1
|
Soni D, Jamwal S, Chawla R, Singh SK, Singh D, Singh TG, Khurana N, Kanwal A, Dureja H, Patil UK, Singh R, Kumar P. Nutraceuticals Unveiled a Multifaceted Neuroprotective Mechanisms for Parkinson’s Disease: Elixir for the Brain. FOOD REVIEWS INTERNATIONAL 2024; 40:3079-3102. [DOI: 10.1080/87559129.2024.2337766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Divya Soni
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Sumit Jamwal
- Department of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Rakesh Chawla
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences & Research, Baba Farid University of Health Sciences, Faridkot, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Phagwara, India
| | - Deependra Singh
- Univesity Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Raipur, Chhattisgarh, India
| | | | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Phagwara, India
| | - Abhinav Kanwal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Umesh Kumar Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
2
|
Sarkar B, Rana N, Singh C, Singh A. Medicinal herbal remedies in neurodegenerative diseases: an update on antioxidant potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5483-5511. [PMID: 38472370 DOI: 10.1007/s00210-024-03027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
It has been widely documented that medicinal herbal remedies are effective, have fewer side effects than conventional medicine, and have a synergistic effect on health collaborations in the fight against complicated diseases. Traditional treatments for neurological problems in ancient times sometimes involved the use of herbal remedies and conventional methods from East Asian countries including India, Japan, China, and Korea. We collected and reviewed studies on plant-derived neuroprotective drugs and tested them in neurotoxic models. Basic research, preclinical and clinical transgene research can benefit from in silico, in vitro, and in vivo investigations. Research, summaries of the extracts, fractions, and herbal ingredients were compiled from popular scientific databases, which were then examined according to origin and bioactivity. Given the complex and varied causes of neurodegeneration, it may be beneficial to focus on multiple mechanisms of action and a neuroprotection approach. This approach aims to prevent cell death and restore function to damaged neurons, offering promising strategies for preventing and treating neurodegenerative diseases. Neurodegenerative illnesses can potentially be treated with natural compounds that have been identified as neuroprotective agents. To gain deeper insights into the neuropharmacological mechanisms underlying the neuroprotective and therapeutic properties of naturally occurring antioxidant phytochemical compounds in diverse neurodegenerative diseases, this study aims to comprehensively review such compounds, focusing on their modulation of apoptotic markers such as caspase, Bax, Bcl-2, and proinflammatory markers. In addition, we delve into a range of efficacies of antioxidant phytochemical compounds as neuroprotective agents in animal models. They reduce the oxidative stress of the brain and have been shown to have anti-apoptotic effects. Many researches have demonstrated that plant extracts or bioactive compounds can fight neurodegenerative disorders. Herbal medications may offer neurodegenerative disease patients' new treatments. This may be a cheaper and more culturally appropriate alternative to standard drugs for millions of people with age-related NDDs.
Collapse
Affiliation(s)
- Biplob Sarkar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Nitasha Rana
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Srinagar, 249161, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India.
| |
Collapse
|
3
|
Bandiwadekar A, Jose J, Gopan G, Augustin V, Ashtekar H, Khot KB. Transdermal delivery of resveratrol loaded solid lipid nanoparticle as a microneedle patch: a novel approach for the treatment of Parkinson's disease. Drug Deliv Transl Res 2024:10.1007/s13346-024-01656-0. [PMID: 38949746 DOI: 10.1007/s13346-024-01656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
Parkinson's disease (PD), affecting millions of people worldwide and expected to impact 10 million by 2030, manifests a spectrum of motor and non-motor symptoms linked to the decline of dopaminergic neurons. Current therapies manage PD symptoms but lack efficacy in slowing disease progression, emphasizing the urgency for more effective treatments. Resveratrol (RSV), recognized for its neuroprotective and antioxidative properties, encounters challenges in clinical use for PD due to limited bioavailability. Researchers have investigated lipid-based nanoformulations, specifically solid lipid nanoparticles (SLNs), to enhance RSV stability. Oral drug delivery via SLNs faces obstacles, prompting exploration into transdermal delivery using SLNs integrated with microneedles (MNs) for improved patient compliance. In this study, an RSV-loaded SLNs (RSV -SLNs) incorporated into the MN patch was developed for transdermal RSV delivery to improve its stability and patient compliance. Characterization studies demonstrated favorable physical properties of SLNs with a sustained drug release profile of 78.36 ± 0.74%. The developed MNs exhibited mechanical robustness and skin penetration capabilities. Ex vivo permeation studies displayed substantial drug permeation of 68.39 ± 1.4% through the skin. In an in vivo pharmacokinetic study, the RSV-SLNs delivered through MNs exhibited a significant increase in Cmax, Tmax, and AUC0 - t values, alongside a reduced elimination rate in blood plasma in contrast to the administration of pure RSV via MNs. Moreover, an in vivo study showcased enhanced behavioral functioning and increased brain antioxidant levels in the treated animals. In-vivo skin irritation study revealed no signs of irritation till 24 h which permits long-term MNs application. Histopathological analysis showed notable changes in the brain regions of the rat, specifically the striatum and substantia nigra, after the completion of the treatment. Based on these findings, the development of an RSV-SLN loaded MNs (RSVSNLMP) patch presents a novel approach, with the potential to enhance the drug's efficiency, patient compliance, and therapeutic outcomes for PD, offering a promising avenue for advanced PD therapy.
Collapse
Affiliation(s)
- Akshay Bandiwadekar
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics,, NITTE Deemed-to-be University, Mangalore, 575018, India
| | - Jobin Jose
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics,, NITTE Deemed-to-be University, Mangalore, 575018, India.
| | - Gopika Gopan
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics,, NITTE Deemed-to-be University, Mangalore, 575018, India
| | - Varsha Augustin
- NGSM Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, Department of NITTE University Center for Animal Research & Experimentation (NUCARE), Mangalore, 575018, India
| | - Harsha Ashtekar
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmacology, NITTE Deemed-to-be University, Mangalore, 575018, India
| | - Kartik Bhairu Khot
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics,, NITTE Deemed-to-be University, Mangalore, 575018, India
| |
Collapse
|
4
|
Dragomanova S, Andonova V, Volcho K, Salakhutdinov N, Kalfin R, Tancheva L. Therapeutic Potential of Myrtenal and Its Derivatives-A Review. Life (Basel) 2023; 13:2086. [PMID: 37895468 PMCID: PMC10608190 DOI: 10.3390/life13102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The investigation of monoterpenes as natural products has gained significant attention in the search for new pharmacological agents due to their ability to exhibit a wide range in biological activities, including antifungal, antibacterial, antioxidant, anticancer, antispasmodic, hypotensive, and vasodilating properties. In vitro and in vivo studies reveal their antidepressant, anxiolytic, and memory-enhancing effects in experimental dementia and Parkinson's disease. Chemical modification of natural substances by conjugation with various synthetic components is a modern method of obtaining new biologically active compounds. The discovery of new potential drugs among monoterpene derivatives is a progressive avenue within experimental pharmacology, offering a promising approach for the therapy of diverse pathological conditions. Biologically active substances such as monoterpenes, for example, borneol, camphor, geraniol, pinene, and thymol, are used to synthesize compounds with analgesic, anti-inflammatory, anticonvulsive, antidepressant, anti-Alzheimer's, antiparkinsonian, antiviral and antibacterial (antituberculosis) properties. Myrtenal is a perspective monoterpenoid with therapeutic potential in various fields of medicine. Its chemical modifications often lead to new or more pronounced biological effects. As an example, the conjugation of myrtenal with the established pharmacophore adamantane enables the augmentation of several of its pivotal properties. Myrtenal-adamantane derivatives exhibited a variety of beneficial characteristics, such as antimicrobial, antifungal, antiviral, anticancer, anxiolytic, and neuroprotective properties, which are worth examining in more detail and at length.
Collapse
Affiliation(s)
- Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna, 84 A Tsar Osvoboditel Blvd., 9002 Varna, Bulgaria;
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 84 A Tsar Osvoboditel Blvd., 9002 Varna, Bulgaria;
| | - Konstantin Volcho
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry of the Russian Academy of Sciences, 9 Lavrentiev Av., 630090 Novosibirsk, Russia; (K.V.); (N.S.)
| | - Nariman Salakhutdinov
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry of the Russian Academy of Sciences, 9 Lavrentiev Av., 630090 Novosibirsk, Russia; (K.V.); (N.S.)
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria;
- Department of Healthcare, South-West University, 66 Ivan Mihailov St., 2700 Blagoevgrad, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria;
| |
Collapse
|
5
|
Shan HM, Maurer MA, Schwab ME. Four-parameter analysis in modified Rotarod test for detecting minor motor deficits in mice. BMC Biol 2023; 21:177. [PMID: 37592249 PMCID: PMC10433596 DOI: 10.1186/s12915-023-01679-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The Rotarod test with commercial apparatus is widely used to assess locomotor performance, balance and motor learning as well as the deficits resulting from diverse neurological disorders in laboratory rodents due to its simplicity and objectivity. Traditionally, the test ends when rodents drop from the accelerating, turning rod, and the only parameter used commonly is "latency to fall". The values of individual animals can often vary greatly. RESULTS In the present study, we established a procedure for mice with 4 consecutive days of training with 4 trials per day and modified the testing procedure by placing the mice back on the rod repeatedly after each fall until the trial ends (5 min). Data from the fourth training day as baseline results showed that the second, third and fourth trial were more consistent than the first, probably due to habituation or learning. There was no difference between the second, third and fourth trial, two trials may be sufficient in testing. We also introduced 3 additional read-outs: Longest duration on the rod (s), Maximal distance covered (cm), and Number of falls to better evaluate the motor capacity over the 5 min of testing. We then used this 4-parameter analysis to capture the motor deficits of mice with mild to moderate traumatic brain injuries (by a weight dropping on the skull (Marmarou model)). We found that normalization of data to individual baseline performance was needed to reduce individual differences, and 4 trials were more sensitive than two to show motor deficits. The parameter of Maximal distance was the best in detecting statistically significant long-term motor deficits. CONCLUSIONS These results show that by making adjustments to the protocol and employing a more refined analysis, it is possible to expand a widely used routine behavioral test with additional accessible parameters that detect relevant deficits in a model of mild to moderate traumatic brain injury. The modified Rotarod test maybe a valuable tool for better preclinical evaluations of drugs and therapies.
Collapse
Affiliation(s)
- Hui-Min Shan
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Michael A Maurer
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Martin E Schwab
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Alexova R, Alexandrova S, Dragomanova S, Kalfin R, Solak A, Mehan S, Petralia MC, Fagone P, Mangano K, Nicoletti F, Tancheva L. Anti-COVID-19 Potential of Ellagic Acid and Polyphenols of Punica granatum L. Molecules 2023; 28:molecules28093772. [PMID: 37175181 PMCID: PMC10180134 DOI: 10.3390/molecules28093772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Pomegranate (Punica granatum L.) is a rich source of polyphenols, including ellagitannins and ellagic acid. The plant is used in traditional medicine, and its purified components can provide anti-inflammatory and antioxidant activity and support of host defenses during viral infection and recovery from disease. Current data show that pomegranate polyphenol extract and its ellagitannin components and metabolites exert their beneficial effects by controlling immune cell infiltration, regulating the cytokine secretion and reactive oxygen and nitrogen species production, and by modulating the activity of the NFκB pathway. In vitro, pomegranate extracts and ellagitannins interact with and inhibit the infectivity of a range of viruses, including SARS-CoV-2. In silico docking studies show that ellagitannins bind to several SARS-CoV-2 and human proteins, including a number of proteases. This warrants further exploration of polyphenol-viral and polyphenol-host interactions in in vitro and in vivo studies. Pomegranate extracts, ellagitannins and ellagic acid are promising agents to target the SARS-CoV-2 virus and to restrict the host inflammatory response to viral infections, as well as to supplement the depleted host antioxidant levels during the stage of recovery from COVID-19.
Collapse
Affiliation(s)
- Ralitza Alexova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Simona Alexandrova
- Department of Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 23, 1113 Sofia, Bulgaria
| | - Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University, Marin Drinov Str. 55, 9002 Varna, Bulgaria
| | - Reni Kalfin
- Department of Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 23, 1113 Sofia, Bulgaria
- Department of Healthcare, South-West University "Neofit Rilski", Ivan Mihailov Str. 66, 2700 Blagoevgrad, Bulgaria
| | - Ayten Solak
- Institute of Cryobiology and Food Technologies, Cherni Vrah Blvd. 5, 1407 Sofia, Bulgaria
| | - Sidharth Mehan
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, Moga 142001, India
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Lyubka Tancheva
- Department of Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 23, 1113 Sofia, Bulgaria
| |
Collapse
|
7
|
Akefe IO, Nyan ES, Adegoke VA, Lamidi IY, Ameh MP, Chidiebere U, Ubah SA, Ajayi IE. Myrtenal improves memory deficits in mice exposed to radiofrequency-electromagnetic radiation during gestational and neonatal development via enhancing oxido-inflammatory, and neurotransmitter functions. Heliyon 2023; 9:e15321. [PMID: 37123912 PMCID: PMC10133755 DOI: 10.1016/j.heliyon.2023.e15321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Objective Radiofrequency-electromagnetic radiation (RF-EMR) exposure during gestational and neonatal development may interact with the foetus and neonate considered hypersensitive to RF-EMR, consequently resulting in developmental defects associated with neuropsychological and neurobehavioral disorders, including learning and memory impairment. This study assessed the potential of Myrtenal (Myrt) to improve memory deficits in C57BL/6 mice exposed to RF-EMR during gestational and neonatal development. Method Thirty-five male mice were randomly allocated into 5 cohorts, each comprising of 7 mice. Group I was administered vehicle, Group II: RF-EMR (900 MHz); Group III: RF-EMR (900 MHz) + 100 mg/kg Myrt; Group IV: RF-EMR (900 MHz) + 200 mg/kg Myrt; and Group V: RF-EMR (900 MHz) + donepezil 0.5 mg/kg. Results Myrt treatment improved short-term memory performance in RF-EMR (900 MHz)-exposed mice by augmenting activities of endogenous antioxidant enzymes and proinflammatory cytokines, thereby protecting the brain from oxido-inflammatory stress. Additionally, Myrt restored the homeostasis of neurotransmitters in RF-EMR-exposed animals. Conclusion Results from the present study shows that exposure to RF-EMR impaired short-term memory in animals and altered the response of markers of oxido-inflammatory stress, and neurotransmitters. It is therefore conceivable that the recommendation of Myrt-enriched fruits may offer protective benefits for foeti and neonates prone to RF-EMR exposure.
Collapse
Affiliation(s)
- Isaac Oluwatobi Akefe
- Department of Physiology, Biochemistry, and Pharmacology, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
| | - Ezekiel Stephen Nyan
- Department of Science and Laboratory Technology, Ekiti State University, Ado Ekiti, Nigeria
| | | | - Ibrahim Yusuf Lamidi
- Department of Veterinary Pharmacology and Toxicology, University of Maiduguri, Maiduguri, Nigeria
| | - Matthew Phillip Ameh
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Uchendu Chidiebere
- Department of Physiology, Biochemistry, and Pharmacology, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
| | | | - Itopa Etudaye Ajayi
- Faculty of Health Sciences, National Open University of Nigeria, Abuja, Nigeria
- Corresponding author.
| |
Collapse
|
8
|
Aleksandrova S, Alexova R, Dragomanova S, Kalfin R, Nicoletti F, Fagone P, Petralia MC, Mangano K, Tancheva L. Preventive and Therapeutic Effects of Punica granatum L. Polyphenols in Neurological Conditions. Int J Mol Sci 2023; 24:ijms24031856. [PMID: 36768185 PMCID: PMC9916020 DOI: 10.3390/ijms24031856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Pomegranate (Punica granatum L.) is a polyphenol-rich food and medicinal plant containing flavonols, anthocyanins, and tannins. Ellagitannins (ETs) are the most abundant polyphenols in pomegranate. A growing body of research shows that polyphenol-rich pomegranate extracts and their metabolites target multiple types of brain cell and support their redox balance, proliferation and survival, as well as cell signaling. Independent studies have demonstrated that the significant neuroprotective effects of ETs are mediated by their antioxidant and anti-inflammatory effects, their chelating properties, by their ability to activate various signaling pathways, as well as the ability to influence mitochondrial damage, thus regulating autophagy, apoptosis and neurotransmitter signaling. The multitude of in vitro and in vivo studies summarized in the present review suggest that pomegranate polyphenols act on both neuronal and glial cells directly, and also affect blood-brain barrier function, restoring redox balance in the blood and brain and increasing blood flow to the brain.
Collapse
Affiliation(s)
- Simona Aleksandrova
- Department of Biological Activity of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ralitza Alexova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University—Sofia, 2 Zdrave St., 1431 Sofia, Bulgaria
| | - Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University, 9002 Varna, Bulgaria
| | - Reni Kalfin
- Department of Biological Activity of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Department of Health Care, South-West University “Neofit Rilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
- Correspondence:
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Lyubka Tancheva
- Department of Biological Activity of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
9
|
Banc R, Rusu ME, Filip L, Popa DS. The Impact of Ellagitannins and Their Metabolites through Gut Microbiome on the Gut Health and Brain Wellness within the Gut-Brain Axis. Foods 2023; 12:foods12020270. [PMID: 36673365 PMCID: PMC9858309 DOI: 10.3390/foods12020270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Ellagitannins (ETs) are a large group of bioactive compounds found in plant-source foods, such as pomegranates, berries, and nuts. The consumption of ETs has often been associated with positive effects on many pathologies, including cardiovascular diseases, neurodegenerative syndromes, and cancer. Although multiple biological activities (antioxidant, anti-inflammatory, chemopreventive) have been discussed for ETs, their limited bioavailability prevents reaching significant concentrations in systemic circulation. Instead, urolithins, ET gut microbiota-derived metabolites, are better absorbed and could be the bioactive molecules responsible for the antioxidant and anti-inflammatory activities or anti-tumor cell progression. In this review, we examined the dietary sources, metabolism, and bioavailability of ETs, and analyzed the last recent findings on ETs, ellagic acid, and urolithins, their intestinal and brain activities, the potential mechanisms of action, and the connection between the ET microbiota metabolism and the consequences detected on the gut-brain axis. The current in vitro, in vivo, and clinical studies indicate that ET-rich foods, individual gut microbiomes, or urolithin types could modulate signaling pathways and promote beneficial health effects. A better understanding of the role of these metabolites in disease pathogenesis may assist in the prevention or treatment of pathologies targeting the gut-brain axis.
Collapse
Affiliation(s)
- Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-264-450-555
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Daniela-Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Panda SP, Prasanth D, Gorla US, Dewanjee S. Interlinked role of ASN, TDP-43 and Miro1 with parkinopathy: Focus on targeted approach against neuropathy in parkinsonism. Ageing Res Rev 2023; 83:101783. [PMID: 36371014 DOI: 10.1016/j.arr.2022.101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Parkinsonism is a complex neurodegenerative disease that is difficult to differentiate because of its idiopathic and unknown origins. The hereditary parkinsonism known as autosomal recessive-juvenile parkinsonism (AR-JP) is marked by tremors, dyskinesias, dystonic characteristics, and manifestations that improve sleep but do not include dementia. This was caused by deletions and point mutations in PARK2 (chromosome 6q25.2-27). Diminished or unusual sensations (paresthesias), loss of neuron strength both in the CNS and peripheral nerves, and lack of motor coordination are the hallmarks of neuropathy in parkinsonism. The incidence of parkinsonism during oxidative stress and ageing is associated with parkinopathy. Parkinopathy is hypothesized to be triggered by mutation of the parkin (PRKN) gene and loss of normal physiological functions of PRKN proteins, which triggers their pathogenic aggregation due to conformational changes. Two important genes that control mitochondrial health are PRKN and phosphatase and tensin homologue deleted on chromosome 10-induced putative kinase 1 (PINK1). Overexpression of TAR DNA-binding protein-43 (TDP-43) increases the aggregation of insoluble PRKN proteins in OMM. Foreign α-synuclein (ASN) promotes parkinopathy via S-nitrosylation and hence has a neurotoxic effect on dopaminergic nerves. Miro1 (Miro GTPase1), a member of the RAS superfamily, is expressed in nerve cells. Due to PINK1/PRKN and Miro1's functional relationship, an excess of mitochondrial calcium culminates in the destruction of dopaminergic neurons. An interlinked understanding of TDP-43, PINK1/PRKN, ASN, and Miro1 signalling in the communication among astrocytes, microglia, neurons, and immune cells within the brain explored the pathway of neuronal death and shed light on novel strategies for the diagnosis and treatment of parkinsonism.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Pharmacology Research Division, Institute of Pharmaceutical Research, GLA University, Mathura, India.
| | - Dsnbk Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, AP, India
| | - Uma Sankar Gorla
- College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhrapradesh, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
11
|
Singla RK, De R, Efferth T, Mezzetti B, Sahab Uddin M, Ntie-Kang F, Wang D, Schultz F, Kharat KR, Devkota HP, Battino M, Sur D, Lordan R, Patnaik SS, Tsagkaris C, Sai CS, Tripathi SK, Găman MA, Ahmed MEO, González-Burgos E, Babiaka SB, Paswan SK, Odimegwu JI, Akram F, Simal-Gandara J, Urquiza MS, Tikhonov A, Mondal H, Singla S, Lonardo SD, Mulholland EJ, Cenanovic M, Maigoro AY, Giampieri F, Lee S, Tzvetkov NT, Louka AM, Verma P, Chopra H, Olea SP, Khan J, Alvarez Suarez JM, Zheng X, Tomczyk M, Sabnani MK, Medina CDV, Khalid GM, Boyina HK, Georgiev MI, Supuran CT, Sobarzo-Sánchez E, Fan TP, Pittala V, Sureda A, Braidy N, Russo GL, Vacca RA, Banach M, Lizard G, Zarrouk A, Hammami S, Orhan IE, Aggarwal BB, Perry G, Miller MJ, Heinrich M, Bishayee A, Kijjoa A, Arkells N, Bredt D, Wink M, Fiebich BL, Kiran G, Yeung AWK, Gupta GK, Santini A, Lucarini M, Durazzo A, El-Demerdash A, Dinkova-Kostova AT, Cifuentes A, Souto EB, Zubair MAM, Badhe P, Echeverría J, Horbańczuk JO, Horbanczuk OK, Sheridan H, Sheshe SM, Witkowska AM, Abu-Reidah IM, Riaz M, Ullah H, Oladipupo AR, Lopez V, Sethiya NK, Shrestha BG, Ravanan P, Gupta SC, Alzahrani QE, Dama Sreedhar P, Xiao J, Moosavi MA, Subramani PA, Singh AK, Chettupalli AK, Patra JK, Singh G, Karpiński TM, Al-Rimawi F, Abiri R, Ahmed AF, Barreca D, Vats S, Amrani S, Fimognari C, Mocan A, Hritcu L, Semwal P, Shiblur Rahaman M, Emerald M, Akinrinde AS, Singh A, Joshi A, Joshi T, Khan SY, Balla GOA, Lu A, Pai SR, Ghzaiel I, Acar N, Es-Safi NE, Zengin G, Kureshi AA, Sharma AK, Baral B, Rani N, Jeandet P, Gulati M, Kapoor B, Mohanta YK, Emam-Djomeh Z, Onuku R, Depew JR, Atrooz OM, Goh BH, Andrade JC, Konwar B, Shine VJ, Ferreira JMLD, Ahmad J, Chaturvedi VK, Skalicka-Woźniak K, Sharma R, Gautam RK, Granica S, Parisi S, Kumar R, Atanasov AG, Shen B. The International Natural Product Sciences Taskforce (INPST) and the power of Twitter networking exemplified through #INPST hashtag analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154520. [PMID: 36334386 DOI: 10.1016/j.phymed.2022.154520] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/12/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The development of digital technologies and the evolution of open innovation approaches have enabled the creation of diverse virtual organizations and enterprises coordinating their activities primarily online. The open innovation platform titled "International Natural Product Sciences Taskforce" (INPST) was established in 2018, to bring together in collaborative environment individuals and organizations interested in natural product scientific research, and to empower their interactions by using digital communication tools. METHODS In this work, we present a general overview of INPST activities and showcase the specific use of Twitter as a powerful networking tool that was used to host a one-week "2021 INPST Twitter Networking Event" (spanning from 31st May 2021 to 6th June 2021) based on the application of the Twitter hashtag #INPST. RESULTS AND CONCLUSION The use of this hashtag during the networking event period was analyzed with Symplur Signals (https://www.symplur.com/), revealing a total of 6,036 tweets, shared by 686 users, which generated a total of 65,004,773 impressions (views of the respective tweets). This networking event's achieved high visibility and participation rate showcases a convincing example of how this social media platform can be used as a highly effective tool to host virtual Twitter-based international biomedical research events.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Ronita De
- ICMR-National Institute of Cholera and Enteric Diseases, P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata, West Bengal 700010, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bruno Mezzetti
- Department of Agriculture, Food and Environmental Sciences (D3A) Università Politecnica Delle Marche Ancona, IT, Italy
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon
| | - Dongdong Wang
- Centre for Metabolism, Obesity, and Diabetes Research, Department of Medicine, McMaster University, HSC 4N71, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Fabien Schultz
- Technical University of Berlin, Institute of Biotechnology, Faculty III - Process Sciences, Gustav-Meyer-Allee 25, Berlin 13355, Germany; Neubrandenburg University of Applied Sciences, Department of Agriculture and Food Sciences, Brodaer Str. 2, Neubrandenburg 17033, Germany
| | | | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1Oe-honmachi, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools, HIGO Program, Kumamoto University, Japan
| | - Maurizio Battino
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona 60131, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Daniel Sur
- Department of Medical Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Romania
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Sourav S Patnaik
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | | | - Chandragiri Siva Sai
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Lucknow Campus, Gomati Nagar, Lucknow, Uttar Pradesh 226010, India
| | - Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, National Institute of Technology Rourkela, Odisha-769008, India
| | - Mihnea-Alexandru Găman
- ″Carol Davila" University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, Bucharest, Romania; Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, 258 Fundeni Road, Bucharest, Romania
| | - Mosa E O Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Al Neelain University, Khartoum, Sudan
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, University Complutense of Madrid, Spain
| | - Smith B Babiaka
- Department of Chemistry, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon
| | | | | | - Faizan Akram
- Bahawalpur College of Pharmacy (BCP), Bahawalpur Medical and Dental College (BMDC), Bahawalpur, Pakistan
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Ourense E-32004, Spain
| | | | - Aleksei Tikhonov
- Translational Research Laboratory in Immunotherapy, Gustave Roussy, Villejuif, France
| | - Himel Mondal
- Department of Physiology, All India Institute of Medical Sciences, Deoghar, Jharkhand, India
| | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Sara Di Lonardo
- Research Institute on Terrestrial Ecosystems-Italian National Research Council (IRET-CNR), Via Madonna del Piano 10, Sesto Fiorentino Fi 50019, Italy
| | - Eoghan J Mulholland
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Somerville College, University of Oxford, Oxford, United Kingdom
| | | | | | - Francesca Giampieri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Soojin Lee
- Department of Bioscience and Biotechnology, Chungnam National University, Republic of Korea
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Bulgaria
| | | | - Pritt Verma
- Department of Pharmacology, CSIR-NBRI, Lucknow, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - José M Alvarez Suarez
- Departamento de Ingeniería en Alimentos, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Quito, Ecuador
| | - Xiaonan Zheng
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, Białystok 15-230, Poland
| | - Manoj Kumar Sabnani
- The University of Texas at Arlington, United States; Alloy Therapeutics, United States
| | | | - Garba M Khalid
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University, Belfast BT9, United Kingdom
| | - Hemanth Kumar Boyina
- School of Pharmacy, Department of Pharmacology, Anurag University, Venkatapur, Medchal, Hyderabad, Telangana 500088, India
| | - Milen I Georgiev
- Laboratory of Metabolomics, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., Plovdiv 4000, Bulgaria
| | | | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile; Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Tai-Ping Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Valeria Pittala
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, Health Research Institute of Balearic Islands (IdISBa), and CIBEROBN (Physiopathology of Obesity and Nutrition), Palma, Balearic Islands E-07122, Spain
| | - Nady Braidy
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Gian Luigi Russo
- National Research Council, Institute of Food Sciences, Avellino 83100, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari 70126, Italy
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Gérard Lizard
- Université de Bourgogne / Inserm, Laboratoire Bio-PeroxIL, Faculté des Sciences Gabriel, 6 Boulevard Gabriel, Dijon 21000 France
| | - Amira Zarrouk
- University of Monastir (Tunisia), Faculty of Medicine, LR-NAFS 'Nutrition - Functional Food & Vascular Health', Tunisia
| | - Sonia Hammami
- University of Monastir (Tunisia), Faculty of Medicine, LR-NAFS 'Nutrition - Functional Food & Vascular Health', Tunisia
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye
| | | | - George Perry
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas, United States
| | | | | | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, United States
| | - Anake Kijjoa
- Instituto de Ciências Biomédicas Abel Salazar e CIIMAR, Universidade do Porto, Portugal
| | - Nicolas Arkells
- International Natural Product Sciences Taskforce (INSPT), United States
| | | | - Michael Wink
- Heidelberg University, Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg 69120, Germany
| | - Bernd L Fiebich
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - Girish Kumar Gupta
- Department of Pharmaceutical Chemistry, Sri Sai College of Pharmacy, Badhani, Pathankot, Punjab, India
| | - Antonello Santini
- University of Napoli Federico II, Department of Pharmacy. Via D Montesano 49, Napoli 80131, Italy
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546 00178 Rome, Italy
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546 00178 Rome, Italy
| | - Amr El-Demerdash
- Metabolic Biology & Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom; Organic Chemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | | | | | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | | | - Pravin Badhe
- Swalife Foundation, India; Swalife Biotech Ltd, Ireland; Sinhgad College of Pharmacy, Vadgaon (BK) Pune Maharashtra India
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec 05-552, Poland
| | - Olaf K Horbanczuk
- Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW) 159c Nowoursynowska, Warsaw 02-776, Poland
| | - Helen Sheridan
- The NatPro Centre. Trinity College Dublin. Dublin 2, Ireland
| | | | | | - Ibrahim M Abu-Reidah
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook A2H 5G4, Canada
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal 18050, Pakistan
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Akolade R Oladipupo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Nigeria; Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - Víctor Lopez
- Department of Pharmacy, Universidad San Jorge, Villanueva de Gállego (Zaragoza), Spain
| | | | | | - Palaniyandi Ravanan
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India; Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, Assam, India
| | - Qushmua E Alzahrani
- Department of Pharmacy/Nursing Medicine Health and Environment, University of the Region of Joinville (UNIVILLE) Brazil, Sana Catarina, Joinville, Brazil
| | | | | | - Mohammad Amin Moosavi
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetics Engineering and Biotechnology, Tehran P.O. Box: 14965/161, Iran
| | - Parasuraman Aiya Subramani
- Independent Researcher, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India - 600048. formerly, Pallavaram, Chennai 600117, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj 211002 India
| | | | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea
| | - Gopal Singh
- Department of Plant Functional Metabolomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, Poznań 61-712, Poland
| | | | - Rambod Abiri
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Atallah F Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Università degli Studi di Messina, Messina, Italy
| | - Sharad Vats
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Said Amrani
- Laboratoire de Biologie et de Physiologie des Organismes, Faculté des Sciences Biologiques, USTHB, Bab Ezzouar, Alger, Algeria
| | | | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lucian Hritcu
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, Iasi 700506, Romania
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Md Shiblur Rahaman
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Mila Emerald
- PHYTOCEUTICALS International™ & NOVOTEK Global Solutions™, Canada
| | - Akinleye Stephen Akinrinde
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Ashima Joshi
- Sardar Bhagwan Singh University, Balawala, Dehradun, India
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University (Nainital), India
| | - Shafaat Yar Khan
- Research Lab III, Hematology & Vascular Biology, Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Gareeballah Osman Adam Balla
- Department of Pharmacology, College of Veterinary Medicine, Sudan University of Science and Technology, Hilat Kuku, Khartoum North P.O. Box No. 204, Sudan
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, HongKong, China
| | - Sandeep Ramchandra Pai
- Department of Botany, Rayat Shikshan Sanstha's, Dada Patil Mahavidyalaya, Karjat, Maharashtra, India
| | - Imen Ghzaiel
- Université de Bourgogne, Inserm, Laboratoire Bio - PeroxIL, Faculté des Sciences Gabriel, 6 Boulevard Gabriel, Dijon 21000 France; University Tunis El Manar, Tunis, Tunisia
| | | | - Nour Eddine Es-Safi
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Azazahemad A Kureshi
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | | | | | - Neeraj Rani
- Department of Pharmaceutical Sciences, Chaudhary Bansilal University, Bhiwani, Haryana, India
| | - Philippe Jeandet
- University of Reims, Research Unit Induced Resistance and Plant Bioprotection, USC INRAe 1488, Reims, France
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH 1) Phagwara, Punjab 144411 India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH 1) Phagwara, Punjab 144411 India
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Kling Road, Baridua, Ri-Bhoi, Meghalaya 793101, India
| | | | - Raphael Onuku
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nigeria
| | | | - Omar M Atrooz
- Department of Biological Sciences, Mutah University, Jordan
| | - Bey Hing Goh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Jose Carlos Andrade
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, Gandra, Portugal
| | | | - V J Shine
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala 695014, India
| | | | - Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Vivek K Chaturvedi
- Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | | | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Rupesh K Gautam
- Deparment of Pharmacology, Indore Institute of Pharmacy, IIST Campus, Rau-Indore-453331, India
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Poland
| | - Salvatore Parisi
- Lourdes Matha Institute of Hotel Management and Catering Technology, Kerala State, India
| | - Rishabh Kumar
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna Road, Gurugram, Haryana 122103, India
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, Vienna 1090, Austria; Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, Vienna 1090, Austria; Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Magdalenka 05-552, Poland.
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.
| |
Collapse
|
12
|
Ellagic Acid and Its Anti-Aging Effects on Central Nervous System. Int J Mol Sci 2022; 23:ijms231810937. [PMID: 36142849 PMCID: PMC9502104 DOI: 10.3390/ijms231810937] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/25/2022] Open
Abstract
Aging is an unavoidable biological process that leads to the decline of human function and the reduction in people’s quality of life. Demand for anti-aging medicines has become very urgent. Many studies have shown that ellagic acid (EA), a phenolic compound widely distributed in dicotyledonous plants, has powerful anti-inflammation and antioxidant properties. Moreover, it has been demonstrated that EA can enhance neuronal viability, reduce neuronal defects, and alleviate damage in neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and cerebral ischemia. This paper reviews the biochemical functions and neuroprotective effects of EA, showing the clinical value of its application.
Collapse
|
13
|
Dragomanova S, Lazarova M, Munkuev A, Suslov E, Volcho K, Salakhutdinov N, Bibi A, Reynisson J, Tzvetanova E, Alexandrova A, Georgieva A, Uzunova D, Stefanova M, Kalfin R, Tancheva L. New Myrtenal–Adamantane Conjugates Alleviate Alzheimer’s-Type Dementia in Rat Model. Molecules 2022; 27:molecules27175456. [PMID: 36080227 PMCID: PMC9457974 DOI: 10.3390/molecules27175456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease associated with memory impairment and other central nervous system (CNS) symptoms. Two myrtenal–adamantane conjugates (MACs) showed excellent CNS potential against Alzheimer’s models. Adamantane is a common pharmacophore for drug design, and myrtenal (M) demonstrated neuroprotective effects in our previous studies. The aim of this study is to evaluate the MACs’ neuroprotective properties in dementia. Methods: Scopolamine (Scop) was applied intraperitoneally in Wistar rats for 11 days, simultaneously with MACs or M as a referent, respectively. Brain acetylcholine esterase (AChE) activity, noradrenaline and serotonin levels, and oxidative brain status determination followed behavioral tests on memory abilities. Molecular descriptors and docking analyses for AChE activity center affinity were performed. Results: M derivatives have favorable physicochemical parameters to enter the CNS. Both MACs restored memory damaged by Scop, showing significant AChE-inhibitory activity in the cortex, in contrast to M, supported by the modeling analysis. Moderate antioxidant properties were manifested by glutathione elevation and catalase activity modulation. MACs also altered noradrenaline and serotonin content in the hippocampus. Conclusion: For the first time, neuroprotective properties of two MACs in a rat dementia model were observed. They were stronger than the natural M effects, which makes the substances promising candidates for AD treatment.
Collapse
Affiliation(s)
- Stela Dragomanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University, 9002 Varna, Bulgaria
- Correspondence: (S.D.); (K.V.)
| | - Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
| | - Aldar Munkuev
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry of the Russian Academy of Sciences, Lavrentiev Av. 9, 630090 Novosibirsk, Russia
| | - Evgeniy Suslov
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry of the Russian Academy of Sciences, Lavrentiev Av. 9, 630090 Novosibirsk, Russia
| | - Konstantin Volcho
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry of the Russian Academy of Sciences, Lavrentiev Av. 9, 630090 Novosibirsk, Russia
- Correspondence: (S.D.); (K.V.)
| | - Nariman Salakhutdinov
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry of the Russian Academy of Sciences, Lavrentiev Av. 9, 630090 Novosibirsk, Russia
| | - Amina Bibi
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, UK
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, UK
| | - Elina Tzvetanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
| | - Albena Alexandrova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
- Department of Healthcare, South-West University “Neofit Rilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
| |
Collapse
|
14
|
Identification of Human Brain Proteins for Bitter-Sweet Taste Perception: A Joint Proteome-Wide and Transcriptome-Wide Association Study. Nutrients 2022; 14:nu14102177. [PMID: 35631318 PMCID: PMC9143225 DOI: 10.3390/nu14102177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Objective: Bitter or sweet beverage perception is associated with alterations in brain structure and function. Our aim is to analyze the genetic association between bitter or sweet beverage perception and human brain proteins. Materials and methods: In our study, 8356 and 11,518 proteins were first collected from two reference datasets of human brain proteomes, the ROS/MAP and Banner. The bitter or sweet beverage perception-related proteome-wide association studies (PWAS) were then conducted by integrating recent genome-wide association study (GWAS) data (n = 422,300) of taste perception with human brain proteomes. The human brain gene expression profiles were collected from two reference datasets, including the brain RNA-seq (CBR) and brain RNA-seq splicing (CBRS). The taste perception-related transcriptome-wide association studies (TWAS) were finally performed by integrating the same GWAS data with human brain gene expression profiles to validate the PWAS findings. Results: In PWAS, four statistically significant proteins were identified using the ROS/MAP and then replicated using the Banner reference dataset (all permutated p < 0.05), including ABCG2 for total bitter beverages and tea, CPNE1 for total bitter beverage, ACTR1B for artificially sweetened beverages, FLOT2 for alcoholic bitter beverages and total sweet beverages. In TWAS analysis, six statistically significant genes were detected by CBR and confirmed by the CBRS reference dataset (all permutated p < 0.05), including PIGG for total bitter beverages and non-alcoholic bitter beverages, C3orf18 for total bitter beverages, ZSWIM7 for non-alcoholic bitter beverages, PEX7 for coffee, PKP4 for tea and RPLP2 for grape juice. Further comparison of the PWAS and TWAS found three common statistically significant proteins/genes identified from the Banner and CBR reference datasets, including THBS4 for total bitter beverages, CA4 for non-alcoholic bitter beverages, LIAS for non-grape juices. Conclusions: Our results support the potential effect of bitter or sweet beverage perception on brain function and identify several candidate brain proteins for bitter or sweet beverage perception.
Collapse
|
15
|
Tancheva L, Lazarova M, Velkova L, Dolashki A, Uzunova D, Minchev B, Petkova-Kirova P, Hassanova Y, Gavrilova P, Tasheva K, Taseva T, Hodzhev Y, Atanasov AG, Stefanova M, Alexandrova A, Tzvetanova E, Atanasov V, Kalfin R, Dolashka P. Beneficial Effects of Snail Helix aspersa Extract in an Experimental Model of Alzheimer’s Type Dementia. J Alzheimers Dis 2022; 88:155-175. [DOI: 10.3233/jad-215693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Alzheimer’s disease (AD) is a complex neurodegenerative disease with multifactorial etiology, unsatisfactory treatment, and a necessity for broad-spectrum active substances for cure. The mucus from Helix aspersa snail is a mixture of bioactive molecules with antimicrobial, anti-inflammatory, antioxidant, and anti-apoptotic effects. So far there are no data concerning the capacity of snail extract (SE) to affect neurodegenerative disorders. Objective: The effects of SE from Helix aspersa on learning and memory deficits in Alzheimer’s type dementia (ATD) induced by scopolamine (Sco) in male Wistar rats were examined and some mechanisms of action underlying these effects were evaluated. Methods: SE (0.5 mL/100 g) was applied orally through a food tube for 16 consecutive days: 5 days before and 11 days simultaneously with Sco (2 mg/kg, intraperitoneally). At the end of Sco treatment, using behavioral methods, we evaluated memory performance. Additionally, in cortex and hippocampus the acetylcholinesterase (AChE) activity, acetylcholine and monoamines (dopamine, noradrenaline, and serotonin) content, levels of main oxidative stress markers, and expression of brain-derived neurotrophic factor (BDNF) and cAMP response element-binding protein (CREB) were determined. Results: We demonstrated that, according to all behavioral tests used, SE significantly improved the cognitive deficits induced by Sco. Furthermore, SE possessed AChE inhibitory activity, moderate antioxidant properties and the ability to modulate monoamines content in two brain structures. Moreover, multiple SE applications not only restored the depressed by Sco expression of CREB and BDNF, but significantly upregulated it. Conclusion: Summarizing results, we conclude that complex mechanisms underlie the beneficial effects of SE on impaired memory in Alzheimer’s type dementia.
Collapse
Affiliation(s)
- Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
- Weston Professor of Weizmann Institute of Science, Israel
| | - Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Lyudmila Velkova
- Institute of Organic Chemistry with Center for Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Alexander Dolashki
- Institute of Organic Chemistry with Center for Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Borislav Minchev
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
| | | | - Yozljam Hassanova
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Petja Gavrilova
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Krasimira Tasheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Teodora Taseva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Yordan Hodzhev
- National Center for Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Magdalenka, Poland
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | | | - Albena Alexandrova
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Elina Tzvetanova
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Ventseslav Atanasov
- Institute of Organic Chemistry with Center for Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
- Department of Healthcare, South-West University “Neofit Rilski”, Blagoevgrad, Bulgaria
| | - Pavlina Dolashka
- Institute of Organic Chemistry with Center for Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
16
|
Xu K, Zhang C, Li M, Gong S, Zhang Y, Wang X, Wang Z, Wang S. A myrtenal-based colorimetric and fluorescent probe for reversibly monitoring alkaline pH and bioimaging in living cells and zebrafish. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Wu X, Ren Y, Wen Y, Lu S, Li H, Yu H, Li W, Zou F. Deacetylation of ZKSCAN3 by SIRT1 induces autophagy and protects SN4741 cells against MPP +-induced oxidative stress. Free Radic Biol Med 2022; 181:82-97. [PMID: 35124181 DOI: 10.1016/j.freeradbiomed.2022.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/28/2021] [Accepted: 02/01/2022] [Indexed: 11/20/2022]
Abstract
Mitochondrial dysfunction, oxidative stress and misfolded protein aggregation are related to autophagy-lysosomal dysregulation and contribute to the pathogenesis of Parkinson' s disease (PD). ZKSCAN3, a transcriptional repressor, plays a crucial role in autophagy and lysosomal biogenesis. However, the role and modification of ZKSCAN3 in the defection of ALP, along with the molecular mechanism involved in pathogenesis of PD, still remain unclear. In this study, we demonstrated that cellular reactive oxygen species (ROS) generated by MPP+ exposure and the resulting oxidative damage were counteracted by SIRT1-ZKSCAN3 pathway induction. Here we showed that nuclear ZKSCAN3 significantly increased in ventral midbrain of MPTP-treated mice and MPP+-treated SN4741 cells. Knockdown of ZKSCAN3 alleviated MPP+-induced ALP defect, Tyrosine Hydroxylase (TH) declination and neuronal death. NAC, a ROS scavenger, reduced the nuclear translocation of ZKSCAN3 and sequentially improved ALP function in MPP+-treated SN4741 cells. SRT2104, a SIRT1 activator, attenuated impairment of ALP in MPP+-treated SN47417 cells through decreasing nuclear accumulation of ZKSCAN3 and protected dopaminergic neurons from MPTP injury. Moreover, SRT2104 relieved impairment in locomotor activities and coordination skills upon treatment of MPTP in C57/BL6J mice through behavior tests including rotarod, pole climbing and grid. Furthermore, ZKSCAN3 was a novel substrate of SIRT1 which was deacetylated at lysine 148 residues by SIRT1. This subsequently facilitated the shuttling of ZKSCAN3 to the cytoplasm. Therefore, our study identifies a novel acetylation-dependent regulatory mechanism of nuclear translocation of ZKSCAN3. It results in autophagy-lysosomal dysfunction and then leads to DA neuronal death in MPTP/MPP+ model of PD.
Collapse
Affiliation(s)
- Xian Wu
- Department of Occupational Health and Occupational Medicine, Guangdong Province Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yixian Ren
- Department of Occupational Health and Occupational Medicine, Guangdong Province Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Evaluation and Monitoring Center of Occupational Health, Guangzhou Twelfth People's Hospital, Guangzhou, PR China.
| | - Yue Wen
- Department of Occupational Health and Occupational Medicine, Guangdong Province Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Sixin Lu
- Department of Occupational Health and Occupational Medicine, Guangdong Province Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Huihui Li
- Department of Occupational Health and Occupational Medicine, Guangdong Province Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Honglin Yu
- Department of Occupational Health and Occupational Medicine, Guangdong Province Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Wenjun Li
- Department of Occupational Health and Occupational Medicine, Guangdong Province Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Province Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Neuroprotective Effects of Myrtenal in an Experimental Model of Dementia Induced in Rats. Antioxidants (Basel) 2022; 11:antiox11020374. [PMID: 35204256 PMCID: PMC8869161 DOI: 10.3390/antiox11020374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
There is growing attention on natural substances capable of stimulating the cholinergic system and of exerting antioxidant effects, as potential therapeutic agents in Alzheimer’s disease (AD). The aim of the present study is to evaluate the expected neuroprotective mechanisms of myrtenal (M) in an experimental model of dementia in rats. Dementia was induced in male Wistar rats by scopolamine (Sc) administration (0.1 mg/kg for 8 days and 20.0 mg/kg on day 9). The animals were divided into 5 groups (1) Controls; (2) Sc; (3) Sc + Myrtenal (40 mg/kg), (4) Sc + Galantamine (1 mg/kg); (5) Sc + Lipoic acid (30 mg/kg). Changes in recognition memory and habituation were evaluated via the Novel Object Recognition and Open Field tests. Acetylcholinesterase (AChE) activity, ACh levels, and changes in oxidative status of the brain were measured biochemically. The histological changes in two brain regions—cortex and hippocampus, were evaluated qualitatively and quantitatively. Myrtenal improved recognition memory and habituation, exerted antioxidant effects and significantly increased ACh brain levels. Histologically, the neuroprotective capacity of myrtenal was also confirmed. For the first time, we have demonstrated the neuroprotective potential of myrtenal in an experimental model of dementia. Our study provides proof-of-concept for the testing of myrtenal, in association with standard of care treatments, in patients affected by cognitive decline.
Collapse
|
19
|
Akefe IO, Adegoke VA, Lamidi IY, Ameh MP, Idoga ES, Ubah SA, Ajayi IE. Myrtenal mitigates streptozotocin-induced spatial memory deficit via improving oxido inflammatory, cholinergic and neurotransmitter functions in mice. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100106. [PMID: 35570857 PMCID: PMC9095925 DOI: 10.1016/j.crphar.2022.100106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of chronic neurodegenerative disorders is on the rise, but with no effective treatment due to the paucity of information on the pathological mechanism underlying these disorders. Thus, this study investigated the role of oral administration of myrtenal in mitigating memory deficits and neuro-biochemical alterations in streptozotocin-demented mice model. Mice (n = 35) were randomly allocated into five cohorts consisting of 7 mice each; Group I: Control mice received vehicle alone; Group II: streptozotocin; Group III: streptozotocin + 100 mg/kg myrtenal; Group IV: streptozotocin +200 mg/kg myrtenal; and Group V: streptozotocin + donepezil 0.5 mg/kg. Data from this study demonstrated that the administration of streptozotocin (STZ) impaired spatial memory and induced alterations in markers of oxido-inflammatory response, cholinergic function, cytoarchitecture, and neurotransmitter levels in mice hippocampus. Notably, administration of myrtenal enhanced spatial memory performance in STZ-demented mice by improving the activities of endogenous antioxidant enzymes to protect the brain from oxido-inflammatory stress. Treatment with myrtenal also restored cholinergic function and stabilized the homeostasis of neurotransmitters in STZ-demented mice. The authors infer that fruits rich in myrtenal may be beneficial for treating patients living with dementia associated with Alzheimer's disease. Data from the present study demonstrates that the administration of streptozotocin impairs spatial memory in mice and induces alterations in markers of oxido-inflammatory response, cholinergic function, histoarchitecture, and neurotransmitter levels in the hippocampus. The administration of myrtenal enhances spatial memory performance in streptozotocin-demented mice by improving the activities of endogenous antioxidant enzymes to protect the brain from oxido-inflammatory stress. Treatment with myrtenal restores cholinergic function and stabilizes the homeostasis of neurotransmitters in streptozotocin-demented mice.
Collapse
|
20
|
Kujawska M, Jourdes M, Witucki Ł, Karaźniewicz-Łada M, Szulc M, Górska A, Mikołajczak PŁ, Teissedre PL, Jodynis-Liebert J. Pomegranate Juice Ameliorates Dopamine Release and Behavioral Deficits in a Rat Model of Parkinson's Disease. Brain Sci 2021; 11:1127. [PMID: 34573149 PMCID: PMC8467386 DOI: 10.3390/brainsci11091127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/15/2022] Open
Abstract
Pomegranate juice (PJ) is a rich source of ellagitannins (ETs), precursors of colonic metabolite urolithin A, which are believed to contribute to pomegranate's neuroprotective effect. While many experimental studies involving PJ's role in Alzheimer's disease and hypoxic-ischemic brain injury have been conducted, our knowledge of pomegranate's effects against Parkinson's disease (PD) is very limited. Previously, we have reported that PJ treatment improved postural stability, which correlated well with enhancement of neuronal survival, protection against oxidative damage, and α-synuclein aggregation. Since olfactory and motor deficits are typical symptoms of PD, in this study, we aimed to investigate the capability of PJ to protect against olfactory, motoric, and neurochemical alterations. To evaluate its efficiency, Wistar rats were given a combined treatment with ROT (1.3 mg/kg b.w./day, s.c.) and PJ (500 mg/kg/day, p.o.) for 35 days. After this, we assessed the olfactory discrimination index (DI) and vertical and horizontal activities as well as levels of dopamine and its main metabolite 3,4-Dihydroxyphenylacetic acid (DOPAC) in the dissected midbrain of animals. Our findings provide the first evidence that PJ treatment protects against ROT-induced DA depletion in the midbrain, which correlates well with improved olfactory function and vertical activity as well as with the presence of urolithin A in the brain.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (A.G.); (J.J.-L.)
| | - Michael Jourdes
- Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France; (M.J.); (P.-L.T.)
- Institut des Sciences de la Vigne et du Vin, INRA, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Łukasz Witucki
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Marta Karaźniewicz-Łada
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Święcickiego 6, 60-781 Poznań, Poland;
| | - Michał Szulc
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 5a, 60-806 Poznań, Poland; (M.S.); (P.Ł.M.)
| | - Agata Górska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (A.G.); (J.J.-L.)
| | - Przemysław Ł. Mikołajczak
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 5a, 60-806 Poznań, Poland; (M.S.); (P.Ł.M.)
| | - Pierre-Louis Teissedre
- Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France; (M.J.); (P.-L.T.)
- Institut des Sciences de la Vigne et du Vin, INRA, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (A.G.); (J.J.-L.)
| |
Collapse
|
21
|
Dragomanova S, Miteva S, Nicoletti F, Mangano K, Fagone P, Pricoco S, Staykov H, Tancheva L. Therapeutic Potential of Alpha-Lipoic Acid in Viral Infections, including COVID-19. Antioxidants (Basel) 2021; 10:1294. [PMID: 34439542 PMCID: PMC8389191 DOI: 10.3390/antiox10081294] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress (OS), resulting from a disrupted balance between reactive oxygen species (ROS) and protective antioxidants, is thought to play an important pathogenetic role in several diseases, including viral infections. Alpha-lipoic acid (LA) is one of the most-studied and used natural compounds, as it is endowed with a well-defined antioxidant and immunomodulatory profile. Owing to these properties, LA has been tested in several chronic immunoinflammatory conditions, such as diabetic neuropathy and metabolic syndrome. In addition, a pharmacological antiviral profile of LA is emerging, that has attracted attention on the possible use of this compound for the cotreatment of several viral infections. Here, we will review the emerging literature on the potential use of LA in viral infections, including COVID-19.
Collapse
Affiliation(s)
- Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University, 9002 Varna, Bulgaria;
| | - Simona Miteva
- Department of Behavior Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.M.); (L.T.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (K.M.); (P.F.); (S.P.)
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (K.M.); (P.F.); (S.P.)
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (K.M.); (P.F.); (S.P.)
| | - Salvatore Pricoco
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (K.M.); (P.F.); (S.P.)
| | - Hristian Staykov
- Department of Pharmacology and toxicology, Medical University, Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria;
| | - Lyubka Tancheva
- Department of Behavior Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.M.); (L.T.)
| |
Collapse
|
22
|
Kurakula M, Naveen N. R, Patel B, Manne R, Patel DB. Preparation, Optimization and Evaluation of Chitosan-Based Avanafil Nanocomplex Utilizing Antioxidants for Enhanced Neuroprotective Effect on PC12 Cells. Gels 2021; 7:gels7030096. [PMID: 34287358 PMCID: PMC8293062 DOI: 10.3390/gels7030096] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
(1) Introduction: in recent decades, interdisciplinary research on the utilization of natural products as “active moiety carriers” was focused on due to their superior safety profile, biodegradability, biocompatibility and the ability for sustained or controlled release activity. The nano-based neuroprotective strategy is explored as an imperative treatment for diabetic neuropathy (DN). Avanafil (AV), that selectively inhibits the degradation of cGMP-specific phosphodiesterase, thereby increasing the levels of cGMP, makes a decisive mediator for cytoprotection. (2) Methods: AVnanocomplex formulations were prepared by a modified anti-solvent precipitation method and the method was optimized by Box–Behnken design. An optimized formulation was characterized and evaluated for various in vitro parameters; (3) results:based on the desirability approach, the formulation containing 2.176 g of chitosan, 7.984 g of zein and 90% v/v ethanol concentration can fulfill the prerequisites of optimum formulation (OB-AV-NC).OB-AV-NC was characterized and evaluated for various parameters. The neuroprotective mechanism of AV was evaluated by pretreatment of PC12 cells with plain AV, avanafil nanocomplex (NC) without antioxidants (AV-NC) and with antioxidants (α-Lipoic acid LP; Ellagic Acid EA), AV-LP-EA-Nanocomplex has also shown considerable attenuation in intracellular reactive oxygen species (ROS) and lipid peroxidation with a significant increase in the PC 12 viability under HG conditions in comparison to pure AV; (4) conclusion: the nanocomplex of AV prepared to utilize natural polymers and antioxidants aided for high solubility of AV and exhibited desired neuroprotective activity.This can be one of the promisingstrategy to translate the AV nanocomplex with safety and efficacy in treating DN.
Collapse
Affiliation(s)
- Mallesh Kurakula
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA
- Correspondence: ; Tel.: +1-901-297-7693
| | - Raghavendra Naveen N.
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar 571448, Karnataka, India;
| | - Bhaumik Patel
- Product Development Department, Cure Pharmaceutical Corporation, Los Angeles, CA 90025, USA;
| | - Ravi Manne
- Chemtex Environmental Laboratory, Quality Control, and Assurance Department, Port Arthur, TX 77642, USA;
| | - Devang B. Patel
- Department of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA;
| |
Collapse
|
23
|
Balakrishnan R, Azam S, Cho DY, Su-Kim I, Choi DK. Natural Phytochemicals as Novel Therapeutic Strategies to Prevent and Treat Parkinson's Disease: Current Knowledge and Future Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6680935. [PMID: 34122727 PMCID: PMC8169248 DOI: 10.1155/2021/6680935] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative chronic disease affecting both cognitive performance and motor functions in aged people. Yet despite the prevalence of this disease, the current therapeutic options for the management of PD can only alleviate motor symptoms. Research has explored novel substances for naturally derived antioxidant phytochemicals with potential therapeutic benefits for PD patients through their neuroprotective mechanism, targeting oxidative stress, neuroinflammation, abnormal protein accumulation, mitochondrial dysfunction, endoplasmic reticulum stress, neurotrophic factor deficit, and apoptosis. The aim of the present study is to perform a comprehensive evaluation of naturally derived antioxidant phytochemicals with neuroprotective or therapeutic activities in PD, focusing on their neuropharmacological mechanisms, including modulation of antioxidant and anti-inflammatory activity, growth factor induction, neurotransmitter activity, direct regulation of mitochondrial apoptotic machinery, prevention of protein aggregation via modulation of protein folding, modification of cell signaling pathways, enhanced systemic immunity, autophagy, and proteasome activity. In addition, we provide data showing the relationship between nuclear factor E2-related factor 2 (Nrf2) and PD is supported by studies demonstrating that antiparkinsonian phytochemicals can activate the Nrf2/antioxidant response element (ARE) signaling pathway and Nrf2-dependent protein expression, preventing cellular oxidative damage and PD. Furthermore, we explore several experimental models that evaluated the potential neuroprotective efficacy of antioxidant phytochemical derivatives for their inhibitory effects on oxidative stress and neuroinflammation in the brain. Finally, we highlight recent developments in the nanodelivery of antioxidant phytochemicals and its neuroprotective application against pathological conditions associated with oxidative stress. In conclusion, naturally derived antioxidant phytochemicals can be considered as future pharmaceutical drug candidates to potentially alleviate symptoms or slow the progression of PD. However, further well-designed clinical studies are required to evaluate the protective and therapeutic benefits of phytochemicals as promising drugs in the management of PD.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - In Su-Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
24
|
Elmazoglu Z, Galván-Arzate S, Aschner M, Rangel-López E, Bayraktar O, Santamaría A, Karasu Ç. Redox-active phytoconstituents ameliorate cell damage and inflammation in rat hippocampal neurons exposed to hyperglycemia+Aβ 1-42 peptide. Neurochem Int 2021; 145:104993. [PMID: 33610590 DOI: 10.1016/j.neuint.2021.104993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/31/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common dementia causing progressive loss of memory and compromised cognitive functions. Although the neurotoxic mechanisms underlying AD have yet to be fully elucidated, hyperglycemia seems to trigger oxidative and inflammatory responses in the brain of afflicted patients. Removal of free radicals reduces the neurotoxic effects of hyperglycemia in AD models. In this study we investigated the neuroprotective effects of the antioxidant phytoconstituents oleuropein (OLE), rutin (RUT), luteolin (LUT) and S-allylcysteine (SAC) in an experimental model combining the exposure to high glucose (HG, mimicking chronic hyperglycemia) plus amyloid-β peptide 1-42 (Aβ1-42, mimicking AD) in primary hippocampal neurons. Cells were pre-treated with OLE, RUT, LUT or SAC (10-1000 nM), and then co-treated with high glucose (GLU, 150 mM) for 24 h plus 500 nM oligomeric Aβ1-42 for 24 h more. Cell viability and reactive oxygen species (ROS) formation were assessed as indices of survival/toxicity and oxidative stress, respectively. Activity/expression of antioxidant enzymes, toxic adducts, inflammatory molecules, mitochondrial membrane potential (ΔΨm) and the pattern of amyloid aggregation were also assessed. The GLU + Aβ1-42 treatment significantly decreased cell viability, increased ROS formation, reduced superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities, augmented Advanced Glycation End Products- and 4-hydroxynonenal-adducts generation, increased 3-nitrotyrosine and inflammatory outcomes such as inducible nitric oxide synthase, interleukin 1β and Tumor Necrosis Factor α, decreased MMP and augmented amyloid aggregation. All phytoconstituents reduced in a differential manner all toxic endpoints, with SAC showing the highest efficacy in preventing loss of cell viability and oxidative damage, whereas RUT was most efficacious in mitigating inflammatory endpoints. Combined, the results of this study suggest that protection afforded by these compounds against GLU + Aβ1-42-induced cell damage in hippocampal neurons is attributable to their properties as redox modulators, which might act through a concerted mechanism oriented to reduce oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Zubeyir Elmazoglu
- Cellular Stress Response and Signal Transduction Research Laboratory, Faculty of Medicine, Department of Medical Pharmacology, Gazi University, Beşevler, 06500, Ankara, Turkey
| | - Sonia Galván-Arzate
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, 14269, Mexico
| | - Michael Aschner
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Bronx, NY, 10461, USA
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, 14269, Mexico
| | - Oğuz Bayraktar
- Ege University, Department of Bioengineering, Bornova, İzmir, Turkey
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, 14269, Mexico.
| | - Çimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Faculty of Medicine, Department of Medical Pharmacology, Gazi University, Beşevler, 06500, Ankara, Turkey.
| |
Collapse
|
25
|
Natural Molecules and Neuroprotection: Kynurenic Acid, Pantethine and α-Lipoic Acid. Int J Mol Sci 2021; 22:ijms22010403. [PMID: 33401674 PMCID: PMC7795784 DOI: 10.3390/ijms22010403] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
The incidence of neurodegenerative diseases has increased greatly worldwide due to the rise in life expectancy. In spite of notable development in the understanding of these disorders, there has been limited success in the development of neuroprotective agents that can slow the progression of the disease and prevent neuronal death. Some natural products and molecules are very promising neuroprotective agents because of their structural diversity and wide variety of biological activities. In addition to their neuroprotective effect, they are known for their antioxidant, anti-inflammatory and antiapoptotic effects and often serve as a starting point for drug discovery. In this review, the following natural molecules are discussed: firstly, kynurenic acid, the main neuroprotective agent formed via the kynurenine pathway of tryptophan metabolism, as it is known mainly for its role in glutamate excitotoxicity, secondly, the dietary supplement pantethine, that is many sided, well tolerated and safe, and the third molecule, α-lipoic acid is a universal antioxidant. As a conclusion, because of their beneficial properties, these molecules are potential candidates for neuroprotective therapies suitable in managing neurodegenerative diseases.
Collapse
|
26
|
Ardah MT, Bharathan G, Kitada T, Haque ME. Ellagic Acid Prevents Dopamine Neuron Degeneration from Oxidative Stress and Neuroinflammation in MPTP Model of Parkinson's Disease. Biomolecules 2020; 10:E1519. [PMID: 33172035 PMCID: PMC7694688 DOI: 10.3390/biom10111519] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases and is characterized by progressive dopaminergic neurodegeneration in the substantia nigra pars compacta area. In the present study, treatment of EA for 1 week at a dose of 10 mg/kg body weight prior to MPTP (25 mg/kg body weight) was carried out. MPTP administration caused oxidative stress, as evidenced by decreased activities of superoxide dismutase and catalase, and the depletion of reduced glutathione with a concomitant rise in the lipid peroxidation product, malondialdehyde. It also significantly increased the pro-inflammatory cytokines and elevated the inflammatory mediators like cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the striatum. Immunohistochemical analysis revealed a loss of dopamine neurons in the SNc area and a decrease in dopamine transporter in the striatum following MPTP administration. However, treatment with EA prior to MPTP injection significantly rescued the dopaminergic neurons and dopamine transporter. EA treatment further restored antioxidant enzymes, prevented the depletion of glutathione and inhibited lipid peroxidation, in addition to the attenuation of pro-inflammatory cytokines. EA also reduced the levels of COX-2 and iNOS. The findings of the present study demonstrate that EA protects against MPTP-induced PD and the observed neuroprotective effects can be attributed to its potent antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Mustafa T. Ardah
- Department of Biochemistry, College of Medicine and Health Sciences, UAEU, Al Ain, UAE; (M.T.A.); (G.B.)
| | - Greeshma Bharathan
- Department of Biochemistry, College of Medicine and Health Sciences, UAEU, Al Ain, UAE; (M.T.A.); (G.B.)
| | - Tohru Kitada
- Otawa-Kagaku Service, Parkinson’s Clinic and Research, Kamakura 247-0061, Japan;
| | - M. Emdadul Haque
- Department of Biochemistry, College of Medicine and Health Sciences, UAEU, Al Ain, UAE; (M.T.A.); (G.B.)
| |
Collapse
|
27
|
Bjørklund G, Peana M, Maes M, Dadar M, Severin B. The glutathione system in Parkinson's disease and its progression. Neurosci Biobehav Rev 2020; 120:470-478. [PMID: 33068556 DOI: 10.1016/j.neubiorev.2020.10.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Redox dysfunctions and neuro-oxidative stress play a major role in the pathophysiology and progression of Parkinson's disease (PD). Glutathione (GSH) and the reduced/oxidized glutathione (GSH/GSSG) ratio are lowered in oxidative stress conditions and may lead to increased oxidative toxicity. GSH is involved not only in neuro-immune and neuro-oxidative processes, including thiol redox signaling, but also in cell proliferation and differentiation and in the regulation of cell death, including apoptotic pathways. Lowered GSH metabolism and a low GSH/GSSG ratio following oxidative stress are associated with mitochondrial dysfunctions and constitute a critical factor in the neuroinflammatory and neurodegenerative processes accompanying PD. This review provides indirect evidence that GSH redox signaling is associated with the pathophysiology of PD. Nevertheless, it has not been delineated whether GSH redox imbalances are a causative factor in PD or whether PD-associated pathways cause the GSH redox imbalances in PD. The results show that antioxidant approaches, including neuroprotective and anti-neuroinflammatory agents, which neutralize reactive oxygen species, may have therapeutic efficacy in the treatment of PD and its progression.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Impact Research Center, Deakin University, Geelong, Australia
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Beatrice Severin
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| |
Collapse
|