds and Evaluation of Antioxidant Activity. Antioxidants (Basel) 2021; 10:antiox10111800. [PMID: 34829670 PMCID: PMC8614849 DOI: 10.3390/antiox10111800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Phenolic compounds recovery by mechanical stirring extraction (MSE) was studied from orange and spinach wastes using water as a solvent. The statistical analysis showed that the highest total polyphenol content (TPC) yield was obtained using 15 min, 70 °C, 1:100 (w/v) solid/solvent ratio and pH 4 for orange; and 5 min, 50 °C, 1:50 (w/v) solid/solvent ratio and pH 6 for spinach. Under these conditions, the TPC was 1 mg gallic acid equivalent (GAE) g-1 fresh weight (fw) and 0.8 mg GAE g-1 fw for orange and spinach, respectively. MSE substantially increased the phenolic compounds yields (1-fold for orange and 2-fold for spinach) compared with ultrasound-assisted extraction. Furthermore, the antioxidant activity of orange and spinach extracts was evaluated using DPPH, FRAP and ABTS. The obtained results pointed out that the evaluated orange and spinach residues provided extracts with antioxidant activity (2.27 mg TE g-1 and 0.04 mg TE g-1, respectively).
Collapse
Affiliation(s)
- María Fernanda Montenegro-Landívar
- Chemical Engineering Department, East Barcelona Engineering School (EEBE), Campus Diagonal-Besòs, Polytechnical University of Catalonia (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, 08930 Barcelona, Spain; mafernandy-@hotmail.com (M.F.M.-L.); (P.T.-Q.); (X.V.); (M.R.); (C.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Paulina Tapia-Quirós
- Chemical Engineering Department, East Barcelona Engineering School (EEBE), Campus Diagonal-Besòs, Polytechnical University of Catalonia (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, 08930 Barcelona, Spain; mafernandy-@hotmail.com (M.F.M.-L.); (P.T.-Q.); (X.V.); (M.R.); (C.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Xanel Vecino
- Chemical Engineering Department, East Barcelona Engineering School (EEBE), Campus Diagonal-Besòs, Polytechnical University of Catalonia (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, 08930 Barcelona, Spain; mafernandy-@hotmail.com (M.F.M.-L.); (P.T.-Q.); (X.V.); (M.R.); (C.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Chemical Engineering Department, School of Industrial Engineering-CINTECX, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain
| | - Mònica Reig
- Chemical Engineering Department, East Barcelona Engineering School (EEBE), Campus Diagonal-Besòs, Polytechnical University of Catalonia (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, 08930 Barcelona, Spain; mafernandy-@hotmail.com (M.F.M.-L.); (P.T.-Q.); (X.V.); (M.R.); (C.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - César Valderrama
- Chemical Engineering Department, East Barcelona Engineering School (EEBE), Campus Diagonal-Besòs, Polytechnical University of Catalonia (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, 08930 Barcelona, Spain; mafernandy-@hotmail.com (M.F.M.-L.); (P.T.-Q.); (X.V.); (M.R.); (C.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain;
| | - José Luis Cortina
- Chemical Engineering Department, East Barcelona Engineering School (EEBE), Campus Diagonal-Besòs, Polytechnical University of Catalonia (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, 08930 Barcelona, Spain; mafernandy-@hotmail.com (M.F.M.-L.); (P.T.-Q.); (X.V.); (M.R.); (C.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- CETAQUA, Carretera d’Esplugues, 75, 08940 Cornellà de Llobregat, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain;
- Correspondence:
| |
Collapse
|
27
|
Rai DK, Tzima K. A Review on Chromatography-Mass Spectrometry Applications on Anthocyanin and Ellagitannin Metabolites of Blackberries and Raspberries. Foods 2021; 10:foods10092150. [PMID: 34574260 PMCID: PMC8467619 DOI: 10.3390/foods10092150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Berries have been widely assessed for their beneficial health effects, predominately due to their high (poly)phenol content of anthocyanins and ellagitannins. After ellagitannins and ellagic acid are metabolized by the gut microbiome, a class of compounds known as urolithins are produced, which exert potential advantageous health effects. Anthocyanins, on the other hand, undergo a complex metabolic pathway after their interaction with microbial and endogenous enzymes, forming a broad range of metabolites and catabolic products. In most cases, in vitro models and cell lines are used to generate metabolites, whereas their assessment in vivo is currently limited. Thus far, several analytical methods have been developed for the qualitative and quantitative analysis of phenolic metabolites in berries, including liquid chromatography, mass spectrometry, and other hyphenated techniques, and have been undoubtedly valuable tools for the detailed metabolite characterization and profiling. In this review, a compilation of studies providing information on the qualitative and quantitative analysis of (poly)phenol metabolites in blackberries and raspberries after the utilization of in vitro and in vivo methods is presented. The different analytical techniques employed are assessed, focusing on the fate of the produced metabolic compounds in order to provide evidence on their characteristics, formation, and beneficial effects.
Collapse
|
28
|
Analytical Methods for Exploring Nutraceuticals Based on Phenolic Acids and Polyphenols. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phenolic compounds such as phenolic acids, flavonoids, and stilbenes comprise an enormous family of bioactive molecules with a range of positive properties, including antioxidant, antimicrobial, or anti-inflammatory effects. As a result, plant extracts are often purified to recover phenolic compound-enriched fractions to be used to develop nutraceutical products or dietary supplements. In this article, we review the properties of some remarkable plant-based nutraceuticals in which the active molecules are mainly polyphenols and related compounds. Methods for the characterization of these extracts, the chemical determination of the bioactivities of key molecules, and the principal applications of the resulting products are discussed in detail.
Collapse
|
29
|
Abstract
This paper is focused on the assessment of a multi-sensor approach to improve the overall characterization of sparkling wines (cava wines). Multi-sensor, low-level data fusion can provide more comprehensive and more accurate vision of results compared with the study of simpler data sets from individual techniques. Data from different instrumental platforms were combined in an enriched matrix, integrating information from spectroscopic (UV/Vis and FTIR), chromatographic, and other techniques. Sparkling wines belonging to different classes, which differed in the grape varieties, coupages, and wine-making processes, were analyzed to determine organic acids (e.g., tartaric, lactic, malic, and acetic acids), pH, total acidity, polyphenols, total antioxidant capacity, ethanol, or reducing sugars. The resulting compositional values were treated chemometrically for a more efficient recovery of the underlaying information. In this regard, exploratory methods such as principal component analysis showed that phenolic compounds were dependent on varietal and blending issues while organic acids were more affected by fermentation features. The analysis of the multi-sensor data set provided a more comprehensive description of cavas according to grape classes, blends, and vinification processes. Hierarchical Cluster Analysis (HCA) allowed specific groups of samples to be distinguished, featuring malolactic fermentation and the chardonnay and red grape classes. Partial Least Squares-Discriminant Analysis (PLS-DA) also classified samples according to the type of grape varieties and fermentations. Bar charts and complementary statistic test were performed to better define the differences among the studied samples based on the most significant markers of each cava wine type. As a conclusion, catechin, gallic, gentisic, caftaric, caffeic, malic, and lactic acids were the most remarkable descriptors that contributed to their discrimination based on varietal, blending, and oenological factors.
Collapse
|
30
|
Platzer M, Kiese S, Herfellner T, Schweiggert-Weisz U, Eisner P. How Does the Phenol Structure Influence the Results of the Folin-Ciocalteu Assay? Antioxidants (Basel) 2021; 10:antiox10050811. [PMID: 34065207 PMCID: PMC8160659 DOI: 10.3390/antiox10050811] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 12/05/2022] Open
Abstract
Plants produce a diverse array of secondary metabolites that are generally nonessential but facilitate ecological interactions. Fruits, vegetables, seeds and nuts can accumulate bioactive secondary metabolites with health-promoting properties, including the potent antioxidant activities of phenolic compounds. Several in vitro assays have been developed to measure the polyphenol content and antioxidant activity of plant extracts, e.g., the simple and highly popular Folin-Ciocalteu (FC) assay. However, the literature contains a number of different descriptions of the assay and it is unclear whether the assay measures the polyphenol content or reducing capacity of the sample. To determine the influence of phenolic structures on the outcome of the FC assay, we tested phenols representing different subgroups (phenolic acids, flavonols, flavanols, dihydrochalcones and flavanones). We observed different results for each reference substance and subgroup. Accordingly, we concluded that the FC assay does not measure the polyphenol content of a sample but determines its reducing capacity instead. Assigning the substances to five structural classes showed that the FC results depend on the number of fulfilled Bors criteria. If a molecule fulfills none of the Bors criteria, the FC results depend on the number of OH groups. We did not find a correlation with other single electron transfer assays (e.g., ABTS and DPPH assays). Furthermore, the FC assay was compatible with all five subgroups and should be preferred over the DPPH assay, which is specific for extracts rich in dihydrochalcones or flavanones.
Collapse
Affiliation(s)
- Melanie Platzer
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany;
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany; (S.K.); (T.H.); (U.S.-W.)
- Correspondence:
| | - Sandra Kiese
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany; (S.K.); (T.H.); (U.S.-W.)
| | - Thomas Herfellner
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany; (S.K.); (T.H.); (U.S.-W.)
| | - Ute Schweiggert-Weisz
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany; (S.K.); (T.H.); (U.S.-W.)
- Chair of Food Science, Institute for Nutritional and Food Sciences, University of Bonn, Meckenheimer Allee 166a, 53113 Bonn, Germany
| | - Peter Eisner
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany;
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany; (S.K.); (T.H.); (U.S.-W.)
- Faculty of Technology and Engineering, Steinbeis-Hochschule, George-Bähr-Str. 8, 01069 Dresden, Germany
| |
Collapse
|
31
|
Liquid Chromatographic Fingerprints for the Characterization of Flavanol-Rich Nutraceuticals Based on 4-Dimethylaminocinnamaldehyde Precolumn Derivatization. Sci Pharm 2021. [DOI: 10.3390/scipharm89020018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Flavanols consist of a great family of bioactive molecules displaying a wide range of health-promoting attributes for humans, including antioxidant, antimicrobial or anti-inflammatory effects. As a result, botanical species rich in this type of compound are often used to develop nutraceutical products or dietary supplements with recognized healthy attributes. This paper aims at characterizing nutraceutical products using liquid chromatographic fingerprints related to flavanol composition. Catechins and their oligomers were exploited to characterize and authenticate various commercial products prepared with extracts of red berries and medicinal plants. These compounds resulted in interesting descriptors of some fruits and vegetables, thus providing an additional perspective for the study of nutraceuticals. For such a purpose, a new method based on liquid chromatography with UV/Vis detection (HPLC–UV/Vis) with precolumn derivatization with 4-dimethylaminocinnamaldehyde was developed. Results indicated that the separation of flavanols was very complex due to the degradation of procyanidin derivatives. The resulting data sets were analyzed using chemometric methods such as principal component analysis and partial least square–discriminant analysis. Despite the complexity of chromatographic fingerprints, nutraceutical samples could be discriminated according to their main ingredients. In general, catechin and epicatechin were the most abundant compounds in the different samples, and procyanidin A2 was highly specific to cranberry.
Collapse
|
32
|
Analytical Methods Used in Determining Antioxidant Activity: A Review. Int J Mol Sci 2021; 22:ijms22073380. [PMID: 33806141 PMCID: PMC8037236 DOI: 10.3390/ijms22073380] [Citation(s) in RCA: 521] [Impact Index Per Article: 173.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
The study of antioxidants and their implications in various fields, from food engineering to medicine and pharmacy, is of major interest to the scientific community. The present paper is a critical presentation of the most important tests used to determine the antioxidant activity, detection mechanism, applicability, advantages and disadvantages of these methods. Out of the tests based on the transfer of a hydrogen atom, the following were presented: the Oxygen Radical Absorption Capacity (ORAC) test, the Hydroxyl Radical Antioxidant Capacity (HORAC) test, the Total Peroxyl Radical Trapping Antioxidant Parameter (TRAP) test, and the Total Oxyradical Scavenging Capacity (TOSC) test. The tests based on the transfer of one electron include the Cupric Reducing Antioxidant Power (CUPRAC) test, the Ferric Reducing Antioxidant Power (FRAP) test, the Folin-Ciocalteu test. Mixed tests, including the transfer of both a hydrogen atom and an electron, include the 2,2'-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) test, and the [2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl] (DPPH) test. All these assays are based on chemical reactions and assessing the kinetics or reaching the equilibrium state relies on spectrophotometry, presupposing the occurrence of characteristic colours or the discolouration of the solutions to be analysed, which are processes monitored by specific wavelength adsorption. These assays were successfully applied in antioxidant analysis or the determination of the antioxidant capacity of complex samples. As a complementary method in such studies, one may use methods based on electrochemical (bio)sensors, requiring stages of calibration and validation. The use of chemical methods together with electrochemical methods may result in clarification of the operating mechanisms and kinetics of the processes involving several antioxidants.
Collapse
|
33
|
Wang J, Zhang X, Shi K, Zhang Q. Optical Devices Constructed From Responsive Microgels for Polyphenols Detection. Front Chem 2021; 9:580025. [PMID: 33777892 PMCID: PMC7991913 DOI: 10.3389/fchem.2021.580025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 02/01/2021] [Indexed: 11/30/2022] Open
Abstract
Polyphenols are used as antioxidants in various foods and beverages, which are considered to be a health benefit. The measurement of polyphenols contents is of great interest in food chemistry and health science. This work reported a microgels based photonic device (etalon) to detect polyphenols. Dopamine was used as a model compound of polyphenols. Herein, we proposed a “block” concept for dopamine detection. The dopamine was oxidized and formed dopamine films catalyzed by tyrosinase on the surface of etalon. As the etalon was immersed in ZnCl2, the dopamine films blocked the ZnCl2 diffusion into etalon that caused optical property changes. The film thickness is associated with the concentration of dopamine which can be readout via optical signals.
Collapse
Affiliation(s)
- Jingying Wang
- Department of Laboratory, 15189 Accredited Laboratory, Jilin Province Drug Resistance Monitoring Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xieli Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering University of Science and Technology of China, Hefei, China
| | - Kaiyao Shi
- Provincial Key Laboratory for Gene Diagnosis of Cardiovascular Disease, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis, Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering University of Science and Technology of China, Hefei, China
| |
Collapse
|
34
|
Li L, Li S, Yu X, Chen Z. Visual detection of multiple antioxidants based on three chloroauric acid/Au-Ag nanocubes. Mikrochim Acta 2021; 188:122. [PMID: 33694068 DOI: 10.1007/s00604-021-04774-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
A colorimetric sensing method is described for discrimination of multiple antioxidants based on core-shell Au@Ag nanocubes (NCs). In order to extract data-rich colorimetric responses from the sensor array, three different concentrations of chloroaurate acid (HAuCl4) were employed as sensing elements. Interestingly, Au3+ ions can be reduced to different valence states (i.e., Au(0) and Au(I)) by different antioxidants, and thus effectively inhibit the oxidation etching process of Au@Ag NCs by Au(III) ions to varying extents, generating diverse colorimetric responses (color and absorbance). This enables identification of the six antioxidants at 10 nM via linear discriminant analysis (LDA) with relative standard deviation (RSD) of 2.52% (n = 3). The discrimination ability of the sensor array was further evaluated in antioxidant binary and multicomponent mixtures. Remarkably, identification of these six antioxidants spiked in urine was realized with 100% of accuracy. Schematic presentation of colorimetric assay for antioxidants based on three chloroauric acid/Au-Ag nanocubes.
Collapse
Affiliation(s)
- Li Li
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, 453003, China.
| | - Siqun Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Xinjie Yu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zhengbo Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
35
|
Platzer M, Kiese S, Herfellner T, Schweiggert-Weisz U, Miesbauer O, Eisner P. Common Trends and Differences in Antioxidant Activity Analysis of Phenolic Substances Using Single Electron Transfer Based Assays. Molecules 2021; 26:molecules26051244. [PMID: 33669139 PMCID: PMC7956415 DOI: 10.3390/molecules26051244] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Numerous assays were developed to measure the antioxidant activity, but each has limitations and the results obtained by different methods are not always comparable. Popular examples are the DPPH and ABTS assay. Our aim was to study similarities and differences of these two assay regarding the measured antioxidant potentials of 24 phenolic compounds using the same measurement and evaluation methods. This should allow conclusions to be drawn as to whether one of the assays is more suitable for measuring specific subgroups like phenolic acids, flavonols, flavanones, dihydrochalcones or flavanols. The assays showed common trends for the mean values of most of the subgroups. Some dihydrochalcones and flavanones did not react with the DPPH radical in contrast to the ABTS radical, leading to significant differences. Therefore, to determine the antioxidant potential of dihydrochalcone or flavanone-rich extracts, the ABTS assay should be preferred. We found that the results of the flavonoids in the DPPH assay were dependent on the Bors criteria, whereas the structure–activity relationship in the ABTS assay was not clear. For the phenolic acids, the results in the ABTS assay were only high for pyrogallol structures, while the DPPH assay was mainly determined by the number of OH groups.
Collapse
Affiliation(s)
- Melanie Platzer
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany;
- Fraunhofer Institue for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany; (S.K.); (T.H.); (U.S.-W.)
- Correspondence:
| | - Sandra Kiese
- Fraunhofer Institue for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany; (S.K.); (T.H.); (U.S.-W.)
- Chair of Food Packaging Technology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Steig 22, 85354 Freising, Germany;
| | - Thomas Herfellner
- Fraunhofer Institue for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany; (S.K.); (T.H.); (U.S.-W.)
| | - Ute Schweiggert-Weisz
- Fraunhofer Institue for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany; (S.K.); (T.H.); (U.S.-W.)
- Chair of Food Science, Institute for Nutritional and Food Sciences, University of Bonn, Meckenheimer Allee 166a, 53113 Bonn, Germany
| | - Oliver Miesbauer
- Chair of Food Packaging Technology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Steig 22, 85354 Freising, Germany;
| | - Peter Eisner
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany;
- Fraunhofer Institue for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany; (S.K.); (T.H.); (U.S.-W.)
| |
Collapse
|
36
|
ÖZTÜRK M, DEMİR E, OZDAL T. Voltammetric and spectrophotometric pathways for the determination of total antioxidant capacity in commercial turnip juice. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2020. [DOI: 10.18596/jotcsa.752982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
37
|
Tapia-Quirós P, Montenegro-Landívar MF, Reig M, Vecino X, Alvarino T, Cortina JL, Saurina J, Granados M. Olive Mill and Winery Wastes as Viable Sources of Bioactive Compounds: A Study on Polyphenols Recovery. Antioxidants (Basel) 2020; 9:E1074. [PMID: 33139671 PMCID: PMC7694004 DOI: 10.3390/antiox9111074] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 01/06/2023] Open
Abstract
In this study, the recovery of polyphenols from olive oil mill and winery waste was investigated. The performance of ultrasound assisted extraction (UAE), microwave assisted extraction (MAE), and pressurized liquid extraction (PLE) was assessed using ethanol-water mixtures, which are compatible with food, nutraceutical, and cosmetic applications. The extraction efficiency from olive pomace and lees samples was evaluated in terms of total polyphenol content (TPC), determined by high performance liquid chromatography (HPLC) and Folin-Ciocalteu assay. The effect of solvent composition, temperature, and time was analyzed by response surface methodology. Ethanol:water 50:50 (v/v) was found to be a suitable solvent mixture for both kinds of samples and all three extraction techniques. The performance of the extraction techniques was evaluated, under optimal experimental conditions, with a set of different representative samples of residues from olive oil and wine production. Overall, the best extraction efficiency for olive pomace residues was provided by MAE (ethanol:water 50:50 (v/v), 90 °C, 5 min), and for wine residues by PLE (ethanol:water 50:50 (v/v), 100 °C, 5 min, 1 cycle). However, the results provided by UAE (ethanol:water 50:50 (v/v), 30 min) were also suitable. Considering not only extraction performance, but also investment and operational costs, UAE is proposed for a future scaling up evaluation. Regarding olive pomace as a source for natural phenolic antioxidants, olive variety and climatic conditions should be taken into account, since both influence TPC in the extracts, while for winery residues, lees from red wines are more suitable than those from white wines.
Collapse
Affiliation(s)
- Paulina Tapia-Quirós
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya (UPC)-Barcelona TECH, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, 08930 Barcelona, Spain
| | - Maria Fernanda Montenegro-Landívar
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya (UPC)-Barcelona TECH, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, 08930 Barcelona, Spain
| | - Monica Reig
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya (UPC)-Barcelona TECH, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, 08930 Barcelona, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya (UPC)-Barcelona TECH, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, 08930 Barcelona, Spain
| | - Teresa Alvarino
- Galician Water Research Center Foundation (Cetaqua Galicia), University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| | - Jose Luis Cortina
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya (UPC)-Barcelona TECH, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, 08930 Barcelona, Spain
- CETAQUA, Carretera d’Esplugues, 75, 08940 Barcelona, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain;
| | - Merce Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain;
| |
Collapse
|
38
|
Catalán M, Castro-Castillo V, Gajardo-de la Fuente J, Aguilera J, Ferreira J, Ramires-Fernandez R, Olmedo I, Molina-Berríos A, Palominos C, Valencia M, Domínguez M, Souto JA, Jara JA. Continuous flow synthesis of lipophilic cations derived from benzoic acid as new cytotoxic chemical entities in human head and neck carcinoma cell lines. RSC Med Chem 2020; 11:1210-1225. [PMID: 33479625 DOI: 10.1039/d0md00153h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/30/2020] [Indexed: 01/17/2023] Open
Abstract
Continuous flow chemistry was used for the synthesis of a series of delocalized lipophilic triphenylphosphonium cations (DLCs) linked by means of an ester functional group to several hydroxylated benzoic acid derivatives and evaluated in terms of both reaction time and selectivity. The synthesized compounds showed cytotoxic activity and selectivity in head and neck tumor cell lines. The mechanism of action of the molecules involved a mitochondrial uncoupling effect and a decrease in both intracellular ATP production and apoptosis induction.
Collapse
Affiliation(s)
- Mabel Catalán
- Clinical and Molecular Pharmacology Program , Institute of Biomedical Sciences (ICBM) , Faculty of Medicine , Universidad de Chile , Santiago , 8380453 , Chile
| | - Vicente Castro-Castillo
- Department of Organic and Physical Chemistry , Faculty of Chemical and Pharmaceutical Sciences , Universidad de Chile , Santos Dumont 964 , Santiago 8380494 , Chile
| | - Javier Gajardo-de la Fuente
- Department of Organic and Physical Chemistry , Faculty of Chemical and Pharmaceutical Sciences , Universidad de Chile , Santos Dumont 964 , Santiago 8380494 , Chile
| | - Jocelyn Aguilera
- Institute for Research in Dental Sciences (ICOD) , Faculty of Dentistry , Universidad de Chile , Santiago , 8380492 , Chile . ; Tel: +56 2 29781730
| | - Jorge Ferreira
- Clinical and Molecular Pharmacology Program , Institute of Biomedical Sciences (ICBM) , Faculty of Medicine , Universidad de Chile , Santiago , 8380453 , Chile
| | | | - Ivonne Olmedo
- Physiopathology Program , Institute of Biomedical Sciences (ICBM) , Faculty of Medicine , Universidad de Chile , Santiago 8380453 , Chile
| | - Alfredo Molina-Berríos
- Institute for Research in Dental Sciences (ICOD) , Faculty of Dentistry , Universidad de Chile , Santiago , 8380492 , Chile . ; Tel: +56 2 29781730
| | - Charlotte Palominos
- Clinical and Molecular Pharmacology Program , Institute of Biomedical Sciences (ICBM) , Faculty of Medicine , Universidad de Chile , Santiago , 8380453 , Chile
| | - Marcelo Valencia
- Clinical and Molecular Pharmacology Program , Institute of Biomedical Sciences (ICBM) , Faculty of Medicine , Universidad de Chile , Santiago , 8380453 , Chile
| | - Marta Domínguez
- Departamento de Química Orgánica , Facultad de Química , CINBIO and IIS Galicia Sur , Universidade de Vigo , E-36310 , Vigo , Spain .
| | - José A Souto
- Departamento de Química Orgánica , Facultad de Química , CINBIO and IIS Galicia Sur , Universidade de Vigo , E-36310 , Vigo , Spain .
| | - José A Jara
- Institute for Research in Dental Sciences (ICOD) , Faculty of Dentistry , Universidad de Chile , Santiago , 8380492 , Chile . ; Tel: +56 2 29781730
| |
Collapse
|
39
|
Characterization, Classification and Authentication of Turmeric and Curry Samples by Targeted LC-HRMS Polyphenolic and Curcuminoid Profiling and Chemometrics. Molecules 2020; 25:molecules25122942. [PMID: 32604759 PMCID: PMC7355898 DOI: 10.3390/molecules25122942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022] Open
Abstract
The importance of monitoring bioactive substances as food features to address sample classification and authentication is increasing. In this work, targeted liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) polyphenolic and curcuminoid profiles were evaluated as chemical descriptors to deal with the characterization and classification of turmeric and curry samples. The profiles corresponding to bioactive substances were obtained by TraceFinderTM software using accurate mass databases with 53 and 24 polyphenolic and curcuminoid related compounds, respectively. For that purpose, 21 turmeric and 9 curry samples commercially available were analyzed in triplicate by a simple liquid-solid extraction procedure using dimethyl sulfoxide as extracting solvent. The obtained results demonstrate that the proposed profiles were excellent chemical descriptors for sample characterization and classification by principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), achieving 100% classification rates. Curcuminoids and some specific phenolic acids such as trans-cinnamic, ferulic and sinapic acids, helped on the discrimination of turmeric samples; polyphenols, in general, were responsible for the curry sample distinction. Besides, the combination of both polyphenolic and curcuminoid profiles was necessary for the simultaneous characterization and classification of turmeric and curry samples. Discrimination among turmeric species such as Curcuma longa vs. Curcuma zedoaria, as well as among different Curcuma longa varieties (Alleppey, Madras and Erode) was also accomplished.
Collapse
|
40
|
Investigation of Total Phenolic Content and Antioxidant Activities of Spruce Bark Extracts Isolated by Deep Eutectic Solvents. CRYSTALS 2020. [DOI: 10.3390/cryst10050402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Extracts from spruce bark obtained using different deep eutectic solvents were screened for their total phenolic content (TPC) and antioxidant activities. Water containing choline chloride-based deep eutectic solvents (DESs) with lactic acid and 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol, with different molar ratios, were used as extractants. Basic characteristics of the DESs (density, viscosity, conductivity, and refractive index) were determined. All the DESs used behave as Newtonian liquids. The extractions were performed for 2 h at 60 °C under continuous stirring. TPC was determined spectrophotometrically, using the Folin-Ciocalteu reagent, and expressed as gallic acid equivalent (GAE). The antioxidant activity was determined spectrophotometrically by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The TPC varied from 233.6 to 596.2 mg GAE/100 g dry bark; radical scavenging activity (RSA) ranged between 81.4% and 95%. This study demonstrated that deep eutectic solvents are suitable solvents for extracting phenolic compounds from spruce bark.
Collapse
|
41
|
Yessenkyzy A, Saliev T, Zhanaliyeva M, Masoud AR, Umbayev B, Sergazy S, Krivykh E, Gulyayev A, Nurgozhin T. Polyphenols as Caloric-Restriction Mimetics and Autophagy Inducers in Aging Research. Nutrients 2020; 12:E1344. [PMID: 32397145 PMCID: PMC7285205 DOI: 10.3390/nu12051344] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
It has been thought that caloric restriction favors longevity and healthy aging where autophagy plays a vital role. However, autophagy decreases during aging and that can lead to the development of aging-associated diseases such as cancer, diabetes, neurodegeneration, etc. It was shown that autophagy can be induced by mechanical or chemical stress. In this regard, various pharmacological compounds were proposed, including natural polyphenols. Apart from the ability to induce autophagy, polyphenols, such as resveratrol, are capable of modulating the expression of pro- and anti-apoptotic factors, neutralizing free radical species, affecting mitochondrial functions, chelating redox-active transition metal ions, and preventing protein aggregation. Moreover, polyphenols have advantages compared to chemical inducers of autophagy due to their intrinsic natural bio-compatibility and safety. In this context, polyphenols can be considered as a potential therapeutic tool for healthy aging either as a part of a diet or as separate compounds (supplements). This review discusses the epigenetic aspect and the underlying molecular mechanism of polyphenols as an anti-aging remedy. In addition, the recent advances of studies on NAD-dependent deacetylase sirtuin-1 (SIRT1) regulation of autophagy, the role of senescence-associated secretory phenotype (SASP) in cells senescence and their regulation by polyphenols have been highlighted as well. Apart from that, the review also revised the latest information on how polyphenols can help to improve mitochondrial function and modulate apoptosis (programmed cell death).
Collapse
Affiliation(s)
- Assylzhan Yessenkyzy
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| | - Timur Saliev
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| | - Marina Zhanaliyeva
- Department of Human Anatomy, NSC “Medical University of Astana”, Nur-Sultan 010000, Kazakhstan;
| | - Abdul-Razak Masoud
- Department of Biological Sciences, Louisiana Tech University, Ruston, LA 71270, USA;
| | - Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Shynggys Sergazy
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Elena Krivykh
- Khanty-Mansiysk State Medical Academy, Tyumen Region, Khanty-Mansiysk Autonomous Okrug—Ugra, Khanty-Mansiysk 125438, Russia;
| | - Alexander Gulyayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Talgat Nurgozhin
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| |
Collapse
|
42
|
Olivas-Aguirre FJ, Mendoza S, Alvarez-Parrilla E, Gonzalez-Aguilar GA, Villegas-Ochoa MA, Quintero-Vargas JT, Wall-Medrano A. First-Pass Metabolism of Polyphenols from Selected Berries: A High-Throughput Bioanalytical Approach. Antioxidants (Basel) 2020; 9:E311. [PMID: 32295070 PMCID: PMC7222205 DOI: 10.3390/antiox9040311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023] Open
Abstract
Small berries are rich in polyphenols whose first-pass metabolism may alter their ultimate physiological effects. The antioxidant capacity and polyphenol profile of three freeze-dried berries (blackberry, raspberry, Red Globe grape) were measured and their apparent permeability (Papp) and first-pass biotransformation were tracked with an ex vivo bioanalytical system [everted gut sac (rat) + three detection methods: spectrophotometry, HPLC-ESI-QTOF-MS, differential pulse voltammetry (DPV)]. Total polyphenol (ratio 0.07-0.14-1.0) and molecular diversity (anthocyanins>flavan-3-ols), antioxidant capacity (DPPH, FRAP), anodic current maxima and Papp (efflux> uptake) were in the following order: blackberry > raspberry > Red Globe grape. Epicatechin, pelargonidin & cyanin (all), callistephin (raspberry/blackberry), catechin (grape), cyanidin glycosides (blackberry) and their derived metabolites [quinic acid, epicatechin, cyanidin/malvidin glucosides, and chlorogenic/caffeic acids] were fruit-specific and concentration-dependent. Time-trend DPV kinetic data revealed concurrent epithelial permeability & biotransformation processes. Regular permeability and high-biotransformation of berry polyphenols suggest fruit-specific health effects apparently at the intestinal level.
Collapse
Affiliation(s)
- Francisco J. Olivas-Aguirre
- Departamento de Ciencias de la Salud, Universidad de Sonora (Campus Cajeme), Blvd Bordo Nuevo s/n, Ejido Providencia, Cd, Obregón 85199, Mexico;
| | - Sandra Mendoza
- Departamento de Investigación y Posgrado en Alimentos (PROPAC), Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Santiago de Querétaro 76010, Mexico;
| | - Emilio Alvarez-Parrilla
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Mexico;
| | - Gustavo A. Gonzalez-Aguilar
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria, Km. 0.6, Hermosillo 83304, Mexico; (G.A.G.-A.); (M.A.V.-O.)
| | - Monica A. Villegas-Ochoa
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria, Km. 0.6, Hermosillo 83304, Mexico; (G.A.G.-A.); (M.A.V.-O.)
| | - Jael T.J. Quintero-Vargas
- Departamento de Ciencias de la Salud, Universidad de Sonora (Campus Cajeme), Blvd Bordo Nuevo s/n, Ejido Providencia, Cd, Obregón 85199, Mexico;
| | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Mexico;
| |
Collapse
|