1
|
Oubannin S, Jadouali SM, Atifi H, Bijla L, Ibourki M, Gagour J, Bouzid HA, Aabd NA, Bouyahya A, Harhar H, Goh KW, Ming LC, Razi P, Gharby S. Antioxidant activity, physico-chemical properties, and bioactive compounds of Nigella sativa seeds and oil impacted by microwave processing technique. Heliyon 2024; 10:e37603. [PMID: 39381241 PMCID: PMC11458942 DOI: 10.1016/j.heliyon.2024.e37603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
Strongly anti-oxidant and medicinal, Nigella sativa L (NS) is utilized in conventional medicine to address a range of illnesses, including gastrointestinal, inflammatory and rheumatic illnesses. This study was carried out to investigate the effects of microwave processing on the physico-chemical properties of Moroccan-grown Nigella sativa seeds and oils, as well as to investigate the antioxidant qualities of black cumin oils under conditions of accelerated oxidation. The study's specific goal was to ascertain the effects of varying microwave power levels (500 and 750 W) and roasting times (5, 10, and 15 min) on the black cumin oils' quality indices, fatty acid and sterol content, carotenoid and chlorophyll levels, mineral profile, tocopherol amount, and overall antioxidant activity. To this end, the seeds of black cumin were roasted at two power levels (500 and 750 W) and for three different periods (5, 10, and 15 min) in a microwave oven. The obtained results show that the duration and the processing power did not significantly influence the amount of sterols and fatty acids. In contrast, the quality indices, physico-chemical properties, carotenoid and chlorophyll contents, mineral profile, and tocopherol amount were influenced by the microwave processing. A significant decline in the antioxidant activity was recorded from 45.01 ± 0.81 % (unroasted cumin seeds) to 4.32 ± 0.91 % (750 W/5 min). Based on these findings, the black cumin oil preparations should be handled carefully and the oil must be protected once extracted. The stability and preservation of antioxidants are crucial steps against pro-oxidant and inflammatory conditions that could favour cellular senescence and accelerate aging processes.
Collapse
Affiliation(s)
- Samira Oubannin
- Biotechnology Analytical Sciences and Quality Control Laboratory, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, 80000, Morocco
| | - Si Mohamed Jadouali
- Laboratory of Biotechnology, Bioanalysis and Bioinformatics, SST Khenifra, Sultan Moulay, Sliman University, Morocco
| | - Hajar Atifi
- Laboratory of Biotechnology, Bioanalysis and Bioinformatics, SST Khenifra, Sultan Moulay, Sliman University, Morocco
| | - Laila Bijla
- Biotechnology Analytical Sciences and Quality Control Laboratory, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, 80000, Morocco
| | - Mohamed Ibourki
- Biotechnology Analytical Sciences and Quality Control Laboratory, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, 80000, Morocco
| | - Jamila Gagour
- Biotechnology Analytical Sciences and Quality Control Laboratory, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, 80000, Morocco
| | - Hasna Ait Bouzid
- Biotechnology Analytical Sciences and Quality Control Laboratory, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, 80000, Morocco
| | - Naima Ait Aabd
- National Institute of Agronomic Research, Agadir, 80000, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University, Raba, 10100, Morocco
| | - Hicham Harhar
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Science, University Mohamed V University, Rabat, 10100, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
| | - Pakhrur Razi
- Center of Disaster Monitoring and Earth Observation, Universitas Negeri Padang, Padang, Indonesia
| | - Saïd Gharby
- Biotechnology Analytical Sciences and Quality Control Laboratory, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, 80000, Morocco
| |
Collapse
|
2
|
Grzelczyk J, Budryn G, Kołodziejczyk K, Ziętala J. The Influence of Maceration and Flavoring on the Composition and Health-Promoting Properties of Roasted Coffee. Nutrients 2024; 16:2823. [PMID: 39275141 PMCID: PMC11397542 DOI: 10.3390/nu16172823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Over the years, many methods of refining green beans have been developed, including maceration aimed at enriching the coffee aroma and improving the overall quality. This study aimed to evaluate the influence of different methods of maceration (fruit and wine) and the addition of food flavors to coffee beans on antioxidant activity, caffeine, phenolic and organic acid content, as well as health-promoting properties. This research showed that the use of the maceration in melon and apple fruit pulp (100 g of fruit pulp per 100 g of green coffee, incubated for 24 h, coffee roasting at 230 °C, control trial roasted coffee) ensured the highest polyphenol (hydroxycinnamic acids and their esters-chlorogenic acids) content (in melon pulp-13.56 g/100 g d.b. (dry bean); in apple pulp-13.22 g/100 g d.b., p < 0.05 (one-way ANOVA)) and antioxidant activity. Melon (92.11%, IC50 = 3.80 mg/mL extract) and apple (84.55%, IC50 = 4.14 mg/mL) showed the highest α-amylase (enzyme concentration 10 μmol/mL) inhibition activity (0.5 mg/mL for both fruits). The addition of food flavors reduced the total content of chlorogenic acids to the range of 4.64 to 6.48 g/100 g d.b. and increased the content of acrylamide and 5-HMF, which positively correlated with a low antioxidant potential compared to the macerated samples and the control. Studies have shown that coffee macerated in the pulp of melon and apple fruit, due to its great potential to inhibit α-amylase in vivo, may have a preventive effect on type II diabetes. This study complements the current knowledge on the potential health-promoting properties of coffee flavored using different methods; further research should include more advanced models for testing these health-promoting properties. Statistical analysis was based on the determination of the average values of six measurements and their standard deviation, as well as on the one-way ANOVA (analysis of variation) and the Pearson correlation coefficient, using Statistic 10.0 software. The significance was defined at p ≤ 0.05.
Collapse
Affiliation(s)
- Joanna Grzelczyk
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland
| | - Grażyna Budryn
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland
| | - Krzysztof Kołodziejczyk
- Department of Sugar Industry and Food Safety Management, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland
| | - Joanna Ziętala
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland
| |
Collapse
|
3
|
Memudu AE, Olukade BA, Adebayo OS, Raza ML. Coffee and amyotrophic lateral sclerosis (ALS). PROGRESS IN BRAIN RESEARCH 2024; 289:81-105. [PMID: 39168583 DOI: 10.1016/bs.pbr.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterized by progressive loss of motor neurons. The effective treatments for ALS remain elusive, necessitating exploration into novel preventive strategies. ALS pathogenesis is triggered by oxidative stress which results in neuroinflammation, exicitotoxicity and neuronal cell death. Nutritional mechanism for halting progression of neurodegeneration is through dietary compounds with antioxidants, anti-inflammatory or neuromodulating activity. Coffee is a widely consumed beverage made up of polyphenols, caffeine and other compounds with possible antioxidants and neuro-protective roles. It is important to say that various epidemiological studies have documented association between coffee intake and ALS. This chapter is aimed to present a comprehensive review of existing literature on coffee consumption and ALS, involving epidemiological studies, preclinical research, and its mechanism of actions in animal model of ALS. It highlights key findings regarding the potential neuroprotective properties of coffee constituents such as caffeine, polyphenols, and other bioactive compounds. Furthermore, it discusses possible pathways through which coffee may modulate ALS pathogenesis, including suppressing oxidative stress and neuroinflammation while boosting adenosine function via the adenosine receptor two on the motor neuron cells membrane in the spinal cord to enhance motor function via the corticospinal tract. Overall, this chapter underscores the significance of further research to unravel the specific mechanisms by which coffee exerts its neuroprotective effects in ALS, with the ultimate goal of identifying dietary strategies for ALS prevention and management.
Collapse
Affiliation(s)
- Adejoke Elizabeth Memudu
- Anatomy Department, Neuroscience Unit, Faculty of Basic Medical Sciences Edo State University Uzairue, Edo State, Nigeria.
| | - Baliqis Adejoke Olukade
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer Institute, University of South Florida, Tampa, FL, United States
| | | | - Muhammad Liaquat Raza
- Department of Infection Prevention & Control, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Mengesha D, Retta N, Woldemariam HW, Getachew P. Changes in biochemical composition of Ethiopian Coffee arabica with growing region and traditional roasting. Front Nutr 2024; 11:1390515. [PMID: 38868553 PMCID: PMC11168431 DOI: 10.3389/fnut.2024.1390515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024] Open
Abstract
Updating the biochemical composition of coffee beans across the years is necessary. This is important to understand the vulnerability of coffee toward climate adaptation longitudinally. Accordingly, in this study the influence of growing area and traditional roasting on the biochemical composition of five common Ethiopian Arabica coffee beans collected in the harvest year of 2021/22 were investigated. With an average of 11.34 g/100 g, the Hararge and Jimma coffee beans had the highest crude fat content (p < 0.05). The crude protein content of the five varieties was in the range of 13-15 g/100 g, with respective highest and lowest contents in the (Hararge and Nekemte) and (Sidama and Yirgachefe) coffee beans (p < 0.05). The total phenolic content (TPC) of the coffee beans was in the order of Jimma (46.52) > Nekemte (44.55) > Sidama (44.31) > Hararge (39.02) > Yirgachefe (34.25) mg GAE/100 g. The 50% inhibitory concentration (IC50) of ascorbic acid, coffee bean extract from Jimma and Hararge against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical was 19.86, 20.22 and 20.02 μg/mL, respectively. The respective highest and lowest caffeine concentration was obtained in the Yirgachefe (10.38) and Hararge (7.55 g/100 g) coffee beans (p < 0.05). The Jimma, Sidama, and Nekemte coffee varieties had the highest chlorogenic acid content of 45 g/100 g (p > 0.05); whereas the lowest content was in Hararge coffee (36.78 g/100 g). While the caffeine concentration did not show significant (p > 0.05) difference, with all the coffee beans the roasting has reduced significantly the TPC, trigonelline and mainly the chlorogenic acid (p < 0.05). These data can update the existing facts on biochemical diversity of coffee beans in the country which can be used for evidence based innovations of climate adaptation in predicting the quality of coffee. Further recommendation of optimizing the traditional coffee processing method is supported from this study.
Collapse
Affiliation(s)
- Dhaba Mengesha
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
| | - Negussie Retta
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Henock Woldemichael Woldemariam
- Department of Food Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Paulos Getachew
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Ying BB, Cai J, Gao X, Zhang LF, Xu QF, Xu QH, Liu WL, Huang XM, Wang YC, Zhu L. Isolation, identification, and tolerance analysis of yeast during the natural fermentation process of Sidamo coffee beans. Arch Microbiol 2024; 206:279. [PMID: 38805051 DOI: 10.1007/s00203-024-04017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Yeast, which plays a pivotal role in the brewing, food, and medical industries, exhibits a close relationship with human beings. In this study, we isolated and purified 60 yeast strains from the natural fermentation broth of Sidamo coffee beans to screen for indigenous beneficial yeasts. Among them, 25 strains were obtained through morphological characterization on nutritional agar medium from Wallerstein Laboratory (WL), with molecular biology identifying Saccharomyces cerevisiae strain YBB-47 and the remaining 24 yeast strains identified as Pichia kudriavzevii. We investigated the fermentation performance, alcohol tolerance, SO2 tolerance, pH tolerance, sugar tolerance, temperature tolerance, ester production capacity, ethanol production capacity, H2S production capacity, and other brewing characteristics of YBB-33 and YBB-47. The results demonstrated that both strains could tolerate up to 3% alcohol by volume at a high sucrose mass concentration (400 g/L) under elevated temperature conditions (40 ℃), while also exhibiting a remarkable ability to withstand an SO2 mass concentration of 300 g/L at pH 3.2. Moreover, S. cerevisiae YBB-47 displayed a rapid gas production rate and strong ethanol productivity. whereas P. kudriavzevii YBB-33 exhibited excellent alcohol tolerance. Furthermore, this systematic classification and characterization of coffee bean yeast strains from the Sidamo region can potentially uncover additional yeasts that offer high-quality resources for industrial-scale coffee bean production.
Collapse
Affiliation(s)
- Bei-Bei Ying
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Jian Cai
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Xiu Gao
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Li-Fang Zhang
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Qing-Fang Xu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Qi-He Xu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Wei-Liang Liu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Xian-Min Huang
- School of Agronomy and Life Sciences, Zhaotong University, Zhaotong, Yunnan, 657000, People's Republic of China
| | - Yu-Chen Wang
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi, Yunnan, 653100, People's Republic of China.
- School of Chemcal Biology and Environment, Yuxi Normal University, Yuxi, Yunnan, 653100, People's Republic of China.
| | - Ling Zhu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China.
| |
Collapse
|
6
|
Elsheikh AA, Shalaby AM, Alabiad MA, Abd-Almotaleb NA, Alorini M, Alnasser SM, Elhasadi I, El-Nagdy SA. Trigonelline Chloride Ameliorated Triphenyltin-Induced Testicular Autophagy, Inflammation, and Apoptosis: Role of Recovery. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:133-150. [PMID: 38156731 DOI: 10.1093/micmic/ozad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Triphenyltin chloride (TPT-Cl) is an organometallic organotin. This study aimed to investigate the role of trigonelline (TG) along with the impact of TPT withdrawal on the testicular toxicity induced by TPT-Cl. Thirty-six adult male albino rats were divided into control, TG (40 mg/kg/day), TPT-Cl (0.5 mg/kg/day), TG + TPT-Cl, and recovery groups. Animals were daily gavaged for 12 weeks. Both TG and TPT-Cl withdrawal improved TPT-Cl-induced testicular toxicity features involving testis and relative testis weight reduction, luteinizing hormone, follicular stimulating hormone, and sex hormone-binding globulin elevation, reduction of inhibin B, free testosterone levels, and sperm count reduction with increased abnormal sperm forms. Moreover, both TG and TPT-Cl withdrawal reduced inflammatory activin A, follistatin, tumor necrosis factor α, interleukin-1β, and proapoptotic Bax and elevated antiapoptotic Bcl2 in testicular tissues mediated by TPT-Cl. TG and TPT-Cl withdrawal restored the excessive autophagy triggered by TPT-Cl via elevation of mTOR, AKT, PI3K, and P62/SQSTM1 and reduction of AMPK, ULK1, Beclin1, and LC3 mRNA gene expressions and regained the deteriorated testicular structure. In conclusion, TG and TPT-Cl withdrawal had an ameliorative role in partially reversing TPT-Cl-induced testicular toxicity. However, the findings indicated that the use of TG as an adjunctive factor is more favorable than TPT-Cl withdrawal, suggesting the capability of the testis for partial self-improvement.
Collapse
Affiliation(s)
- Arwa A Elsheikh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Noha Ali Abd-Almotaleb
- Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed Alorini
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah 51911, Saudi Arabia
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 51911, Saudi Arabia
| | - Ibtesam Elhasadi
- Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | - Samah A El-Nagdy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
7
|
Makiso MU, Tola YB, Ogah O, Endale FL. Bioactive compounds in coffee and their role in lowering the risk of major public health consequences: A review. Food Sci Nutr 2024; 12:734-764. [PMID: 38370073 PMCID: PMC10867520 DOI: 10.1002/fsn3.3848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 02/20/2024] Open
Abstract
This article addresses the bioactive components in coffee aroma, their metabolism, and the mechanism of action in lowering the risk of various potential health problems. The main bioactive components involved in the perceived aroma of coffee and its related health benefits are caffeine, chlorogenic acid (CGA), trigonelline, diterpenes, and melanoids. These compounds are involved in various physiological activities. Caffeine has been shown to have anticancer properties, as well as the ability to prevent the onset and progression of hepatocellular carcinoma and to be anti-inflammatory. CGA exhibits antioxidant action and is implicated in gut health, neurodegenerative disease protection, type 2 diabetes, and cardiovascular disease prevention. Furthermore, together with diterpenes, CGA has been linked to anticancer activity. Trigonelline, on the other side, has been found to lower oxidative stress by increasing antioxidant enzyme activity and scavenging reactive oxygen species. It also prevents the formation of kidney stones. Diterpenes and melanoids possess anti-inflammatory and antioxidant properties, respectively. Consuming three to four cups of filtered coffee per day, depending on an individual's physiological condition and health status, has been linked to a lower risk of several degenerative diseases. Despite their health benefits, excessive coffee intake above the recommended daily dosage, calcium and vitamin D deficiency, and unfiltered coffee consumption all increase the risk of potential health concerns. In conclusion, moderate coffee consumption lowers the risk of different noncommunicable diseases.
Collapse
Affiliation(s)
- Markos Urugo Makiso
- Department of Food Science and Postharvest TechnologyCollege of Agricultural SciencesWachemo UniversityHossanaEthiopia
- Department of Postharvest ManagementCollege of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Yetenayet Bekele Tola
- Department of Postharvest ManagementCollege of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Onwuchekwa Ogah
- Department of Applied BiologyEbonyi State UniversityIsiekeNigeria
| | - Fitsum Liben Endale
- Department of Public HealthCollege of Medicine and Health SciencesWachemo UniversityHossanaEthiopia
| |
Collapse
|
8
|
Yust BG, Wilkinson F, Rao NZ. Variables Affecting the Extraction of Antioxidants in Cold and Hot Brew Coffee: A Review. Antioxidants (Basel) 2023; 13:29. [PMID: 38247454 PMCID: PMC10812495 DOI: 10.3390/antiox13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Coffee beans are a readily available, abundant source of antioxidants used worldwide. With the increasing interest in and consumption of coffee beverages globally, research into the production, preparation, and chemical profile of coffee has also increased in recent years. A wide range of variables such as roasting temperature, coffee grind size, brewing temperature, and brewing duration can have a significant impact on the extractable antioxidant content of coffee products. While there is no single standard method for measuring all of the antioxidants found in coffee, multiple methods which introduce the coffee product to a target molecule or reagent can be used to deduce the overall radical scavenging capacity. In this article, we profile the effect that many of these variables have on the quantifiable concentration of antioxidants found in both cold and hot brew coffee samples. Most protocols for cold brew coffee involve an immersion or steeping method where the coffee grounds are in contact with water at or below room temperature for several hours. Generally, a higher brewing temperature or longer brewing time yielded greater antioxidant activity. Most studies also found that a lower degree of coffee bean roast yielded greater antioxidant activity.
Collapse
Affiliation(s)
- Brian G. Yust
- College of Humanities & Sciences, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Frank Wilkinson
- Department of Biological and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19144, USA; (F.W.); (N.Z.R.)
| | - Niny Z. Rao
- Department of Biological and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19144, USA; (F.W.); (N.Z.R.)
| |
Collapse
|
9
|
Halagarda M, Obrok P. Influence of Post-Harvest Processing on Functional Properties of Coffee ( Coffea arabica L.). Molecules 2023; 28:7386. [PMID: 37959805 PMCID: PMC10650074 DOI: 10.3390/molecules28217386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Coffee is one of the most popular beverages worldwide, valued for its sensory properties as well as for its psychoactive effects that are associated with caffeine content. Nevertheless, coffee also contains antioxidant substances. Therefore, it can be considered a functional beverage. The aim of this study is to evaluate the influence of four selected post-harvest coffee fruit treatments (natural, full washed, washed-extended fermentation, and anaerobic) on the antioxidant and psychoactive properties of Arabica coffee. Additionally, the impact of coffee processing on the selected quality parameters was checked. For this purpose, results for caffeine content, total phenolic content (TPC), DPPH assay, pH, titratable acidity, and water content were determined. The results show that natural and anaerobic processing allow the highest caffeine concentration to be retained. The selection of the processing method does not have a significant influence on the TPC or antiradical activity of coffee. The identified differences concerning water content and pH along with lack of significant discrepancies in titratable acidity may have an influence on the sensory profile of coffee.
Collapse
Affiliation(s)
- Michał Halagarda
- Department of Food Product Quality, Krakow University of Economics, Ul. Sienkiewicza 5, 30-033 Krakow, Poland
| | | |
Collapse
|
10
|
Febrianto NA, Zhu F. Coffee bean processing: Emerging methods and their effects on chemical, biological and sensory properties. Food Chem 2023; 412:135489. [PMID: 36716620 DOI: 10.1016/j.foodchem.2023.135489] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Emerging processing methods have been applied in coffee bean processing for improved sensory quality. The processes focus on optimizing the fermentation process of the coffee cherries and beans. This involves various pathways, including the formation of volatiles, flavor precursors and organic acids and the reduction in the concentrations of bioactive compounds. Comprehensive information regarding the effect of these emerging processes on the chemical, biological and sensory properties of the coffee beans is summarized. Emerging processes affected the coffee bean to various degrees depending on the raw material and the method used. The emerging methods promoted the reduction of bioactives such as caffeine and phenolics in coffee beans. Substantial improvement of these processes is needed to obtain coffee beans with improved biological activities. Effort to simplify the methods and optimize the post-fermentation process is crucial for the methods to be easily accessible by the producers and to produce defect-free coffee beans.
Collapse
Affiliation(s)
- Noor Ariefandie Febrianto
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Indonesian Coffee and Cocoa Research Institute (ICCRI), Jl. PB Sudirman No. 90 Jember, East Java, Indonesia
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
11
|
Várady M, Tauchen J, Fraňková A, Klouček P, Popelka P. Effect of method of processing specialty coffee beans (natural, washed, honey, fermentation, maceration) on bioactive and volatile compounds. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
12
|
Physicochemical Analysis of Cold Brew and Hot Brew Peaberry Coffee. Processes (Basel) 2022. [DOI: 10.3390/pr10101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Peaberry coffee is the result of a natural mutation of coffee beans, and they make up only about 5–7% of coffee crops. A typical coffee cherry contains two seeds that are developed against each other, resulting in the distinctive half-rounded shape of coffee beans. However, failing to fertilize both ovules of one of the seeds or failure in endosperm development can cause only one of the seeds to develop, resulting in smaller, denser beans with a more domed shape. Peaberry coffees are said to be sweeter, lighter, and more flavorful since the peaberry beans receive all nutrients from the coffee cherry. Due to its exclusive nature, the chemical characteristic of peaberry coffee is not well understood. This study explores the acidities and antioxidant activity of peaberry coffee sourced from multiple regions. Total antioxidant capacity, total caffeoylquinic acid (CQA), total caffeine concentration, and pH levels were evaluated for peaberry coffee extracts prepared by cold and hot brewing methods. Little correlation between antioxidant activity and the concentrations of caffeine and CQA in peaberry beans was shown. Six methods were performed for the characterization of total antioxidant capacity including cyclic voltammetry, ABTS assay, and FRAP assay. Peaberry bean extract demonstrated higher average total caffeine concentrations compared to traditional coffee bean extracts.
Collapse
|
13
|
Ara C, Asmatullah, Ramzan N, Ali S, Shakir HA, Liaqat I, Iqbal A, Yaseen F, Shahzad N. Black coffee mitigates diethyl phthalate disrupted folliculogenesis, reduced gonadotropins, and ovarian lesions in female albino mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47254-47266. [PMID: 35182336 DOI: 10.1007/s11356-022-19138-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Phthalates are multifunctional compounds with extensive applications and emerging environmental pollutants. Due to their ubiquity in the environment and unavoidable exposure to humans, concerns have been voiced about public health dangers. This study was aimed to explore the diethyl phthalate (DEP) toxicity and the potential protective effect of black coffee in female Swiss albino mice. Four-week-old mice, weighing 12 ± 1 g were segregated into five groups (n = 10), designated as G-I (without any treatment), G-II (treated with corn oil), G-III (exposed to 1.5 mg/g body wt. (B.W.) DEP), G-IV (received 2 μg/g B.W coffee), and G-V (co-administrated with 1.5 mg/g DEP and 2 μg/g B.W coffee). Before dose administration, the coffee extract was assessed for its antioxidant potential through FRAP, TPC, and GC-MS analyses. Respective phthalates/coffee doses were administrated orally, once a day for 8 weeks consecutively starting from the prepubescent stage. After 56 days, mice were acclimated for 4 days then dissected. Morphological assessments showed an irregular shape of the ovaries in DEP-treated mice as compared to the control. The average bodyweight of DEP-intoxicated mice (p ≤ 0.05) increased notably against control, while DEP plus coffee group showed a regular gain in the average weight of mice. The gonado-somatic index showed non-significant variations among all groups. Micrometric studies showed that the diameter of secondary follicles (115 µm) in the ovaries of DEP-exposed mice (p ≤ 0.001) decreased significantly as compared to control (204 µm); conversely, follicular diameter in the coffee control group (248) increased significantly. Serum FSH and LH levels were significantly increased in DEP-exposed mice with a noteworthy decrease in estrogen level while hormonal levels of all other groups were comparable to control. Histological sections of DEP-exposed mice ovaries showed anatomical disruptions contrary to other groups, which were comparable with control. Antioxidant potential was checked in ovaries homogenates; FRAP values showed a notable decrease in DEP group in comparison with the control group, in contrast to G-V, when DEP was co-administrated with coffee. This study concluded that black coffee has protective effect, against DEP-instigated reproductive toxicity in Swiss albino female mice.
Collapse
Affiliation(s)
- Chaman Ara
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Asmatullah
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Nageena Ramzan
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan.
| | | | - Iram Liaqat
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Asia Iqbal
- Department of Wildlife and Ecology, The University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Faiza Yaseen
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Nida Shahzad
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
14
|
Farag MA, Zayed A, Sallam IE, Abdelwareth A, Wessjohann LA. Metabolomics-Based Approach for Coffee Beverage Improvement in the Context of Processing, Brewing Methods, and Quality Attributes. Foods 2022; 11:foods11060864. [PMID: 35327289 PMCID: PMC8948666 DOI: 10.3390/foods11060864] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Coffee is a worldwide beverage of increasing consumption, owing to its unique flavor and several health benefits. Metabolites of coffee are numerous and could be classified on various bases, of which some are endogenous to coffee seeds, i.e., alkaloids, diterpenes, sugars, and amino acids, while others are generated during coffee processing, for example during roasting and brewing, such as furans, pyrazines, and melanoidins. As a beverage, it provides various distinct flavors, i.e., sourness, bitterness, and an astringent taste attributed to the presence of carboxylic acids, alkaloids, and chlorogenic acids. To resolve such a complex chemical makeup and to relate chemical composition to coffee effects, large-scale metabolomics technologies are being increasingly reported in the literature for proof of coffee quality and efficacy. This review summarizes the applications of various mass spectrometry (MS)- and nuclear magnetic resonance (NMR)-based metabolomics technologies in determining the impact of coffee breeding, origin, roasting, and brewing on coffee chemical composition, and considers this in relation to quality control (QC) determination, for example, by classifying defected and non-defected seeds or detecting the adulteration of raw materials. Resolving the coffee metabolome can aid future attempts to yield coffee seeds of desirable traits and best flavor types.
Collapse
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
- Correspondence: (M.A.F.); (L.A.W.)
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta 31527, Egypt;
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663 Kaiserslautern, Germany
| | - Ibrahim E. Sallam
- Pharmacognosy Department, College of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City 12566, Egypt;
| | - Amr Abdelwareth
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Ludger A. Wessjohann
- Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Weinberg 3, 06120 Halle, Germany
- Correspondence: (M.A.F.); (L.A.W.)
| |
Collapse
|
15
|
Wang X, Wang Y, Hu G, Hong D, Guo T, Li J, Li Z, Qiu M. Review on factors affecting coffee volatiles: from seed to cup. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1341-1352. [PMID: 34778973 DOI: 10.1002/jsfa.11647] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/20/2021] [Accepted: 11/15/2021] [Indexed: 05/05/2023]
Abstract
The objective of this review is to evaluate the influence of six factors on coffee volatiles. At present, the poor aroma from robusta or low-quality arabica coffee can be significantly improved by advanced technology, and this subject will continue to be further studied. On the other hand, inoculating various starter cultures in green coffee beans has become a popular research direction for promoting coffee aroma and flavor. Several surveys have indicated that shade and altitude can affect the content of coffee aroma precursors and volatile organic compounds (VOCs), which remain to be fully elucidated. The emergence of the new roasting process has greatly enriched the aroma composition of coffee. Cold-brew coffee is one of the most popular trends in coffee extraction currently, and its influence on coffee aroma is worthy of in-depth and detailed study. Omics technology will be one of the most important means to analyze coffee aroma components and their quality formation mechanism. A better understanding of the effect of each parameter on VOCs would assist coffee researchers and producers in the optimal selection of post-harvest parameters that favor the continuous production of flavorful and top-class coffee beans and beverages. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- College of Agriculture, Guangxi University, Nanning, PR China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Yanbing Wang
- College of Agriculture, Guangxi University, Nanning, PR China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Guilin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Defu Hong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Tieying Guo
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Jinhong Li
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Zhongrong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| |
Collapse
|
16
|
Coffee Roasting and Extraction as a Factor in Cold Brew Coffee Quality. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Due to the dynamic growth of the cold brew coffee market, the aim of this study was to identify and characterize main bioactive and aromatic compounds that may be helpful for quality control during the production of popular beverages. Using headspace solid-phase microextraction and GC-MS and LC-MS analysis, prepared cold brew coffee extracts were investigated and compared with different green bean roasting profiles and varying extraction temperature and time parameters. In terms of quantitative composition, the study showed that cold brew coffees are an exceptional source of chlorogenic acid. Therefore, they may change consumers purchasing decisions on the beverage market and establish a new and natural substitute for controversial energy drinks. The analyses confirm the possibility of producing a beverage with increased chlorogenic acid content above 900 mg/L or at a similar level of 400–500 mg/L with caffeine, which may be important on an industrial scale due to the possibility of diversifying beverage production. Furthermore, aroma compounds were presented as markers responsible for fruity or caramel–roasted-almond notes and changes in their concentrations according to the recipe were also presented. The best option for cold brew coffee production appears to be beans roasted in the 210–220 °C temperature range.
Collapse
|
17
|
From Plantation to Cup: Changes in Bioactive Compounds during Coffee Processing. Foods 2021; 10:foods10112827. [PMID: 34829108 PMCID: PMC8620865 DOI: 10.3390/foods10112827] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Coffee is consumed not just for its flavor, but also for its health advantages. The quality of coffee beverages is affected by a number of elements and a series of processes, including: the environment, cultivation, post-harvest, fermentation, storage, roasting, and brewing to produce a cup of coffee. The chemical components of coffee beans alter throughout this procedure. The purpose of this article is to present information about changes in chemical components and bioactive compounds in coffee during preharvest and postharvest. The selection of the appropriate cherry maturity level is the first step in the coffee manufacturing process. The coffee cherry has specific flavor-precursor components and other chemical components that become raw materials in the fermentation process. During the fermentation process, there are not many changes in the phenolic or other bioactive components of coffee. Metabolites fermented by microbes diffuse into the seeds, which improves their quality. A germination process occurs during wet processing, which increases the quantity of amino acids, while the dry process induces an increase in non-protein amino acid γ-aminobutyric acid (GABA). In the roasting process, there is a change in the aroma precursors from the phenolic compounds, especially chlorogenic acid, amino acids, and sugars found in coffee beans, to produce a distinctive coffee taste.
Collapse
|
18
|
Plant Antioxidants for Food Safety and Quality: Exploring New Trends of Research. Antioxidants (Basel) 2021; 10:antiox10060972. [PMID: 34204398 PMCID: PMC8233938 DOI: 10.3390/antiox10060972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Antioxidants are an heterogeneous group of compounds able to counteract cell oxidation by acting as reducing agents, as free radical scavengers, and quenchers of radical species and other pro-oxidants, such as metals [...].
Collapse
|
19
|
Abstract
Specialty coffee has gained immense popularity for its unique flavor and improved quality. There are large varieties of coffee trending every day due to the widened demand. Still, specialty coffee holds its place for its distinct processing inside the animal digestive system. Specialty coffees are also considered the most expensive due to coffee varieties with novelty in processing which leads to limited availability and less productivity. The digested coffee's uniqueness and rarity led to higher consumer demand, which paved the way for animal abuse in captivity and the production of fake authenticity to tackle the increased market requirement. In the context of coffee processing through conventional methods, the application of enzymes and microbes has brought about an improvement in coffee fermentation. Much research has been focused on the isolation of microbial cultures from the animal excreta and gastrointestinal tract. This review emphasizes the types of specialty coffee, its uniqueness compared to the traditional varieties, the bio-processing method of specialty coffee inside the animal gut and its taste profile.
Collapse
Affiliation(s)
- Ashika Raveendran
- Department of Spices, and Flavour Science, CSIR-Central Food Technological Research Institute under, Mysore, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Pushpa S Murthy
- Department of Spices, and Flavour Science, CSIR-Central Food Technological Research Institute under, Mysore, India
| |
Collapse
|
20
|
Baek MW, Choi HR, Solomon T, Jeong CS, Lee OH, Tilahun S. Preharvest Methyl Jasmonate Treatment Increased the Antioxidant Activity and Glucosinolate Contents of Hydroponically Grown Pak Choi. Antioxidants (Basel) 2021; 10:131. [PMID: 33477720 PMCID: PMC7832332 DOI: 10.3390/antiox10010131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 11/27/2022] Open
Abstract
Vertical hydroponics farming has emerged as an alternative solution to feed the continuously growing world population. Additionally, recent studies reported that the exogenous treatments of jasmonic acid influence the phytochemical composition of Brassicaceae. We conducted this study to determine the effect of preharvest methyl jasmonate (MeJA) treatment on the phytochemical composition and antioxidant activities of soil- and hydroponically grown pak choi. An aqueous solution of 0.5-mM MeJA was sprayed to saturation on the aerial plant part three days before harvest. The harvested pak choi was freeze-dried and then powdered to measure the antioxidant activity and the contents of chlorophylls (Chls), total phenolics and flavonoids, and glucosinolates (GSLs). The overall results revealed that pak choi grown in vertical hydroponics had higher total Chls and total phenolics than those grown in soil in the greenhouse, regardless of MeJA treatment. Nevertheless, the GSLs content and total flavonoids increased significantly due to MeJA treatment in both growing systems, and the highest values were recorded in hydroponically grown MeJA-treated pak choi. Similarly, the 2, 2-di-phenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, Trolox-equivalent antioxidant capacity (ABTS), oxygen radical absorbance capacity (ORAC), and ferric-reducing antioxidant power (FRAP) were highest in hydroponically grown MeJA-treated pak choi. Taken together, the preharvest foliar treatment of MeJA can be used to improve the phytochemical composition of pak choi grown in both growing systems. Interestingly, the results strongly support the use of MeJA treatment in the vertical hydroponics growing system compared to the conventional growing system in the soil. This indicates that supplementing the vertical hydroponic growing system with preharvest MeJA treatment could be the best option to improve both the yield per square meter and the quality of pak choi. Besides, MeJA-treated pak choi could be used as a value-added horticultural commodity, as its antioxidant activity increased after treatment. Moreover, after further studies, MeJA could also be applied to other Brassica vegetables to improve their GSL contents and antioxidant properties.
Collapse
Affiliation(s)
- Min Woo Baek
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea; (M.W.B.); (H.R.C.); (C.S.J.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Han Ryul Choi
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea; (M.W.B.); (H.R.C.); (C.S.J.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Tifsehit Solomon
- Department of Biology, Wollega University, Nekemte 395, Ethiopia;
| | - Cheon Soon Jeong
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea; (M.W.B.); (H.R.C.); (C.S.J.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Ok-Hwan Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea;
| | - Shimeles Tilahun
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea; (M.W.B.); (H.R.C.); (C.S.J.)
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Korea
- Department of Horticulture and Plant Sciences, Jimma University, Jimma 378, Ethiopia
| |
Collapse
|