1
|
Fernández-Serra R, Lekouaghet A, Peracho L, Yonesi M, Alcázar A, Chioua M, Marco-Contelles J, Pérez-Rigueiro J, Rojo FJ, Panetsos F, Guinea GV, González-Nieto D. Permselectivity of Silk Fibroin Hydrogels for Advanced Drug Delivery Neurotherapies. Biomacromolecules 2024; 25:5233-5250. [PMID: 39018332 PMCID: PMC11323009 DOI: 10.1021/acs.biomac.4c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 07/19/2024]
Abstract
A promising trend in tissue engineering is using biomaterials to improve the control of drug concentration in targeted tissue. These vehicular systems are of specific interest when the required treatment time window is higher than the stability of therapeutic molecules in the body. Herein, the capacity of silk fibroin hydrogels to release different molecules and drugs in a sustained manner was evaluated. We found that a biomaterial format, obtained by an entirely aqueous-based process, could release molecules of variable molecular weight and charge with a preferential delivery of negatively charged molecules. Although the theoretical modeling suggested that drug delivery was more likely to be driven by Fickian diffusion, the external media had a considerable influence on the release, with lipophilic organic solvents such as acetonitrile-methanol (ACN-MeOH) intensifying the release of hydrophobic molecules. Second, we found that silk fibroin could be used as a vehicular system to treat a variety of brain disorders as this biomaterial sustained the release of different factors with neurotrophic (brain-derived neurotrophic factor) (BDNF), chemoattractant (C-X-C motif chemokine 12) (CXCL12), anti-inflammatory (TGF-β-1), and angiogenic (VEGF) capacities. Finally, we demonstrated that this biomaterial hydrogel could release cholesteronitrone ISQ201, a nitrone with antioxidant capacity, showing neuroprotective activity in an in vitro model of ischemia-reoxygenation. Given the slow degradation rate shown by silk fibroin in many biological tissues, including the nervous system, our study expands the restricted list of drug delivery-based biomaterial systems with therapeutic capacity for both short- and especially long-term treatment windows and has merit for use with brain pathologies.
Collapse
Affiliation(s)
- Rocío Fernández-Serra
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
- Silk
Biomed SL, Calle Navacerrada
18, Urb. Puerto Galapagar. Galapagar 28260, Spain
| | - Amira Lekouaghet
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
| | - Lorena Peracho
- Department
of Research, Hospital Universitario Ramón
y Cajal, Madrid 28034, Spain
- Proteomics
Unit, Instituto Ramón y Cajal de
Investigación Sanitaria (IRYCIS), Madrid 28034, Spain
| | - Mahdi Yonesi
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
| | - Alberto Alcázar
- Department
of Research, Hospital Universitario Ramón
y Cajal, Madrid 28034, Spain
- Proteomics
Unit, Instituto Ramón y Cajal de
Investigación Sanitaria (IRYCIS), Madrid 28034, Spain
| | - Mourad Chioua
- Laboratory
of Medicinal Chemistry, Institute of General
Organic Chemistry (CSIC), Madrid 28006, Spain
| | - José Marco-Contelles
- Laboratory
of Medicinal Chemistry, Institute of General
Organic Chemistry (CSIC), Madrid 28006, Spain
- Center
for
Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid 28029, Spain
| | - José Pérez-Rigueiro
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
- Silk
Biomed SL, Calle Navacerrada
18, Urb. Puerto Galapagar. Galapagar 28260, Spain
- Departamento
de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Biomaterials
and Regenerative Medicine Group, Instituto de Investigación
Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, Madrid 28040, Spain
| | - Francisco J. Rojo
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
- Silk
Biomed SL, Calle Navacerrada
18, Urb. Puerto Galapagar. Galapagar 28260, Spain
- Departamento
de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040, Spain
- Biomaterials
and Regenerative Medicine Group, Instituto de Investigación
Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, Madrid 28040, Spain
| | - Fivos Panetsos
- Silk
Biomed SL, Calle Navacerrada
18, Urb. Puerto Galapagar. Galapagar 28260, Spain
- Biomaterials
and Regenerative Medicine Group, Instituto de Investigación
Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, Madrid 28040, Spain
- Neurocomputing
and Neurorobotics Research Group, Faculty of Biology and Faculty of
Optics, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Gustavo V. Guinea
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
- Silk
Biomed SL, Calle Navacerrada
18, Urb. Puerto Galapagar. Galapagar 28260, Spain
- Departamento
de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Biomaterials
and Regenerative Medicine Group, Instituto de Investigación
Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, Madrid 28040, Spain
| | - Daniel González-Nieto
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
- Silk
Biomed SL, Calle Navacerrada
18, Urb. Puerto Galapagar. Galapagar 28260, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Departamento de
Tecnología Fotónica y Bioingeniería,
ETSI Telecomunicaciones, Universidad Politécnica
de Madrid, Madrid 28040, Spain
| |
Collapse
|
2
|
Izquierdo-Bermejo S, Chamorro B, Martín-de-Saavedra MD, Lobete M, López-Muñoz F, Marco-Contelles J, Oset-Gasque MJ. In Vitro Modulation of Autophagy by New Antioxidant Nitrones as a Potential Therapeutic Approach for the Treatment of Ischemic Stroke. Antioxidants (Basel) 2024; 13:946. [PMID: 39199193 PMCID: PMC11351736 DOI: 10.3390/antiox13080946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Stroke is a leading cause of death worldwide, yet current therapeutic strategies remain limited. Among the neuropathological events underlying this disease are multiple cell death signaling cascades, including autophagy. Recent interest has focused on developing agents that target molecules involved in autophagy to modulate this process under pathological conditions. This study aimed to analyze the role of autophagy in cell death induced by an in vitro ischemia-reperfusion (IR) model and to determine whether nitrones, known for their neuroprotective and antioxidant effects, could modulate this process. We focused on key proteins involved in different phases of autophagy: HIF-1α, BNIP3, and BECN1 for induction and nucleation, LC3 for elongation, and p62 for degradation. Our findings confirmed that the IR model promotes autophagy, initially via HIF-1α activation. Additionally, the neuroprotective effect of three of the selected synthetic nitrones (quinolylnitrones QN6 and QN23, and homo-bis-nitrone HBN6) partially derives from their antiautophagic properties, demonstrated by a downregulation of the expression of molecular markers involved in various phases of autophagy. In contrast, the neuroprotective power of cholesteronitrone ChN2 seems to derive from its promoting effects on the initial phases of autophagy, which could potentially help inhibit other forms of cell death. These results underscore the importance of autophagy modulation in neuroprotection, highlighting the potential of inhibiting prodeath autophagy and promoting prosurvival autophagy as promising therapeutic approaches in treating ischemic stroke clinically.
Collapse
Affiliation(s)
- Sara Izquierdo-Bermejo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-B.); (B.C.); (M.D.M.-d.-S.); (M.L.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
- Faculty of Health Sciences—HM Hospitals, Camilo José Cela University, Villafranca del Castillo, 28692 Madrid, Spain;
| | - Beatriz Chamorro
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-B.); (B.C.); (M.D.M.-d.-S.); (M.L.)
- Faculty of Health Sciences—HM Hospitals, Camilo José Cela University, Villafranca del Castillo, 28692 Madrid, Spain;
| | - María Dolores Martín-de-Saavedra
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-B.); (B.C.); (M.D.M.-d.-S.); (M.L.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Miguel Lobete
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-B.); (B.C.); (M.D.M.-d.-S.); (M.L.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health Sciences—HM Hospitals, Camilo José Cela University, Villafranca del Castillo, 28692 Madrid, Spain;
- HM Hospitals Health Research Institute, 28015 Madrid, Spain
- Neuropsychopharmacology Unit, “Hospital 12 de Octubre” Research Institute, 28041 Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - María Jesús Oset-Gasque
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-B.); (B.C.); (M.D.M.-d.-S.); (M.L.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
3
|
Escobar-Peso A, Martínez-Alonso E, Hadjipavlou-Litina D, Alcázar A, Marco-Contelles J. Synthesis, antioxidant and neuroprotective analysis of diversely functionalized α-aryl-N-alkyl nitrones as potential agents for ischemic stroke therapy. Eur J Med Chem 2024; 266:116133. [PMID: 38218126 DOI: 10.1016/j.ejmech.2024.116133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Herein, we report the synthesis, antioxidant and biological evaluation of 32 monosubstituted α-arylnitrones derived from α-phenyl-tert-butyl nitrone (PBN) in the search for neuroprotective compounds for ischemic stroke therapy, trying to elucidate the structural patterns responsible for their neuroprotective activity. Not surprisingly, the N-tert-butyl moiety plays beneficious role in comparison to other differently N-substituted nitrone groups. It seems that electron donor substituents at the ortho position and electron withdrawing substituents at the meta position of the aryl ring induce good neuroprotective activity. As a result, (Z)-N-tert-butyl-1-(2-hydroxyphenyl)methanimine oxide (21a) and (Z)-N-tert-butyl-1-(2-(prop-2-yn-1-yloxy)phenyl)methanimine oxide (24a) showed a significant increase in neuronal viability in an experimental ischemia model in primary neuronal cultures, and induced neuroprotection and improved neurodeficit score in an in vivo model of transient cerebral ischemia. These results showed that nitrones 21a and 24a are new effective small and readily available antioxidants, and suitable candidates for further structure optimization in the search for new phenyl-derived nitrones for the treatment of ischemic stroke and related diseases.
Collapse
Affiliation(s)
- Alejandro Escobar-Peso
- Department of Research, Ramón y Cajal University Hospital, IRYCIS, 28034, Madrid, Spain; Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC), 28006, Madrid, Spain.
| | - Emma Martínez-Alonso
- Department of Research, Ramón y Cajal University Hospital, IRYCIS, 28034, Madrid, Spain
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Alberto Alcázar
- Department of Research, Ramón y Cajal University Hospital, IRYCIS, 28034, Madrid, Spain.
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC), 28006, Madrid, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain.
| |
Collapse
|
4
|
Escobar-Peso A, Martínez-Alonso E, Masjuan J, Alcázar A. Development of Pharmacological Strategies with Therapeutic Potential in Ischemic Stroke. Antioxidants (Basel) 2023; 12:2102. [PMID: 38136221 PMCID: PMC10740896 DOI: 10.3390/antiox12122102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Acute ischemic stroke constitutes a health challenge with great social impact due to its high incidence, with the social dependency that it generates being an important source of inequality. The lack of treatments serving as effective neuroprotective therapies beyond thrombolysis and thrombectomy is presented as a need. With this goal in mind, our research group's collaborative studies into cerebral ischemia and subsequent reperfusion concluded that there is a need to develop compounds with antioxidant and radical scavenger features. In this review, we summarize the path taken toward the identification of lead compounds as potential candidates for the treatment of acute ischemic stroke. Evaluations of the antioxidant capacity, neuroprotection of primary neuronal cultures and in vivo experimental models of cerebral ischemia, including neurological deficit score assessments, are conducted to characterize the biological efficacy of the various neuroprotective compounds developed. Moreover, the initial results in preclinical development, including dose-response studies, the therapeutic window, the long-term neuroprotective effect and in vivo antioxidant evaluation, are reported. The results prompt these compounds for clinical trials and are encouraging regarding new drug developments aimed at a successful therapy for ischemic stroke.
Collapse
Affiliation(s)
- Alejandro Escobar-Peso
- Department of Research, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | - Emma Martínez-Alonso
- Department of Research, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | - Jaime Masjuan
- Department of Neurology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Department of Neurology, Facultad de Medicina, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Alberto Alcázar
- Department of Research, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| |
Collapse
|
5
|
Chamorro B, Izquierdo-Bermejo S, Martín-de-Saavedra MD, López-Muñoz F, Chioua M, Marco-Contelles J, Oset-Gasque MJ. Neuroprotective and Antioxidant Properties of CholesteroNitrone ChN2 and QuinolylNitrone QN23 in an Experimental Model of Cerebral Ischemia: Involvement of Necrotic and Apoptotic Cell Death. Antioxidants (Basel) 2023; 12:1364. [PMID: 37507904 PMCID: PMC10376237 DOI: 10.3390/antiox12071364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Ischemic stroke is the leading cause of disability and the second leading cause of death worldwide. However, current therapeutic strategies are scarce and of limited efficacy. The abundance of information available on the molecular pathophysiology of ischemic stroke has sparked considerable interest in developing new neuroprotective agents that can target different events of the ischemic cascade and may be used in combination with existing treatments. In this regard, nitrones represent a very promising alternative due to their renowned antioxidant and anti-inflammatory effects. In this study, we aimed to further investigate the neuroprotective effects of two nitrones, cholesteronitrone 2 (ChN2) and quinolylnitrone 23 (QN23), which have previously shown great potential for the treatment of stroke. Using an experimental in vitro model of cerebral ischemia, we compared their anti-necrotic, anti-apoptotic, and antioxidant properties with those of three reference compounds. Both ChN2 and QN23 demonstrated significant neuroprotective effects (EC50 = 0.66 ± 0.23 μM and EC50 = 2.13 ± 0.47 μM, respectively) comparable to those of homo-bis-nitrone 6 (HBN6) and N-acetylcysteine (NAC) and superior to those of α-phenyl-N-tert-butylnitrone (PBN). While primarily derived from the nitrones' anti-necrotic capacities, their anti-apoptotic effects at high concentrations and antioxidant powers-especially in the case of QN23-also contribute to their neuroprotective effects.
Collapse
Affiliation(s)
- Beatriz Chamorro
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
- Faculty of Health, Camilo José Cela University, Villanueva de la Cañada, 28692 Madrid, Spain
| | - Sara Izquierdo-Bermejo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - María Dolores Martín-de-Saavedra
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology Unit, "Hospital 12 de Octubre" Research Institute, 28041 Madrid, Spain
| | - Mourad Chioua
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - María Jesús Oset-Gasque
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
6
|
Chen YL, Chen YC, Xiong LA, Huang QY, Gong TT, Chen Y, Ma LF, Fang L, Zhan ZJ. Discovery of phenylcarbamoyl xanthone derivatives as potent neuroprotective agents for treating ischemic stroke. Eur J Med Chem 2023; 251:115251. [PMID: 36921528 DOI: 10.1016/j.ejmech.2023.115251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Compounds of natural sources are widespread discovered in the treatment of ischemic stroke. Alpha-mangostin, a natural prenylated xanthone, has been found to display a therapeutic potential to treat ischemic stroke. However, the direct application of α-mangostin is limited due to its cytotoxicity and relatively low efficacy. Herein, structural modification of α-mangostin was necessary to improve its drug-ability. Currently, 34 α-mangostin phenylcarbamoyl derivatives were synthesized and evaluated for their neuroprotective activities by glutamate-induced excitotoxicity and H2O2-induced oxidative damage models in vitro. The results showed that compound 2 had the most therapeutic potential in both models. Whereafter, 2 has been proved to have powerful therapeutic effects by the MCAO ischemic stroke model in rats, which might be due to inhibition of inflammatory reaction and free radical accumulation. Besides, acute toxicity assay in rats showed that compound 2 had excellent safety. Overall, 2 could be a promising neuroprotective agent for the treatment of ischemic stroke deserving further investigations.
Collapse
Affiliation(s)
- Yi-Li Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yu-Chen Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lin-An Xiong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Qu-Yang Huang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Ting-Ting Gong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yan Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lie-Feng Ma
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, PR China.
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
7
|
Alonso JM, Escobar-Peso A, Fernández I, Alcázar A, Marco-Contelles J. Improving the Efficacy of Quinolylnitrones for Ischemic Stroke Therapy, QN4 and QN15 as New Neuroprotective Agents after Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury. Pharmaceuticals (Basel) 2022; 15:1363. [PMID: 36355534 PMCID: PMC9697404 DOI: 10.3390/ph15111363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 01/12/2024] Open
Abstract
In our search for new neuroprotective agents for stroke therapy to improve the pharmacological profile of the compound quinolylnitrone QN23, we have prepared and studied sixteen new, related and easily available quinolylnitrones. As a result, we have identified compounds QN4 and QN15 as promising candidates showing high neuroprotection power in a cellular experimental model of ischemia. Even though they were found to be less active than our current lead compound QN23, QN4 and QN15 provide an improved potency and, particularly for QN4, an expanded range of tolerability and improved solubility compared to the parent compound. A computational DFT-based analysis has been carried out to understand the antioxidant power of quinolylnitrones QN23, QN4 and QN15. Altogether, these results show that subtle, simple modifications of the quinolylnitrone scaffold are tolerated, providing high neuroprotective activity and optimization of the pharmacological potency required for an improved design and future drug developments in the field.
Collapse
Affiliation(s)
- José M. Alonso
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Alejandro Escobar-Peso
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alberto Alcázar
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
8
|
Fernández-Serra R, Martínez-Alonso E, Alcázar A, Chioua M, Marco-Contelles J, Martínez-Murillo R, Ramos M, Guinea GV, González-Nieto D. Postischemic Neuroprotection of Aminoethoxydiphenyl Borate Associates Shortening of Peri-Infarct Depolarizations. Int J Mol Sci 2022; 23:ijms23137449. [PMID: 35806455 PMCID: PMC9266990 DOI: 10.3390/ijms23137449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022] Open
Abstract
Brain stroke is a highly prevalent pathology and a main cause of disability among older adults. If not promptly treated with recanalization therapies, primary and secondary mechanisms of injury contribute to an increase in the lesion, enhancing neurological deficits. Targeting excitotoxicity and oxidative stress are very promising approaches, but only a few compounds have reached the clinic with relatively good positive outcomes. The exploration of novel targets might overcome the lack of clinical translation of previous efficient preclinical neuroprotective treatments. In this study, we examined the neuroprotective properties of 2-aminoethoxydiphenyl borate (2-APB), a molecule that interferes with intracellular calcium dynamics by the antagonization of several channels and receptors. In a permanent model of cerebral ischemia, we showed that 2-APB reduces the extent of the damage and preserves the functionality of the cortical territory, as evaluated by somatosensory evoked potentials (SSEPs). While in this permanent ischemia model, the neuroprotective effect exerted by the antioxidant scavenger cholesteronitrone F2 was associated with a reduction in reactive oxygen species (ROS) and better neuronal survival in the penumbra, 2-APB did not modify the inflammatory response or decrease the content of ROS and was mostly associated with a shortening of peri-infarct depolarizations, which translated into better cerebral blood perfusion in the penumbra. Our study highlights the potential of 2-APB to target spreading depolarization events and their associated inverse hemodynamic changes, which mainly contribute to extension of the area of lesion in cerebrovascular pathologies.
Collapse
Affiliation(s)
- Rocío Fernández-Serra
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Madrid, Spain; (R.F.-S.); (M.R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
| | - Emma Martínez-Alonso
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain; (E.M.-A.); (A.A.)
| | - Alberto Alcázar
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain; (E.M.-A.); (A.A.)
| | - Mourad Chioua
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC), 28006 Madrid, Spain; (M.C.); (J.M.-C.)
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC), 28006 Madrid, Spain; (M.C.); (J.M.-C.)
| | | | - Milagros Ramos
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Madrid, Spain; (R.F.-S.); (M.R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Madrid, Spain; (R.F.-S.); (M.R.); (G.V.G.)
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Madrid, Spain; (R.F.-S.); (M.R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-910679280
| |
Collapse
|
9
|
Preclinical Characterization of Antioxidant Quinolyl Nitrone QN23 as a New Candidate for the Treatment of Ischemic Stroke. Antioxidants (Basel) 2022; 11:antiox11061186. [PMID: 35740081 PMCID: PMC9220178 DOI: 10.3390/antiox11061186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Nitrones are encouraging drug candidates for the treatment of oxidative stress-driven diseases such as acute ischemic stroke (AIS). In a previous study, we found a promising quinolylnitrone, QN23, which exerted a neuroprotective effect in neuronal cell cultures subjected to oxygen–glucose deprivation and in experimental models of cerebral ischemia. In this paper, we update the biological and pharmacological characterization of QN23. We describe the suitability of intravenous administration of QN23 to induce neuroprotection in transitory four-vessel occlusion (4VO) and middle cerebral artery occlusion (tMCAO) experimental models of brain ischemia by assessing neuronal death, apoptosis induction, and infarct area, as well as neurofunctional outcomes. QN23 significantly decreased the neuronal death and apoptosis induced by the ischemic episode in a dose-dependent manner and showed a therapeutic effect when administered up to 3 h after post-ischemic reperfusion onset, effects that remained 11 weeks after the ischemic episode. In addition, QN23 significantly reduced infarct volume, thus recovering the motor function in a tMCAO model. Remarkably, we assessed the antioxidant activity of QN23 in vivo using dihydroethidium as a molecular probe for radical species. Finally, we describe QN23 pharmacokinetic parameters. All these results pointing to QN23 as an interesting and promising preclinical candidate for the treatment of AIS.
Collapse
|
10
|
Abstract
The recent advances of tetramethylpyrazine nitrones and quinolylnitrones for the treatment of stroke have been reviewed and compared with other agents, showing promising therapeutic applications. As a result of a functional transformation of natural product ligustrazine, (Z)-N-tert-butyl-1-(3,5,6-trimethylpyrazin-2-yl)methanimine oxide (6) is a multitarget small nitrone showing potent thrombolytic activity and free radicals scavenging power, in addition to nontoxicity and blood-brain barrier permeability. Similarly, antioxidant (Z)-N-tert-butyl-1-(2-chloro-6-methoxyquinolin-3-yl)methanimine oxide (17) is a novel agent for cerebral ischemia therapy as it is able to scavenge different types of free radical species, showing strong neuroprotection and reduced infarct size.
Collapse
Affiliation(s)
- José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry, CSIC; Juan de la Cierva, 3, 28006 Madrid, Spain
| |
Collapse
|
11
|
Amitina SA, Zaytseva EV, Dmitrieva NA, Lomanovich AV, Kandalintseva NV, Ten YA, Artamonov IA, Markov AF, Mazhukin DG. 5-Aryl-2-(3,5-dialkyl-4-hydroxyphenyl)-4,4-dimethyl-4 H-imidazole 3-Oxides and Their Redox Species: How Antioxidant Activity of 1-Hydroxy-2,5-dihydro-1 H-imidazoles Correlates with the Stability of Hybrid Phenoxyl-Nitroxides. Molecules 2020; 25:E3118. [PMID: 32650477 PMCID: PMC7396990 DOI: 10.3390/molecules25143118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022] Open
Abstract
Cyclic nitrones of the imidazole series, containing a sterically hindered phenol group, are promising objects for studying antioxidant activity; on the other hand, they can form persistent hybrid phenoxyl-nitroxyl radicals (HPNs) upon oxidation. Here, a series of 5-aryl-4,4-dimethyl-4H-imidazole 3-oxides was obtained by condensation of aromatic 2-hydroxylaminoketones with 4-formyl-2,6-dialkylphenols followed by oxidation of the initially formed N-hydroxy derivatives. It was shown that the antioxidant activity of both 1-hydroxy-2,5-dihydroimidazoles and 4H-imidazole 3-oxides increases with a decrease in steric volume of the alkyl substituent in the phenol group, while the stability of the corresponding HPNs generated from 4H-imidazole 3-oxides reveals the opposite tendency.
Collapse
Affiliation(s)
- Svetlana A. Amitina
- Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Academician Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (S.A.A.); (E.V.Z.); (A.V.L.); (Y.A.T.); (I.A.A.)
| | - Elena V. Zaytseva
- Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Academician Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (S.A.A.); (E.V.Z.); (A.V.L.); (Y.A.T.); (I.A.A.)
| | - Natalya A. Dmitrieva
- Department of Chemistry, Institute of Chemistry of Antioxidants, Novosibirsk State Pedagogical University, Vilyuyskaya Str. 28, 6301026 Novosibirsk, Russia; (N.A.D.); (N.V.K.); (A.F.M.)
| | - Alyona V. Lomanovich
- Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Academician Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (S.A.A.); (E.V.Z.); (A.V.L.); (Y.A.T.); (I.A.A.)
| | - Natalya V. Kandalintseva
- Department of Chemistry, Institute of Chemistry of Antioxidants, Novosibirsk State Pedagogical University, Vilyuyskaya Str. 28, 6301026 Novosibirsk, Russia; (N.A.D.); (N.V.K.); (A.F.M.)
| | - Yury A. Ten
- Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Academician Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (S.A.A.); (E.V.Z.); (A.V.L.); (Y.A.T.); (I.A.A.)
| | - Ilya A. Artamonov
- Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Academician Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (S.A.A.); (E.V.Z.); (A.V.L.); (Y.A.T.); (I.A.A.)
| | - Alexander F. Markov
- Department of Chemistry, Institute of Chemistry of Antioxidants, Novosibirsk State Pedagogical University, Vilyuyskaya Str. 28, 6301026 Novosibirsk, Russia; (N.A.D.); (N.V.K.); (A.F.M.)
| | - Dmitrii G. Mazhukin
- Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Academician Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (S.A.A.); (E.V.Z.); (A.V.L.); (Y.A.T.); (I.A.A.)
| |
Collapse
|