1
|
Cheng Q, Wang K, Lu R, Xiong Y, Luo X, Li X, Liu W, Wang J, Li Y, Yan J. Effect of white jade snail secretion on antioxidant capacity and intestinal microbial diversity in mouse model of acute gastric ulcer. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1723-1731. [PMID: 37851602 DOI: 10.1002/jsfa.13059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/21/2023] [Accepted: 10/19/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND In the present work, acute gastric ulcer models were constructed by administering hydrochloric acid/ethanol. The mice ingested white jade snail secretion (WJSS) through gastric infusion. Ulcer areas in gastric tissue were recorded, and malondialdehyde (MDA) and superoxide dismutase (SOD) were also measured. Notably, high-throughput 16S rDNA analysis of intestinal flora and determination of amino acid composition in feces were performed to understand the effect of WJSS on model mice. RESULTS Compared with the control group, the ulcer area in the WJSS low-, medium- and high-concentration groups declined by 28.02%, 39.57% and 77.85%, respectively. MDA content decreased by 24.71%, 49.58% and 64.25%, and SOD relative enzyme activity fell by 28.19%, 43.37% and 9.60%, respectively. The amounts of amino acids in the low-, medium- and high-concentration groups were slightly lower, and probiotic bacteria such as Bacteroidetes and Lactobacillales increased in different-concentration WJSS groups. Adding WJSS contributes to the establishment of beneficial intestinal flora and the absorption of amino acids. CONCLUSION Our results showed that WJSS has a beneficial effect on inhibiting hydrochloric acid-ethanolic gastric ulcers, suggesting that WJSS has excellent potential as a novel anti-ulcer agent. Combined with ulcer area, MDA content, SOD content, gut probiotics and other indicators, a high concentration of WJSS had the best protective effect on acute gastric ulcer. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qian Cheng
- Medical College, Guangxi University, Nanning, China
| | - Kaidi Wang
- Medical College, Guangxi University, Nanning, China
| | - Rui Lu
- Medical College, Guangxi University, Nanning, China
| | - Yi Xiong
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Xianqing Luo
- Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi, Nanning, China
| | - Xian Li
- Medical College, Guangxi University, Nanning, China
| | - Wei Liu
- Medical College, Guangxi University, Nanning, China
| | - Jiayu Wang
- Medical College, Guangxi University, Nanning, China
| | - Yixiang Li
- Medical College, Guangxi University, Nanning, China
| | - Jianhua Yan
- Medical College, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Liu J, Xu H, Liang H, Zhang J, Yuan H, Zhao D, Wang C. An antioxidative, green and safe nanofibers-based film containing pullulan, sodium hyaluronate and Ganoderma lucidum fermentation for enhanced skincare. Int J Biol Macromol 2023; 253:127047. [PMID: 37742895 DOI: 10.1016/j.ijbiomac.2023.127047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Dry masks made of natural active ingredients that are packaged in sustainable paper and free of irritating additives (e.g. preservatives, stabilizers) are a trend in the concept of healthy skincare, which possess the advantages of portability, safety and environmental friendliness. The bioactive ingredients obtained from natural plant fermentation are gradually becoming an important alternative additive for facial skincare. Herein, a novel dry facial healthcare mask was fabricated by electrospinning incorporating natural ingredients including pullulan (Pu), sodium hyaluronate (SH), and Ganoderma lucidum fermentation (GLF). The morphology, dissolving capacity, bioactivity, and safety of the obtained masks were investigated in vitro, and their antioxidation and moisturizing activities were verified at the cellular level. The results indicated that the fibrillary films based on pullulan could be dissolved in water within 20 s with good water retention capacity and film with high concentration of GLF (Pu/SH/GLF-3) could scavenge 79 % of DPPH. The films had good ability to resist microbial contamination and non-eye irritation via observing colony growth for 12 months after ultraviolet sterilization and the ocular irritation test of chicken chorioallantoic membrane. Meanwhile, cell experiments further confirmed that they did not exhibit cytotoxicity and could increase the expression of proteins related to moisturizing and antioxidation. The fascinating films have promising application prospects in cosmetic masks. This work may enrich the use of natural materials in skincare products and provide a green development direction for the light chemical industry.
Collapse
Affiliation(s)
- Jiaqi Liu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Hualei Xu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Haiyan Liang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Jiachan Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing 100048, PR China
| | - Huanxiang Yuan
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Dan Zhao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing 100048, PR China
| | - Changtao Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
3
|
Long Y, Wang W, Zhang Y, Zhang S, Li Z, Deng J, Li J. Dendrobium nobile Lindl Polysaccharides Attenuate UVB-induced Photodamage by Regulating Oxidative Stress, Inflammation and MMPs Expression in Mice Model. Photochem Photobiol 2023; 99:1269-1281. [PMID: 36651803 DOI: 10.1111/php.13780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Acute ultraviolet B (UVB) irradiation predominantly leads to various skin disorders caused by photodamage. The major causes of UVB-induced photodamage include oxidative stress, inflammatory infiltration and collagen degradation. The aim of the study was to elucidate whether DNP had protective effect on the skin of KM mice when exposed to UVB irradiation. The DNP protective properties to skin appearance and histopathological alterations in KM mice were evaluated by hematoxylin-eosin staining, toluidine blue staining, Gomori staining and Masson's trichrome staining and mast cell staining. In this study, DNP pretreatment promoted the activities of antioxidant enzymes, including superoxide dismutase, catalase and glutathione peroxidase, while decreased malondialdehyde level in UVB-irradiated skin, along with downregulation of proteins expression of matrix metalloproteinases and reduction in the level of the proinflammatory cytokines. Based on these findings, we demonstrated that DNP displayed strong ameliorative effects on UVB-induced acute photodamage for the first time, indicating that it would be a promoting ingredient candidate that could be used in antiphotodamage.
Collapse
Affiliation(s)
- Yunluan Long
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Wuji Wang
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yanyan Zhang
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Shiqian Zhang
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Zheng Li
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jiang Deng
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jingjie Li
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Phrompanya P, Suriyaruean N, Nantarat N, Saenphet S, Tragoolpua Y, Saenphet K. Biological properties of mucus from land snails ( Lissachatina fulica) and freshwater snails ( Pomacea canaliculata) and histochemical study of mucous cells in their foot. PeerJ 2023; 11:e15827. [PMID: 37583916 PMCID: PMC10424676 DOI: 10.7717/peerj.15827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Background Mucus derived from many land snails has been extensively utilised in medicine and cosmetics, but some biological activities of the mucus need to be well documented. Nevertheless, most mucus is obtained from land snails, while mucus from freshwater snails has yet to be attended. Methods This study aims to determine and compare mucus's antioxidant and anti-inflammatory activities from the land snail Lissachatina fulica and the freshwater snail Pomacea canaliculata. ABTS, DPPH, reducing power and total antioxidant activity assays were used to evaluate the antioxidant capacity. Inhibition of nitric oxide production in lipopolysaccharide-activated RAW 264.7 cells was performed to determine the anti-inflammatory activity. Additionally, the histochemical analysis of mucous cells in each snail foot was conducted to compare the distribution of mucous cells and types of mucins using periodic acid-Schiff and Alcian blue staining. Results Mucus from L. fulica and P. canaliculata exhibited antioxidant and anti-inflammatory activities in different parameters. L. fulica mucus has higher total antioxidant (44.71 ± 2.11 mg AAE/g) and nitric oxide inhibitory activities (IC50 = 9.67 ± 0.31 µg/ml), whereas P. canaliculata mucus has better-reducing power activity (43.63 ± 2.47 mg AAE/g) and protein denaturation inhibition (IC50 = 0.60 ± 0.03 mg/ml). Histochemically, both species' dorsal and ventral foot regions contained neutral and acid mucins in different quantities. In the dorsal region, the neutral mucins level in L. fulica (16.64 ± 3.46%) was significantly higher than that in P. canaliculata (11.19 ± 1.50%), while the acid mucins level showed no significant difference between species. Levels of both mucins in the ventral foot region of L. fulica (15.08 ± 3.97% and 10.76 ± 3.00%, respectively) were significantly higher than those of P. canaliculata (2.25 ± 0.48% and 2.71 ± 0.56%, respectively). This study revealed scientific evidence of the biological capacity of mucus from L. fulica and P. canaliculata as well as provided helpful information on the region of the foot which produces effective mucus.
Collapse
Affiliation(s)
- Phornphan Phrompanya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Ph.D.’s Degree Program in Biology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Narinnida Suriyaruean
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nattawadee Nantarat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Supap Saenphet
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokporn Saenphet
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Li J, Zhang Y, Jin W, Wang Y, Yang L, Zhang Z, Yan Z. Preparation and characterization of zein-lecithin-total flavonoids from Smilax glabra complex nanoparticles and the study of their antioxidant activity on HepG2 cells. Food Chem X 2023; 17:100579. [PMID: 36845521 PMCID: PMC9945631 DOI: 10.1016/j.fochx.2023.100579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Total flavonoids from Smilax glabra (TFSG) exhibit several biological activities; however, their poor stability limits their application. In this work, zein-lecithin-TFSG complex nanoparticles (Z-L-TFSG NPs) were prepared using the anti-solvent coprecipitation technique. The prepared Z-L-TFSG NPs were spherical with an encapsulation efficiency of 98.0%. Differential scanning calorimetry, Fourier transform infrared spectroscopy, and morphology tests revealed that the TFSG were successfully encapsulated by Z-L NPs. Z-L-TFSG NPs showed superior stability and better controlled release characteristics in simulated gastrointestinal digestion. The encapsulation of TFSG by Z-L NPs could improve their antioxidant capacity in vitro. Moreover, Z-L-TFSG NPs could enhance the protective effects of TFSG against H2O2-induced oxidative damage to HepG2 cells. The results indicated that the Z-L self-assembled NPs could serve as a promising drug delivery system through the integrated encapsulation of multiple flavonoids.
Collapse
Affiliation(s)
- Jing Li
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, PR China
| | - Yingxiu Zhang
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, PR China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610225, PR China
| | - Wenfang Jin
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, PR China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610225, PR China
| | - Yue Wang
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, PR China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610225, PR China
| | - Li Yang
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, PR China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610225, PR China
| | - Zhifeng Zhang
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, PR China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610225, PR China
- Corresponding authors.
| | - Zhigang Yan
- National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
- Corresponding authors.
| |
Collapse
|
6
|
Li W, Mu X, Wu X, He W, Liu Y, Liu Y, Deng J, Nie X. Dendrobium nobile Lindl. Polysaccharides protect fibroblasts against UVA-induced photoaging via JNK/c-Jun/MMPs pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115590. [PMID: 35973631 DOI: 10.1016/j.jep.2022.115590] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium nobile Lindl. is an orchid species that is found throughout Asia, including Thailand, Laos, Vietnam, and China. It has been used to treat tumors, hyperglycemia, hyperlipidemia, and neurological disorders caused by aging in recent decades. AIM OF THE STUDY To investigate the antagonistic effect of Dendrobium nobile Lindl. Polysaccharides (DNLP) on UVA-induced photoaging of Human foreskin fibroblasts (HFF-1) and explore its possible anti-aging mechanisms. MATERIALS AND METHODS An in vitro photoaging model of dermal fibroblasts was established with multiple UVA irradiations. Fibroblasts were treated with 0.06 mg/ml, 0.18 mg/ml, 0.54 mg/ml of DNLP one day before photodamage induction. The levels of reactive oxygen species (ROS), Malondialdehyde (MDA), cell viability and longevity, Superoxide Dismutase (SOD), Catalase (CAT), and Glutathione peroxidase (GSH-Px) enzymatic activities were determined. We examined how DNLP ameliorates the effects of photoaging, the JNK/c-Fos/c-Jun pathway, senescence-associated β-galactosidase (SA-β-Gal), and MMP expression levels were measured. RESULTS UVA irradiation reduced the viability, lifespan, and proliferation of HFF-1 cells, increased ROS and lipid peroxidation and decreased the activities of free radical scavenging enzyme systems SOD, CAT, and GSH-Px. DNLP treatment can reverse UVA damage, reduce SA-β-Gal expression, reduce phosphorylation activation of the JNK/c-Fos/c-Jun pathway and inhibit MMP-1, MMP-2 MMP-3, and MMP-9 protein expression. CONCLUSIONS DNLP can effectively inhibit UVA damage to HFF-1 and prevent cell senescence. Its mechanism of action may increase antioxidant enzyme activity while inhibiting JNK pathway activation and MMPs expression.
Collapse
Affiliation(s)
- Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Xingrui Mu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Xingqian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China; Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
7
|
Lan YH, Lu YS, Wu JY, Lee HT, Srinophakun P, Canko GN, Chiu CC, Wang HMD. Cordyceps militaris Reduces Oxidative Stress and Regulates Immune T Cells to Inhibit Metastatic Melanoma Invasion. Antioxidants (Basel) 2022; 11:antiox11081502. [PMID: 36009221 PMCID: PMC9404731 DOI: 10.3390/antiox11081502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, the water extract of Cordyceps militaris (Linn.) Link (CM) was used as a functional material to investigate the inhibitory mechanisms on B16F10 and lung metastatic melanoma (LMM) cells. Reducing power, chelating ability, and 2,2-diphenyl-2-picrylhydrazyl (DPPH) assays were applied for antioxidative capacities, and we obtained positive results from the proper concentrations of CM. To examine the ability of CM in melanoma proliferation inhibition and to substantiate the previous outcomes, three cellular experiments were performed via (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT, a tetrazole) assay, cell migration, and invasion evaluation. The addition of CM to the incubation medium increased the number of CD8+ T cells significantly, which improved the immunogenicity. This study showed that CM exhibits various biological capabilities, including antioxidation, anti-tumor, tumor invasion suppression, and T cytotoxic cell activity promotion.
Collapse
Affiliation(s)
- Yuan-Hong Lan
- Department of Medical Laboratory Science and Biotechnology, ASIA University, Taichung 413, Taiwan;
| | - Yun-Sheng Lu
- Taiwan Agriculture Research Institute, Council of Agriculture, Taichung 413, Taiwan;
| | - Ju-Yu Wu
- Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Hsu-Tung Lee
- The Department of Neurological Institute, Taichung Veterans General Hospital, Taichung 402, Taiwan;
| | - Penjit Srinophakun
- Chemical Engineering Department, Faculty of Engineering, Kasetsart University, 50 Ngamwongwan Rd., Ladyao, Jatujak, Bangkok 10900, Thailand;
| | - Gizem Naz Canko
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-935-753-718 or +886-4-2284-0733 (ext. 651); Fax: +886-4-228-522-42
| |
Collapse
|
8
|
Feng X, Wang P, Lu Y, Zhang Z, Yao C, Tian G, Liu Q. A Novel Polysaccharide From Heimioporus retisporus Displays Hypoglycemic Activity in a Diabetic Mouse Model. Front Nutr 2022; 9:964948. [PMID: 35898716 PMCID: PMC9311259 DOI: 10.3389/fnut.2022.964948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
A novel polysaccharide, Heimioporus retisporus Polysaccharide (HRP) was extracted from the edible mushroom Heimioporus retisporus. HRP had weight-average molecular weight 1,949 kDa and number-average molecular weight 873 kDa, and its major components were arabinose (0.71%), galactose (12.93%), glucose (49.00%), xylose (8.59%), mannose (17.78%), and glucuronic acid (10.99%). Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy revealed that HRP was composed of 1,3-linked β-D-glucose, 1,6-linked β-D-mannose, 1,6-linked β-D-galactose, 1,4-linked β-D-galactose, 1,4-linked β-D-xylose, and 1,5-linked α-L-arabinose. Thermogravimetric analysis indicated that degradation temperature (T0) of HRP was 200°C. In an STZ-induced diabetic mouse model, oral administration of HRP (40 mg/kg/d) for 28 days significantly reduced blood glucose levels, and reduced heart organ index by decreasing expression of IL-6 and TNF-α. Our findings indicate hypoglycemic effect of HRP, and its potential application as a hypoglycemic agent.
Collapse
Affiliation(s)
- Xiaobin Feng
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing, China
| | - Peng Wang
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing, China
| | - Yuxiao Lu
- Department of Environment and Chemical Engineering, Tangshan College, Tangshan, China
| | - Zejun Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chunxin Yao
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Guoting Tian
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, China
- *Correspondence: Qinghong Liu,
| | - Qinghong Liu
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing, China
- Guoting Tian,
| |
Collapse
|
9
|
Adipose-Derived Stem Cell-Incubated HA-Rich Sponge Matrix Implant Modulates Oxidative Stress to Enhance VEGF and TGF-β Secretions for Extracellular Matrix Reconstruction In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9355692. [PMID: 35082971 PMCID: PMC8786469 DOI: 10.1155/2022/9355692] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/20/2021] [Indexed: 12/11/2022]
Abstract
This study demonstrated both adipose-derived stem cells (ASCs) in vitro and in vivo combined with three-dimensional (3D) porous sponge matrices on implant wound healing. Sponge matrices were created from hyaluronic acid (HA), collagen (Col), and gelatin (Gel), constructing two types: HA-L (low content) and HA-H (high content), to be cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). Fourier transform infrared spectroscopy method verified carboxyl groups of HA and amino groups of Col and Gel reacting between the raw materials and scaffolds to identify the successive cross-linking. The swelling ratios of two types of sponge matrices were analyzed by water absorption capabilities, and the results displayed both over 30-fold dry scaffold weight enhancements. In biodegradation tests, matrices were hydrolyzed over time by three cutaneous enzymes, hyaluronidase, lysozyme, and collagenase I. ASCs from rats were cultured within the HA-H scaffold, demonstrating higher antioxidative abilities and secretions on related genes and proteins compared to the other two groups. The ASC HA-H matrix promoted cell proliferation to stimulate capillary angiogenesis inducer secretions, including vascular endothelial growth factor (VEGF) and transforming growth factor-β (TGF-β). In vivo histological examinations showed ASCs from implanted HA-H implant transported into the subcutis, and rat skin cells also infiltrated into the original matrix zone to increase the extracellular matrix (ECM) reconstructions. Our experimental data revealed that the ASC HA-H sponge implant was effective in improving wound repair.
Collapse
|
10
|
Yang Z, Hu Y, Yue P, Luo H, Li Q, Li H, Zhang Z, Peng F. Physicochemical Properties and Skin Protection Activities of Polysaccharides from Usnea longissima by Graded Ethanol Precipitation. ACS OMEGA 2021; 6:25010-25018. [PMID: 34604681 PMCID: PMC8482769 DOI: 10.1021/acsomega.1c04163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Four Usnea longissima polysaccharides (ULPs; ULP15, ULP30, ULP50, and ULP70) were obtained from the lichen U. longissima via water extraction and graded ethanol precipitation. The obtained ULPs were all heteropolysaccharides with a few proteins, with which glucose was the major monosaccharide composition. With the increase in the precipitated ethanol concentrations, the content of galactose, xylose, and mannose increased, whereas that of glucose decreased. Moreover, the antioxidant activity test demonstrated that ULP15 exhibited better reducing power and stronger scavenging ability on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl free radicals. Importantly, ULP15 also had a better proliferative effect on human HaCaT keratinocytes and dermal fibroblasts. Meanwhile, ULP15 protected HaCaT keratinocytes from UVB-induced proliferation inhibition and exhibited tyrosinase inhibition activity. Therefore, this work provides interesting insight into the preparation of cosmetic ingredients using the polysaccharide ULP15.
Collapse
Affiliation(s)
- Ziying Yang
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Yajie Hu
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Panpan Yue
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Hongdan Luo
- Department
of Dermatology, Zunyi Hospital of Traditional
Chinese Medicine, Zunyi, Guizhou 563000, China
| | - Qisui Li
- Meteorological
Bureau of Meishan City, Meishan, Sichuan 620010, China
| | - Huiling Li
- JALA
Research Center, JALA Group Co. Ltd., Shanghai 200233, China
| | - Zhang Zhang
- JALA
Research Center, JALA Group Co. Ltd., Shanghai 200233, China
| | - Feng Peng
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
11
|
Xu Y, Li Y, Lu Y, Feng X, Tian G, Liu Q. Antioxidative and hepatoprotective activities of a novel polysaccharide (LSAP) from Lepista sordida mycelia. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
12
|
Transdermal Delivery Systems of Natural Products Applied to Skin Therapy and Care. Molecules 2020; 25:molecules25215051. [PMID: 33143260 PMCID: PMC7662758 DOI: 10.3390/molecules25215051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022] Open
Abstract
Natural products are favored because of their non-toxicity, low irritants, and market reacceptance. We collected examples, according to ancient wisdom, of natural products to be applied in transdermal delivery. A transdermal delivery system, including different types of agents, such as ointments, patches, and gels, has long been used for skin concerns. In recent years, many novel transdermal applications, such as nanoemulsions, liposomes, lipid nanoparticles, and microneedles, have been reported. Nanosized drug delivery systems are widely applied in natural product deliveries. Nanosized materials notably enhance bioavailability and solubility, and are reported to improve the transdermal permeation of many substances compared with conventional topical formulations. Natural products have been made into nanosized biomaterials in order to enhance the penetration effect. Before introducing the novel transdermal applications of natural products, we present traditional methods within this article. The descriptions of novel transdermal applications are classified into three parts: liposomes, emulsions, and lipid nanoparticles. Each section describes cases that are related to promising natural product transdermal use. Finally, we summarize the outcomes of various studies on novel transdermal agents applied to skin treatments.
Collapse
|
13
|
Yun T, Cheng P, Qian F, Cheng Y, Lu J, Lv Y, Wang H. Balancing the decomposable behavior and wet tensile mechanical property of cellulose-based wet wipe substrates by the aqueous adhesive. Int J Biol Macromol 2020; 164:1898-1907. [PMID: 32800954 PMCID: PMC7422816 DOI: 10.1016/j.ijbiomac.2020.08.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
With the current global outbreak of novel coronaviruses, the fabrication of decomposable wet wipe with sufficient wet strength to meet daily use is promising but still challenging, especially when renewable cellulose was employed. In this work, a decomposable cellulose-based wet wipe substrate is demonstrated by introducing a synthetic N-vinyl pyrrolidone-glycidyl methacrylate (NVP-GMA) adhesive on the cellulose surface. Experimental results reveal that the NVP-GMA adhesive not only significantly facilitates the chemical bonding between cellulose fibers in the wet state, but also increase the surface wettability and water retention. The as-fabricated cellulose-based wet wipe substrate displays a superb water retention capacity of 1.9 times, an excellent water absorption capacity (completely wetted with 0° water contact angle), and a perfect wet tensile index of 3.32 N.m.g−1. It is far better than state-of-the-art wet toilet wipe on the market (non-woven). The prepared renewable and degradable cellulose-based substrate with excellent mechanical strength has potential application prospects in diverse commercially available products such as sanitary and medical wet wipes. A decomposable wet wipe substrate was prepared from the bio-based materials. Synthetic adhesive enhanced the wet strength of the cellulose sheet. Enhancement of cellulose-based material was achieved under aqueous conditions. As-prepared cellulose substrate balanced the dispersibility and wet strength.
Collapse
Affiliation(s)
- Tongtong Yun
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Peng Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Yi Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Jie Lu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Yanna Lv
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China.
| | - Haisong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China.
| |
Collapse
|
14
|
Huang SY, Wang HMD, Ke J, Li J, Chen L, Xu Z, Li K, Chen HB, Huang X, Yang H, Guo Y, Wang GH. Two Cosmetic Properties of an Ethanol Extract of a Cultured and Edible Red Macroalga, Bangia fuscopurpurea: Moisturizing and Whitening Effects. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20944668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previous studies have focused on the role of a cultured red macroalga Bangia fuscopurpurea as a functional food; however, except for antioxidant activity, there are no reports directly regarding the potential cosmetic properties of this alga. Our present study explored the moisturizing effect of its ethanol extract (BFH1) and used the tyrosinase activity inhibition assay to evaluate its in vitro whitening effect. The in vitro moisture-retention ability of BFH1 was similar to that of glycerol (positive control), but its moisture-absorption ability was significantly higher. The overall in vivo moisturizing effect of topical application of BFH1 in mice was similar to that of glycerol, but BFH1 did not cause significant changes in the oil content of the skin, and there were no obvious side effects regarding skin appearance and external behavior during treatment. BFH1 exerted in vitro tyrosinase inhibitory activity with a half-maximal inhibitory concentration (IC50) of 48.3 μg/mL (IC50 of positive control, vitamin C: 19.6 μg/mL). The total phenolic content of BFH1 was determined as 10.8 % ± 0.07 %. Thus, BFH1 has high potential to be turned into a cosmetic ingredient with moisturizing and whitening effects.
Collapse
Affiliation(s)
- Shi-Ying Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou, China
- College of Food and Biological Engineering, Jimei University, Xiamen, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, China
| | - Hui-Min David Wang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
- College of Food and Biological Engineering, Jimei University, Xiamen, China
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Jianhua Ke
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Jian Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Lili Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Zixuan Xu
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Kunjie Li
- Department of Dermatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hong-Bin Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou, China
| | - Xiaodong Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou, China
| | - Huiyong Yang
- School of Medicine/Institute of Molecular Medicine, Huaqiao University, Quanzhou, China
| | - Yanni Guo
- Department of Dermatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Guey-Horng Wang
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, China
- Xiamen Key Laboratory of Traditional Chinese Medicine Bioengineering, Xiamen Medical College, Xiamen, China
| |
Collapse
|