1
|
Gao S, Cheng Q, Hu Y, Fan X, Liang C, Niu C, Kang Q, Wei T. Melatonin antagonizes oxidative stress-induced apoptosis in retinal ganglion cells through activating the thioredoxin-1 pathway. Mol Cell Biochem 2024; 479:3393-3404. [PMID: 38353878 DOI: 10.1007/s11010-024-04924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 01/05/2024] [Indexed: 03/28/2024]
Abstract
This study aimed to explore the role of melatonin in oxidative stress-induced injury on retinal ganglion cells and the underlying mechanisms. The immortalized RGC-5 cells were treated with H2O2 to induce oxidative injury. Cell viability was measured by Cell Counting Kit-8, and apoptosis was determined by flow cytometry and western blot assays. Reactive oxygen species (ROS), lactate dehydrogenase (LDH), and malondialdehyde (MDA) levels were examined to evaluate oxidative stress levels. In addition, Thioredoxin-1 (Trx1) was silenced in RGC-5 cells using small interfering RNA followed by signaling pathway examination to explore the underlying mechanisms of melatonin in alleviating oxidative injury. Melatonin pre-treatment significantly alleviated H2O2-induced apoptosis in RGC-5 cells. Melatonin also markedly reversed the upregulation of cleaved-caspase 3, cleaved-caspase 9, and Bax expression and downregulation of Bcl-2 expression induced by H2O2. Further analyses presented that melatonin significantly attenuated the increase of ROS, LDH, and MDA levels in RGC-5 cells after H2O2 treatment. Melatonin also abolished the downregulated expression of Superoxide dismutase type 1, Trx1, and Thioredoxin reductase 1, and the reduced activity of thioredoxin reductase in RGC-5 cells after H2O2 treatment. Notably, Trx1 knockdown significantly mitigated the protective effect of melatonin in alleviating H2O2-induced apoptosis and oxidative stress, while administration of compound C, a common inhibitor of c-Jun N-terminal kinase (JNK) signaling, partially reversed the effect of Trx1 silencing, thereby ameliorating the apoptosis and oxidative injury induced by H2O2 in RGC-5 cells. Melatonin could significantly alleviate oxidative stress-induced injury of retinal ganglion cells via modulating Trx1-mediated JNK signaling pathway.
Collapse
Affiliation(s)
- Shan Gao
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Qiaochu Cheng
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Yaguang Hu
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Xiaojuan Fan
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Chen Liang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Chen Niu
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Qianyan Kang
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Ting Wei
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
2
|
Sohn EH, Kim SN, Lee SR. Melatonin's Impact on Wound Healing. Antioxidants (Basel) 2024; 13:1197. [PMID: 39456451 PMCID: PMC11504849 DOI: 10.3390/antiox13101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Melatonin (5-methoxy-N-acetyltryptamine) is an indoleamine compound that plays a critical role in the regulation of circadian rhythms. While melatonin is primarily synthesized from the amino acid tryptophan in the pineal gland of the brain, it can also be produced locally in various tissues, such as the skin and intestines. Melatonin's effects in target tissues can be mediated through receptor-dependent mechanisms. Additionally, melatonin exerts various actions via receptor-independent pathways. In biological systems, melatonin and its endogenous metabolites often produce similar effects. While injuries are common in daily life, promoting optimal wound healing is essential for patient well-being and healthcare outcomes. Beyond regulating circadian rhythms as a neuroendocrine hormone, melatonin may enhance wound healing through (1) potent antioxidant properties, (2) anti-inflammatory actions, (3) infection control, (4) regulation of vascular reactivity and angiogenesis, (5) analgesic (pain-relieving) effects, and (6) anti-pruritic (anti-itch) effects. This review aims to provide a comprehensive overview of scientific studies that demonstrate melatonin's potential roles in supporting effective wound healing.
Collapse
Affiliation(s)
- Eun-Hwa Sohn
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Sung-Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| |
Collapse
|
3
|
Paditz E. Postnatal Development of the Circadian Rhythmicity of Human Pineal Melatonin Synthesis and Secretion (Systematic Review). CHILDREN (BASEL, SWITZERLAND) 2024; 11:1197. [PMID: 39457162 PMCID: PMC11506472 DOI: 10.3390/children11101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Introduction: According to current knowledge, at birth, the pineal gland and melatonin receptors are already present and the suprachiasmatic nucleus is largely functional, and noradrenaline, the key pineal transmitter, can be detected in the early foetal period. It is still unclear why the pineal gland is not able to start its own pulsatile synthesis and secretion of melatonin in the first months of life, and as a result, infants during this time are dependent on an external supply of melatonin. Method: The causes and consequences of this physiological melatonin deficiency in human infancy are examined in a systematic review of the literature, in which 40 of 115 initially selected publications were evaluated in detail. The references of these studies were checked for relevant studies on this topic. References from previous reviews by the author were taken into account. Results: The development and differentiation of the pineal gland, the pinealocytes, as the site of melatonin synthesis, and the development and synaptic coupling of the associated predominantly noradrenergic neural pathways and vessels and the associated Lhx4 homebox only occurs during the first year of life. Discussion: The resulting physiological melatonin deficiency is associated with sleep disorders, infant colic, and increased crying in babies. Intervention studies indicate that this deficiency should be compensated for through breastfeeding, the administration of nonpooled donor milk, or through industrially produced chrononutrition made from nonpooled cow's milk with melatonin-poor day milk and melatonin-rich night milk.
Collapse
Affiliation(s)
- Ekkehart Paditz
- Center for Applied Prevention®, Blasewitzer Str. 41, D-01307 Dresden, Germany
| |
Collapse
|
4
|
Sánchez-Borja C, Cristóbal-Cañadas D, Rodríguez-Lucenilla MI, Muñoz-Hoyos A, Agil A, Vázquez-López MÁ, Parrón-Carreño T, Nievas-Soriano BJ, Bonillo-Perales A, Bonillo-Perales JC. Lower plasma melatonin levels in non-hypoxic premature newborns associated with neonatal pain. Eur J Pediatr 2024; 183:3607-3615. [PMID: 38842550 PMCID: PMC11263426 DOI: 10.1007/s00431-024-05632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/27/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
We analyzed plasma melatonin levels in different groups of preterm newborns without hypoxia and their relationship with several perinatal variables like gestational age or neonatal pain. Prospective cohort study of preterm newborns (PTNB) without perinatal hypoxia, Apgar > 6 at 5 min, and oxygen needs on the third day of life. We compared melatonin levels at day 3 of life in different groups of non-hypoxic preterm infants (Student's t-tests, Mann-Whitney U, and chi2) and analyzed the relationship of melatonin with GA, birth weight, neonatal pain (Premature Infant Pain Profile (PIPP) scale), caffeine treatment, parenteral nutrition, or the development of free radical diseases (correlation study, linear regression) and factors associated with moderate/intense pain and free radical diseases (logistic regression analysis). Sixty-one preterm infants with gestational age (GA) of 30.7 ± 2.0 weeks with no oxygen requirements at day 3 of life were studied with plasma melatonin levels of 33.8 ± 12.01 pg/ml. Preterm infants weighing < 1250 g at birth had lower plasma melatonin levels (p = 0.05). Preterm infants with moderate or severe pain (PPIPP > 5) have lower melatonin levels (p = 0.01), and being preterm with PIPP > 5 is associated with lower plasma melatonin levels (p = 0.03). Being very preterm (GA < 32 GS), having low weight for gestational age (LWGA), receiving caffeine treatment, or requiring parenteral nutrition did not modify melatonin levels in non-hypoxic preterm infants (p = NS). Melatonin on day 3 of life in non-hypoxic preterm infants is not associated with later development of free radical diseases (BPD, sepsis, ROP, HIV, NEC). CONCLUSION We observed that preterm infants with moderate to severe pain have lower melatonin levels. These findings are relevant because they reinforce the findings of other authors that melatonin supplementation decreases pain and oxidative stress in painful procedures in premature infants. Further studies are needed to evaluate whether melatonin could be used as an analgesic in painful procedures in preterm infants. TRIAL REGISTRATION Trial registration was not required since this was an observational study. WHAT IS KNOWN • Melatonin is a potent antioxidant and free radical scavenger in newborns under stress conditions: hypoxia, acidosis, hypotension, painful procedures, or parenteral nutrition. • Pain stimulates the production of melatonin. • Various studies conclude that melatonin administration decreases pain during the neonatal period. WHAT IS NEW • Non-hypoxic preterm infants with moderate to severe pain (PIPP>5) have lower levels of melatonin. • Administration of caffeine and treatment with parenteral nutrition do not modify melatonin levels in non-hypoxic preterm infants.
Collapse
Affiliation(s)
| | | | | | | | - Ahmad Agil
- Department of Pharmacology, Institute Biohelath & Institute of Neuroscience, University of Granada, Granada, Spain
| | | | - Tesifón Parrón-Carreño
- Nursing, Physiotherapy, and Medicine Department, University of Almería, Ctra. de Sacramento, s/n, La Cañada, Almería, 01410, Spain
| | - Bruno José Nievas-Soriano
- Nursing, Physiotherapy, and Medicine Department, University of Almería, Ctra. de Sacramento, s/n, La Cañada, Almería, 01410, Spain.
| | | | | |
Collapse
|
5
|
Feng L, Yin X, Hua Q, Ren T, Ke J. Advancements in understanding the role of ferroptosis in hypoxia-associated brain injury: a narrative review. Transl Pediatr 2024; 13:963-975. [PMID: 38984029 PMCID: PMC11228899 DOI: 10.21037/tp-24-47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 07/11/2024] Open
Abstract
Background and Objective Ferroptosis, a form of programmed cell death driven by lipid peroxidation and dependent on iron ions, unfolds through a sophisticated interplay of multiple biological processes. These include perturbations in iron metabolism, lipid peroxidation, aberrant amino acid metabolism, disruptions in hypoxia-inducible factor-prolyl hydroxylase (HIF-PHD) axis, and endoplasmic reticulum (ER) stress. Recent studies indicate that ferroptosis may serve as a promising therapeutic target for hypoxia-associated brain injury such as hypoxic-ischemic brain damage (HIBD) and cerebral ischemia-reperfusion injury (CIRI). HIBD is a neonatal disease that can be fatal, causing death or mental retardation in newborns. HIBD is a kind of diffuse brain injury, which is characterized by apoptosis of nerve cells and abnormal function and structure of neurons after cerebral hypoxia and ischemia. At present, there are no fundamental prevention and treatment measures for HIBD. The brain is the most sensitive organ of the human body to hypoxia. Cerebral ischemia will lead to the damage of local brain tissue and its function, and CIRI will lead to a series of serious consequences. We hope to clarify the mechanism of ferroptosis in hypoxia-associated brain injury, inhibit the relevant targets of ferroptosis in hypoxia-associated brain injury to guide clinical treatment, and provide guidance for the subsequent treatment of disease-related drugs. Methods Our research incorporated data on "ferroptosis", "neonatal hypoxic ischemia", "hypoxic ischemic brain injury", "hypoxic ischemic encephalopathy", "brain ischemia-reperfusion injury", and "therapeutics", which were sourced from Web of Science, PubMed, and comprehensive reviews and articles written in English. Key Content and Findings This review delineates the underlying mechanisms of ferroptosis and the significance of these pathways in hypoxia-associated brain injury, offering an overview of therapeutic strategies for mitigating ferroptosis. Conclusions Ferroptosis involves dysregulation of iron metabolism, lipid peroxidation, amino acid metabolism, dysregulation of HIF-PHD axis and endoplasmic reticulum stress (ERS). By reviewing the literature, we identified the involvement of the above processes in HIBD and CIRI, and summarized a series of therapeutic measures for HIBD and CIRI by inhibiting ferroptosis. We hope this study would provide guidance for the clinical treatment of HIBD and CIRI in the future.
Collapse
Affiliation(s)
- Liang Feng
- Department of Neonatology, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Xinghao Yin
- Department of Neonatology, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Qianqian Hua
- Department of Neurology, The First Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Tianyu Ren
- Department of Neonatology, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jiangqiong Ke
- Department of Geriatric Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Malhotra A, Rocha AKAA, Yawno T, Sutherland AE, Allison BJ, Nitsos I, Pham Y, Jenkin G, Castillo-Melendez M, Miller SL. Neuroprotective effects of maternal melatonin administration in early-onset placental insufficiency and fetal growth restriction. Pediatr Res 2024; 95:1510-1518. [PMID: 38225450 PMCID: PMC11126390 DOI: 10.1038/s41390-024-03027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Early-onset fetal growth restriction (FGR) is associated with adverse outcomes. We hypothesised that maternal melatonin administration will improve fetal brain structure in FGR. METHODS Surgery was performed on twin-bearing ewes at 88 days (0.6 gestation), and FGR induced in one twin via single umbilical artery ligation. Melatonin was administered intravenously (6 mg/day) to a group of ewes commencing on day of surgery until 127 days (0.85 gestation), when the ewe/fetuses were euthanized, and fetal brains collected. RESULTS Study groups were control (n = 5), FGR (n = 5), control+melatonin (control+MLT; n = 6) and FGR+melatonin (FGR + MLT; n = 6). Melatonin administration did not significantly alter fetal body or brain weights. Myelin (CNPase+) fibre density was reduced in FGR vs. control animals in most brain regions examined (p < 0.05) and melatonin treatment restored CNPase fibre density. Similar but less pronounced effect was seen with mature myelin (MBP+) staining. Significant differences in activated microglia (Iba-1) activity were seen between lamb groups (MLT mitigated FGR effect) in periventricular white matter, subventricular zone and external capsule (p < 0.05). Similar effects were seen in astrogliosis (GFAP) in intragyral white matter and cortex. CONCLUSIONS Maternal melatonin administration in early onset FGR led to improved myelination of white matter brain regions, possibly mediated by decreased inflammation. IMPACT Maternal melatonin administration might lead to neuroprotection in the growth-restricted fetus, possibly via dampening neuroinflammation and enhancing myelination. This preclinical study adds to the body of work on this topic, and informs clinical translation. Neuroprotection likely to improve long-term outcomes of this vulnerable infant group.
Collapse
Affiliation(s)
- Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia.
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.
| | - Anna K A A Rocha
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Tamara Yawno
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Ilias Nitsos
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Pérez-Martínez Z, Boga JA, Potes Y, Melón S, Coto-Montes A. Effect of Melatonin on Herpesvirus Type 1 Replication. Int J Mol Sci 2024; 25:4037. [PMID: 38612846 PMCID: PMC11012353 DOI: 10.3390/ijms25074037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Acute HSV-1 infection is associated with mild symptoms, such as fever and lesions of the mouth, face and skin. This phase is followed by a latency period before reactivation, which is associated with symptoms ranging from ulcers to encephalitis. Despite available anti-HSV-1 drugs, the development of new antiviral agents is sought due to the presence of resistant viruses. Melatonin, a molecule secreted by the pineal gland, has been shown to be an antioxidant, inducer of antioxidant enzymes, and regulator of various biological processes. Clinical trials have explored its therapeutic utility in conditions including infections. This study focuses on melatonin's role in HSV-1 replication and the underlying mechanisms. Melatonin was found to decrease the synthesis of HSV-1 proteins in infected Vero cells measured by immunofluorescence, indicating an inhibition of HSV-1 replication. Additionally, it regulates the activities of antioxidant enzymes and affects proteasome activity. Melatonin activates the unfolded protein response (UPR) and autophagy and suppresses apoptosis in HSV-1-infected cells. In summary, melatonin demonstrates an inhibitory role in HSV-1 replication by modulating various cellular responses, suggesting its potential utility in the treatment of viral infections.
Collapse
Affiliation(s)
- Zulema Pérez-Martínez
- Servicio de Microbiología, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Z.P.-M.); (J.A.B.); (S.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Jose Antonio Boga
- Servicio de Microbiología, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Z.P.-M.); (J.A.B.); (S.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Yaiza Potes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Santiago Melón
- Servicio de Microbiología, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Z.P.-M.); (J.A.B.); (S.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Ana Coto-Montes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
8
|
Mackay CA, Rath C, Rao S, Patole S. Plant-Derived Substances for Prevention of Necrotising Enterocolitis: A Systematic Review of Animal Studies. Nutrients 2024; 16:832. [PMID: 38542743 PMCID: PMC10975714 DOI: 10.3390/nu16060832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Inflammation, oxidative injury, and gut dysbiosis play an important role in the pathogenesis of necrotising enterocolitis (NEC). Plant-derived substances have historically been used as therapeutic agents due to their anti-inflammatory, antioxidant, and antimicrobial properties. We aimed to review pre-clinical evidence for plant-derived substances in the prevention and treatment of NEC. A systematic review was conducted using the following databases: PubMed, EMBASE, EMCARE, MEDLINE and Cochrane Library (PROSPERO CRD42022365477). Randomized controlled trials (RCTs) and quasi-RCTs that evaluated a plant-derived substance as an intervention for NEC in an animal model of the illness and compared pre-stated outcomes (e.g., clinical severity, severity of intestinal injury, mortality, laboratory markers of inflammation and oxidative injury) were included. Sixteen studies (n = 610) were included in the systematic review. Ten of the sixteen included RCTs (Preterm rat pups: 15, Mice: 1) reported mortality and all reported NEC-related histology. Meta-analysis showed decreased mortality [12/134 vs. 27/135; RR: 0.48 (95% CI: 0.26 to 0.87); p = 0.02, 10 RCTs] and decreased NEC in the experimental group [24/126 vs. 55/79; RR: 0.34 (95% CI: 0.22 to 0.52); p < 0.001, 6 RCTs]. Markers of inflammation (n = 11) and oxidative stress (n = 13) improved in all the studies that have reported this outcome. There was no significant publication bias for the outcome of mortality. Plant-derived substances have the potential to reduce the incidence and severity of histologically diagnosed NEC and mortality in rodent models. These findings are helpful in guiding further pre-clinical studies towards developing a food supplement for the prevention of NEC in preterm infants.
Collapse
Affiliation(s)
| | - Chandra Rath
- Neonatology, King Edward Memorial Hospita, Subiaco 6008, Australia
- Perth Children’s Hospital, Nedlands 6009, Australia
- School of Medicine, University of Western Australia, Crawley 6009, Australia
| | - Shripada Rao
- Perth Children’s Hospital, Nedlands 6009, Australia
- School of Medicine, University of Western Australia, Crawley 6009, Australia
| | - Sanjay Patole
- Neonatology, King Edward Memorial Hospita, Subiaco 6008, Australia
- School of Medicine, University of Western Australia, Crawley 6009, Australia
| |
Collapse
|
9
|
Pavlyshyn H, Sarapuk I, Kozak K. Peculiarities of melatonin levels in preterm infants. Wien Klin Wochenschr 2024; 136:146-153. [PMID: 36434409 DOI: 10.1007/s00508-022-02109-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Melatonin plays an important role in organism functioning, child growth, and development. Of particular importance is melatonin for preterm infants. The aim of our research was to study the peculiarities of melatonin levels depending on various factors in preterm infants with gestational age (GA) of less than 34 weeks. METHODS The study involved 104 preterm infants with GA less than 34 weeks who were treated in the neonatal intensive care unit (NICU). The level of melatonin in urine samples was determined by an enzyme-linked immunosorbent assay. RESULTS Melatonin concentration was significantly lower in extremely and very preterm infants compared to moderate preterm (3.57 [2.10; 5.06] ng/ml vs. 4.96 [3.20; 8.42] ng/ml, p = 0.007) and was positively correlated with GA (Spearman r = 0.32; p < 0.001). Positive correlations were revealed between melatonin levels and Apgar scores at the 1st (Spearman r = 0.31; p = 0.001) and 5th minutes after birth (Spearman r = 0.35; p < 0.001). Melatonin levels were lower in newborns with respiratory distress syndrome (p = 0.011). No significant correlations were found between melatonin concentration and birth weight (Spearman r = 0.15; p = 0.130). There were no associations of melatonin concentrations and mode of delivery (p = 0.914), the incidence of early-onset sepsis (p = 0.370) and intraventricular hemorrhages (p = 0.501), and mechanical ventilation (p = 0.090). The results of multiple regression showed that gestational age at birth was the most significant predictor of melatonin level in preterm infants (B = 0.507; p = 0.001). CONCLUSION Gestational age and the Apgar score were associated with decreased melatonin levels in preterm infants. The level of melatonin in extremely and very preterm infants was lower compared to moderate preterm infants.
Collapse
Affiliation(s)
- Halyna Pavlyshyn
- I. Horbachevsky Ternopil National Medical University, 1 Maydan Voli, 46001, Ternopil, Ukraine
| | - Iryna Sarapuk
- I. Horbachevsky Ternopil National Medical University, 1 Maydan Voli, 46001, Ternopil, Ukraine.
| | - Kateryna Kozak
- I. Horbachevsky Ternopil National Medical University, 1 Maydan Voli, 46001, Ternopil, Ukraine
| |
Collapse
|
10
|
Alkhfaji H, Kahloul M, Askar TRM, Alhamaidah MF, Ali Hussein H. Impact of Melatonin as a Premedication Agent in Caesarean Section on Blood Loss and Postoperative Pain Level. Anesthesiol Res Pract 2023; 2023:8102111. [PMID: 38116042 PMCID: PMC10730253 DOI: 10.1155/2023/8102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/09/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Background Postpartum hemorrhage (PPH) is a serious postdelivery condition with a high incidence of morbidity and mortality for women who undergo childbirth with or without a caesarean section. Melatonin has been suggested to increase the contractility of myometrium and reduce the pain score postoperatively, therefore it is believed that the use of melatonin before surgery may decrease blood loss, reduce pain score, and decrease the need for postoperative opioids. Objectives The main objectives of this study are focused on the investigation of melatonin as a premedication agent to reduce blood loss and decrease pain score postoperatively in patients undergoing cesarean section under spinal anesthesia. Methods 80 patients were scheduled for spinal anesthesia-based cesarean sections and randomly assigned to two groups, melatonin group (M) 40 patients and placebo group (P) 40 patients to receive either 10 mg of sublingual melatonin or a placebo of 90 minutes preoperatively. Hemoglobin levels were been measured preoperative and 12 hrs. Postoperatively, blood loss volume was calculated by measuring both the weight of used materials before and after the surgery and the volume sucked in the suction bottle after placental delivery. Postoperative visual pain score and analgesic requirements were used to evaluate pain levels. Results Analyzed collected data showed a significant decrease in blood loss in the melatonin group in comparison with the placebo group as measured by the hemoglobin level. On the other hand, there is a significant decrease in pain score and analgesia requirement with the melatonin group compared to the placebo group. Conclusion Melatonin is a promising premedication drug that has a significant impact on postpartum hemorrhage by reducing blood loss and pain levels of mothers who have undergone C-sections.
Collapse
Affiliation(s)
- Hussein Alkhfaji
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Nasiriyah, Iraq
- Department of Anesthesia and Intensive Care, Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse, Tunisia
| | - Mohamed Kahloul
- Department of Anesthesia and Intensive Care, Sahloul Teaching Hospital, University of Sousse, Faculty of Medicine of Sousse, Sousse, Tunisia
| | | | - Majid Fakhir Alhamaidah
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Hussein Ali Hussein
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| |
Collapse
|
11
|
Zhang RB, Ren L, Ding DP, Wang HD, Peng J, Zheng K. Protective Effect of the SIRT1-Mediated NF-κB Signaling Pathway against Necrotizing Enterocolitis in Neonatal Mice. Eur J Pediatr Surg 2023; 33:386-394. [PMID: 36379465 DOI: 10.1055/s-0042-1758157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To discover the mechanism of the sirtuin 1 (SIRT1)-mediated nuclear factor-κB (NF-κB) pathway in the protection against necrotizing enterocolitis (NEC) in neonatal mice. MATERIALS AND METHODS Neonatal mice were treated with EX527 (an inhibitor of SIRT1) and/or pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB). The survival rate of the mice was recorded. Hematoxylin and eosin (HE) staining was performed to observe the pathological changes in the intestines. Furthermore, western blotting, enzyme-linked immunosorbent assay, and real-time quantitative polymerase chain reaction were conducted to measure the protein and gene expression, while corresponding kits were used to detect the levels of oxidative stress indicators. RESULTS PDTC increased the survival rate of NEC mice. When compared with the NEC+ EX527 + PDTC group, the histological NEC score was higher in the NEC + EX527 group but lower in the NEC + PDTC group. SIRT1 expression in the intestines of NEC mice was downregulated, with an increase in p65 nuclear translocation. Additionally, malondialdehyde increased and glutathione peroxidase decreased in the intestines of NEC mice, with the upregulation of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α, as well as the downregulation of ZO-1, occludin, and claudin-4 in the intestines. However, the above changes could be improved by PDTC, which could be further reversed by EX527. CONCLUSION SIRT1 can mitigate inflammation and the oxidative stress response and improve intestinal permeability by mediating the NF-κB pathway, playing an important role in the alleviation of NEC.
Collapse
Affiliation(s)
- Rui-Bo Zhang
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Lan Ren
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - De-Ping Ding
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Heng-Dong Wang
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Juan Peng
- Department of Blood Transfusion, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Kun Zheng
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| |
Collapse
|
12
|
Häusler S, Robertson NJ, Golhen K, van den Anker J, Tucker K, Felder TK. Melatonin as a Therapy for Preterm Brain Injury: What Is the Evidence? Antioxidants (Basel) 2023; 12:1630. [PMID: 37627625 PMCID: PMC10451719 DOI: 10.3390/antiox12081630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Despite significant improvements in survival following preterm birth in recent years, the neurodevelopmental burden of prematurity, with its long-term cognitive and behavioral consequences, remains a significant challenge in neonatology. Neuroprotective treatment options to improve neurodevelopmental outcomes in preterm infants are therefore urgently needed. Alleviating inflammatory and oxidative stress (OS), melatonin might modify important triggers of preterm brain injury, a complex combination of destructive and developmental abnormalities termed encephalopathy of prematurity (EoP). Preliminary data also suggests that melatonin has a direct neurotrophic impact, emphasizing its therapeutic potential with a favorable safety profile in the preterm setting. The current review outlines the most important pathomechanisms underlying preterm brain injury and correlates them with melatonin's neuroprotective potential, while underlining significant pharmacokinetic/pharmacodynamic uncertainties that need to be addressed in future studies.
Collapse
Affiliation(s)
- Silke Häusler
- Division of Neonatology, Department of Pediatrics, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Nicola J. Robertson
- EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK; (N.J.R.); (K.T.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Klervi Golhen
- Pediatric Pharmacology and Pharmacometrics, University Children’s Hospital Basel (UKBB), University of Basel, 4001 Basel, Switzerland; (K.G.); (J.v.d.A.)
| | - John van den Anker
- Pediatric Pharmacology and Pharmacometrics, University Children’s Hospital Basel (UKBB), University of Basel, 4001 Basel, Switzerland; (K.G.); (J.v.d.A.)
- Division of Clinical Pharmacology, Children’s National Hospital, Washington, DC 20001, USA
| | - Katie Tucker
- EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK; (N.J.R.); (K.T.)
| | - Thomas K. Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria;
| |
Collapse
|
13
|
Chen W, Zheng D, Yang C. The Emerging Roles of Ferroptosis in Neonatal Diseases. J Inflamm Res 2023; 16:2661-2674. [PMID: 37396013 PMCID: PMC10312340 DOI: 10.2147/jir.s414316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023] Open
Abstract
Ferroptosis is a novel type of programmed cell death involved in many diseases' pathological processes. Ferroptosis is characterized by lipid peroxidation, reactive oxygen species accumulation, and iron metabolism disorder. Newborns are susceptible to ferroptosis due to their special physiological state, which is prone to abnormal iron metabolism and the accumulation of reactive oxygen species. Recent studies have linked ferroptosis to a variety of diseases in the neonatal period (including hypoxic-ischemic encephalopathy, bronchopulmonary dysplasia, and necrotizing enterocolitis). Ferroptosis may become an effective target for the treatment of neonatal-related diseases. In this review, the ferroptosis molecular mechanism, metabolism characteristics of iron and reactive oxygen species in infants, the relationship between ferroptosis and common infant disorders, and the treatment of infant diseases targeted for ferroptosis are systematically summarized.
Collapse
Affiliation(s)
- Wenqian Chen
- Department of Neonatology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Dali Zheng
- Key Laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Changyi Yang
- Department of Neonatology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
14
|
Li F, Lai J, Ma F, Cai Y, Li S, Feng Z, Lu Z, Liu X, Ke Q, Hao H, Xiao X. Maternal melatonin supplementation shapes gut microbiota and protects against inflammation in early life. Int Immunopharmacol 2023; 120:110359. [PMID: 37257272 DOI: 10.1016/j.intimp.2023.110359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Gut microbiota colonization is critical for immune education and nutrient metabolism. Research shows that melatonin has beneficial effects as a therapy for many diseases via modulating gut dysbiosis. However, it is unclear whether melatonin alters gut microbiota colonization in early life. METHODS In the experimental group (Mel), mice were intraperitoneally injected with melatonin at 10 mg/kg body weight for embryonic days 14-16 and received drinking water containing 0.4 mg/mL melatonin until 28 days postpartum. In the control group (Ctrl), mice were injected with the same volume of 2.5% ethanol in saline and provided with standard water. Two more groups were created by treating neonatal mice with 20 mg/kg lipopolysaccharide (LPS) to induce inflammation, resulting in the groups Ctrl + LPS and Mel + LPS, respectively. We examined the gut microbiota of the neonatal mice in the Ctrl and Mel group on Days 7, 14, 21, and 28 post-birth. On Day 14, melatonin and short-chain fatty acids (SCFAs) concentrations were measured in the Ctrl and Mel group and the mice were treated with LPS to be evaluated for intestinal injury and inflammatory response 15 h post treatment. According to the result of the SCFAs concentrations, some neonatal mice were intraperitoneally injected with 500 mg/kg sodium butyrate (SB) from Days 11-13, intraperitoneally injected with 20 mg/kg LPS on Day 14, and then euthanized by carbon dioxide inhalation the next morning. Intestinal injury and inflammatory responses were evaluated in the Ctrl + LPS and SB + LPS groups, respectively. RESULTS By Day 14, it was evident that maternal melatonin supplementation significantly increased the relative abundance of Firmicutes in the ileal [61.03 (35.35 - 76.18) % vs. 98.02 (86.61 - 99.01) %, P = 0.003] and colonic [73.88 (69.77 - 85.99) % vs. 96.16 (94.57 - 96.34) %, P = 0.04] microbiota, the concentration of melatonin (0.79 ± 0.49 ng/ml vs. 6.11 ± 3.48 ng/ml, P = 0.008) in the gut lumen, and the fecal butyric acid (12.91 ± 5.74 μg/g vs. 23.58 ± 10.71 μg/g, P = 0.026) concentration of neonatal mice. Melatonin supplementation, and sodium butyrate treatment markedly alleviated intestinal injury and decreased inflammatory factors in neonatal mice. CONCLUSION This study suggests that maternal melatonin supplementation can shape the gut microbiota and metabolism of offspring under normal physiological conditions and protect them against LPS-induced inflammation in early life.
Collapse
Affiliation(s)
- Fei Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Jiahao Lai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Fei Ma
- Department of Pediatrics, Zhuhai Maternity and Child Health Hospital, Zhuhai, China
| | - Yao Cai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Zhoushan Feng
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Zhendong Lu
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Xiao Liu
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Hu Hao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University.
| | - Xin Xiao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University.
| |
Collapse
|
15
|
Zhang X, Luo Y, Gu R, Jiang Z. Astaxanthin Alleviates Inflammatory Response in Neonatal Necrotizing Enterocolitis Rats by Regulating NOD2/TLR4 Pathway. Gastroenterol Res Pract 2023; 2023:6078308. [PMID: 37021078 PMCID: PMC10070044 DOI: 10.1155/2023/6078308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/09/2023] [Accepted: 03/11/2023] [Indexed: 04/07/2023] Open
Abstract
Background Necrotizing enterocolitis (NEC) is often associated with exaggerated activation of inflammatory response. Astaxanthin has been shown in studies to have a positive and advantageous effect on anti-inflammatory response. Hence, it is of great significance to study the protective effect of astaxanthin in NEC disease and its molecular mechanism. Objective The present study was to investigate whether astaxanthin attenuates NEC rats and to explore its potential mechanism. Material and Methods. Hematoxylin-eosin staining was used to observe the pathological change of the intestinal tissue in NEC rats. Subsequently, we determined the anti-oxidative stress, anti-apoptosis, and anti-inflammation in astaxanthin with enzyme-linked immunosorbent assay kits, TUNEL staining, western blot, and immunohistochemistry assay. Furthermore, we added nucleotide-binding oligomerization domain 2 (NOD2) inhibitor to certify the molecular pathway of the astaxanthin in NEC rats. Results Astaxanthin improved the pathological changes of the intestinal tissues. It restrained inflammation, oxidative stress, and protected cells from apoptosis in the intestinal tissue and serum of the NEC rats. Moreover, astaxanthin enhanced NOD2, whereas it suppressed toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB) pathway-related proteins. Apart from that, the NOD2 inhibitor offset the protective effect of the astaxanthin towards the NEC rats. Conclusion The present study indicated that astaxanthin alleviated oxidative stress, inflammatory response, and apoptosis in NEC rats by enhancing NOD2 and inhibiting TLR4 pathway.
Collapse
Affiliation(s)
- Xuandong Zhang
- Department of Neonatology, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yujia Luo
- Department of Neonatology, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Rui Gu
- Department of Neonatology, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhou Jiang
- Department of Neonatology, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
16
|
Păncescu FM, Rikabi AAKK, Oprea OC, Grosu AR, Nechifor AC, Grosu VA, Tanczos SK, Dumitru F, Nechifor G, Bungău SG. Chitosan-sEPDM and Melatonin-Chitosan-sEPDM Composite Membranes for Melatonin Transport and Release. MEMBRANES 2023; 13:282. [PMID: 36984671 PMCID: PMC10057635 DOI: 10.3390/membranes13030282] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Melatonin is the hormone that focuses the attention of the researchers in the medical, pharmaceutical, materials, and membranes fields due to its multiple biomedical implications. The variety of techniques and methods for the controlled release of melatonin is linked to the multitude of applications, among which sports medicine occupies a special place. This paper presents the preparation and characterization of composite membranes based on chitosan (Chi) and sulfonated ethylene-propylene-diene terpolymer (sEPDM). The membranes were obtained by controlled vacuum evaporation from an 8% sEPDM solution in toluene (w/w), in which chitosan was dispersed in an ultrasonic field (sEPDM:Chi = 1:1, w/w). For the comparative evaluation of the membranes' performances, a melatonin-chitosan-sulfonated ethylene-propylene-diene terpolymer (Mel:Chi:sEPDM = 0.5:0.5:1.0, w/w/w) test membrane was made. The prepared membranes were morphologically and structurally characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive spectroscopy analysis (EDAX), thermal analysis (TG, DSC), thermal analysis coupled with chromatography and infrared analysis, and contact angle measurements, but also from the point of view of performance in the process of transport and release of melatonin in dedicated environments (aqueous solutions with controlled pH and salinity). The prepared membranes can release melatonin in amounts between 0.4 mg/cm2·per day (sEPDM), 1.6 mg/ cm2·per day (Chi/sEPDM), and 1.25 mg/cm2·per day (Mel/Chi/SEPDM).
Collapse
Affiliation(s)
- Florentina Mihaela Păncescu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Abbas Abdul Kadhim Klaif Rikabi
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Al–Mussaib Technical College, Al–Furat Al–Awsat Technical University (ATU), Babylon–Najaf Street, Kufa 54003, Iraq
| | - Ovidiu Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alexandra Raluca Grosu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Vlad-Alexandru Grosu
- Department of Electronic Technology and Reliability, Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 061071 Bucharest, Romania
| | - Szidonia-Katalin Tanczos
- Department of Bioengineering, University Sapientia of Miercurea-Ciuc, 500104 Miercurea-Ciuc, Romania
| | - Florina Dumitru
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Gheorghe Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Simona Gabriela Bungău
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
17
|
Pavlyshyn Н, Sarapuk I, Kozak K. The relationship of melatonin concentration in preterm infants and adverse outcomes in the late neonatal period. Biochem Med (Zagreb) 2023; 33:010706. [PMID: 36627976 PMCID: PMC9807238 DOI: 10.11613/bm.2023.010706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction The aim of research was to assess the melatonin concentrations in the early neonatal period as a predictor of adverse outcomes of late neonatal period in preterm infants and to estimate its optimal predictive cut-off values. Materials and methods A total of 115 preterm infants admitted to the neonatal intensive care unit were screened for eligibility, five did not meet the criteria, six parents declined the participation. So, a total of 104 preterm infants with gestational age 25-34 weeks were included in research. The concentration of melatonin in urine was determined by the Enzyme Immunoassay method (Human Melatonin Sulfate ELISA kit, Elabscience, China). The Mann-Whitney U-test and analysis of the receiver operating characteristic (ROC) curve were used in statistical analysis. Results Analysis of the ROC curves has revealed optimal cut-off values for urinary melatonin concentration to predict late outcomes. Melatonin concentration below 3.58 ng/ml with sensitivity of 72% can predict development of retinopathy of prematurity (ROP) (AUC = 0.73; 95% confidence intervals (CI) 0.61-0.86). Good diagnostic accuracy (AUC = 0.80; 95% CI 0.67-0.93) has been shown for bronchopulmonary dysplasia (BPD). The optimal cut-off value for melatonin concentration in BPD prediction is 3.71 ng/ml (sensitivity 80%, specificity 64%). Urinary melatonin concentration below 3.79 ng/ml can be associated with late-onset sepsis (AUC = 0.76; 95% CI 0.64-0.87; sensitivity 72%; specificity 62%). There were no significant associations between melatonin concentration and necrotizing enterocolitis (P = 0.912). Conclusion Urinary melatonin concentration below the certain cut-off values in the early neonatal period may serve as one of the predictors of adverse outcomes such as BPD, ROP, and late-onset sepsis in the late neonatal period in preterm infants.
Collapse
|
18
|
Maternal Diet Quality and the Health Status of Newborns. Foods 2022; 11:foods11233893. [PMID: 36496701 PMCID: PMC9739031 DOI: 10.3390/foods11233893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/12/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
The maternal diet during pregnancy affects neonatal health status. The objective of this study was to assess the nutritional quality of the maternal diet, and its contamination by persistent organic pollutants (POPs), in pregnant women living in two areas of the Czech Republic with different levels of air pollution, and subsequently to assess the relationship of these two factors with birth weight and neonatal oxidative stress. To determine the level of oxidative stress, 8-isoprostane concentrations in umbilical cord plasma were measured. The overall nutritional quality of the maternal diet was not optimal. Of the nutritional factors, protein intake proved to be the most significant showing a positive relationship with birth weight, and a negative relationship with the oxidative stress of newborns. Dietary contamination by persistent organic pollutants was low and showed no statistically significant relationship with birth weight. Only one of the 67 analyzed POPs, namely the insecticide dichlorodiphenyltrichloroethane (DDT), showed a statistically significant positive relationship with the level of neonatal oxidative stress.
Collapse
|
19
|
Akduman H, Tayman C, Korkmaz V, Akduman F, Fettah ND, Gürsoy BK, Turkmenoglu TT, Çağlayan M. Astaxanthin Reduces the Severity of Intestinal Damage in a Neonatal Rat Model of Necrotizing Enterocolitis. Am J Perinatol 2022; 39:1820-1827. [PMID: 33853144 DOI: 10.1055/s-0041-1727156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE This study aimed to ascertain the effects of astaxanthin (ASX) in an experimental necrotizing enterocolitis (NEC) model using rat pups. STUDY DESIGN Forty-two pups born from five Wistar albino rats were randomly divided into three groups as the control group, NEC + placebo (saline), and NEC + ASX. Pups in the NEC + ASX group were given 100 mg/kg/day oral ASX from day 1 to day 4 of the study. Saline of 2 mL/kg was given to the NEC + placebo group. Histopathological, immunohistochemical (caspase-3), and biochemical evaluations including the total antioxidant status (TAS), total oxidant status (TOS), superoxide dismutase (SOD), glutathione (GSH), lipid hydroperoxide (LPO), 8-hydroxydeoxyguanosine (8-OHdG), advanced oxidation protein products (AOPP), myeloperoxidase (MPO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and nuclear factor erythroid 2-related factor 2 (Nfr-2) activities were all performed. RESULTS A better survival rate and weight gain were demonstrated in the NEC + ASX group (p < 0.05). In the histopathological evaluation, the severity of intestinal damage was significantly reduced in the NEC + ASX group, as well as decreased apoptosis (enzyme-linked immunosorbent assay [ELISA] for caspase-3; p = 0.001). The biochemical analyses of intestinal tissue TOS, oxidative stress index (OSI; TOS/TAS), IL-1β, LPO, 8-OHdG, AOPP, caspase-3 (p < 0.001 for all), and TNF-α and MPO (p = 0.001 for both parameters) levels were lower in the NEC + ASX group than in the NEC + placebo group. Nrf-2, TAS, GSH, and SOD levels were higher in the NEC + ASX group than in the NEC + placebo group (p = 0.001, 0.001, <0.001, and 0.01, respectively). CONCLUSION ASX treatment has been shown to effectively reduce the severity of intestinal damage in NEC due to its antioxidant, anti-inflammatory, and antiapoptotic properties. KEY POINTS · NEC causes extremely high morbidity and mortality, as well as many complications.. · We investigated the effectiveness of ASX in the experimental NEC model created in rat pups.. · First study examining the effect of ASX on the experimental NEC rat model..
Collapse
Affiliation(s)
- Hasan Akduman
- Division of Neonatology, Department of Pediatrics, SBU Ankara Dr. Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Cuneyt Tayman
- Department of Neonatology, Ankara City Hospital, Cankaya, Ankara, Turkey
| | - Veli Korkmaz
- Department of Pediatrics, Lokman Hekim University, Ankara, Turkey
| | - Filiz Akduman
- Department of Pediatrics, Beypazarı State Hospital, Ankara, Turkey
| | - Nurdan D Fettah
- Department of Neonatology, SBU Ankara Dr. Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Başak K Gürsoy
- Department of Neonatology, SBU Ankara Dr. Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Tugba T Turkmenoglu
- Department of Pathology, Ankara Diskapi Yildirim Beyzat Training and Research Hospital, Ankara, Turkey
| | - Murat Çağlayan
- Department of Medicinal Biochemistry, University of Health Sciences Gülhane Health Sciences Institute, Ankara, Turkey
| |
Collapse
|
20
|
ÖZ GERGİN Ö, CENGİZ MAT Ö, BOLAT D, KABADAYI M, PEHLİVAN SS, COŞKUN G. Vankomisin kaynaklı nefrotoksisiteyi önlemede melatoninin etkinliği: deneysel bir çalışma. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1103876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Purpose: The aim of the study explores probable toxic effects of vancomycin on kidney and analysis of the probable protective effects of melatonin.
Materials and Methods: In this study, rats were randomly divided into 4 groups: the control group; the melatonin (10 mg/kg/day) group; the vancomycin-treated (200 mg/kg) group; and the vancomycin (200 mg/kg) + melatonin (10 mg/kg/day) group. Rats in the treatment group were given two doses of vancomycin a day with an interval of seven consecutive days and melatonin (10 mg/kg/day) once daily for seven consecutive days. The experiment was continued for 15 days. In each group, seven rats were grouped together. 15 days after the experiment, the rats were sacrificed under anesthesia and among all groups. Kidney tissues were collected and processed for further TNF- expression analysis, as well as histological analyses such as hematoxylin and eosin (H&E), Masson's tricrom, and Periodic acid schiff (PAS) staining to assess pathological severity. In addition, a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed to evaluate apoptosis.
Results: While vancomycin upregulated TNF-α expression, melatonin reduced levels of TNF-α immunoreactivity intensity and clearly improved pathological severity in rat kidneys. Further, melatonin significantly inhibited vancomycin-induced TUNEL-positive cell numbers.
Conclusion: Melatonin has protective activity against vancomycin-induced pro-inflammatory and proapoptotic effects in kidneys during organ preservation time and improves kidney function.
Collapse
|
21
|
Minich DM, Henning M, Darley C, Fahoum M, Schuler CB, Frame J. Is Melatonin the "Next Vitamin D"?: A Review of Emerging Science, Clinical Uses, Safety, and Dietary Supplements. Nutrients 2022; 14:3934. [PMID: 36235587 PMCID: PMC9571539 DOI: 10.3390/nu14193934] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Melatonin has become a popular dietary supplement, most known as a chronobiotic, and for establishing healthy sleep. Research over the last decade into cancer, Alzheimer's disease, multiple sclerosis, fertility, PCOS, and many other conditions, combined with the COVID-19 pandemic, has led to greater awareness of melatonin because of its ability to act as a potent antioxidant, immune-active agent, and mitochondrial regulator. There are distinct similarities between melatonin and vitamin D in the depth and breadth of their impact on health. Both act as hormones, affect multiple systems through their immune-modulating, anti-inflammatory functions, are found in the skin, and are responsive to sunlight and darkness. In fact, there may be similarities between the widespread concern about vitamin D deficiency as a "sunlight deficiency" and reduced melatonin secretion as a result of "darkness deficiency" from overexposure to artificial blue light. The trend toward greater use of melatonin supplements has resulted in concern about its safety, especially higher doses, long-term use, and application in certain populations (e.g., children). This review aims to evaluate the recent data on melatonin's mechanisms, its clinical uses beyond sleep, safety concerns, and a thorough summary of therapeutic considerations concerning dietary supplementation, including the different formats available (animal, synthetic, and phytomelatonin), dosing, timing, contraindications, and nutrient combinations.
Collapse
Affiliation(s)
- Deanna M. Minich
- Department of Human Nutrition and Functional Medicine, University of Western States, Portland, OR 97213, USA
| | - Melanie Henning
- Department of Sports and Performance Psychology, University of the Rockies, Denver, CO 80202, USA
| | - Catherine Darley
- College of Naturopathic Medicine, National University of Natural Medicine, Portland, OR 97201, USA
| | - Mona Fahoum
- School of Naturopathic Medicine, Bastyr University, Kenmore, WA 98028, USA
| | - Corey B. Schuler
- School of Nutrition, Sonoran University of Health Sciences, Tempe, AZ 85282, USA
- Department of Online Education, Northeast College of Health Sciences, Seneca Falls, NY 13148, USA
| | - James Frame
- Natural Health International Pty., Ltd., Sydney, NSW 2000, Australia
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA
| |
Collapse
|
22
|
Peña-Mercado E, Garcia-Lorenzana M, Huerta-Yepez S, Cruz-Ledesma A, Beltran-Vargas NE. Effect of melatonin on electrical impedance and biomarkers of damage in a gastric ischemia/reperfusion model. PLoS One 2022; 17:e0273099. [PMID: 35972989 PMCID: PMC9380938 DOI: 10.1371/journal.pone.0273099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
The damage to the gastrointestinal mucosa induced by ischemia/reperfusion (I/R) is closely related to high mortality in critically ill patients, which is attributable, in part, to the lack of an early method of diagnosis to show the degree of ischemia-induced injury in this type of patients. Electrical Impedance Spectroscopy (EIS) has been shown to be a tool to early diagnose gastric mucosal damage induced by ischemia. A therapeutic alternative to reduce this type of injury is melatonin (MT), which has gastroprotective effects in I/R models. In this work, the effect of treatment with MT on the electrical properties of gastric tissue, biomarkers of inflammatory (iNOS and COX-2), proliferation, and apoptotic process under I/R conditions in male Wistar rats was evaluated through EIS, histological and immunohistochemical analysis. Treatment with MT prevents gastric mucosa damage, causing a decrease in gastric impedance parameters related to the inflammatory process and cellular damage. This suggests that EIS could be used as a tool to diagnose and monitor the evolution of gastric mucosal injury, as well as in the recovery process in critically ill patients.
Collapse
Affiliation(s)
- Eduardo Peña-Mercado
- Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana, Unidad Cuajimalpa, CDMX, Mexico
| | - Mario Garcia-Lorenzana
- Departamento de Biologia de la Reproduccion, Universidad Autonoma Metropolitana, Unidad Iztapalapa, CDMX, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigacion en Enfermedades Hematooncologicas, Hospital Infantil de Mexico, Federico Gomez, CDMX, Mexico
| | | | - Nohra E. Beltran-Vargas
- Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana, Unidad Cuajimalpa, CDMX, Mexico
- * E-mail:
| |
Collapse
|
23
|
Cannavò L, Perrone S, Marseglia L, Viola V, Di Rosa G, Gitto E. Potential benefits of melatonin to control pain in ventilated preterm newborns: An updated review. Pain Pract 2022; 22:248-254. [PMID: 34431588 PMCID: PMC9293012 DOI: 10.1111/papr.13069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/05/2023]
Abstract
Infants admitted to neonatal intensive care units are repeatedly stimulated by painful events, especially if intubated. Preterm infants are known to have greater pain perception than full term infants due to immaturity of descending inhibitory circuits and poor noxious inhibitory modulation. Newborns exposed to repetitive painful stimuli are at high risk of impairments in brain development and cognition. Chronic pain is induced and supported by proinflammatory cytokines, free radicals, and reactive oxygen species creating a self- sustaining vicious circle. Melatonin is a neurohormone secreted by the pineal gland with antioxidant and anti-inflammatory functions. This review describes the in-depth beneficial effects of melatonin for pain control in ventilated preterm newborns. As yet, a minimal amount of literature has been undertaken to consider all its promising bioactivities. The rationale behind the use of melatonin for pain control has also been taken into account in this review. Besides, this review addresses safety concerns and dosages. The potential benefits of melatonin have been assessed against neurological disorders, respiratory distress, microbial infections, and as analgesic adjuvant during ventilation. Additionally, a possible approach for the use of melatonin in ventilated newborns will be discussed.
Collapse
Affiliation(s)
- Laura Cannavò
- Neonatal and Pediatric Intensive Care UnitDepartment of Human Pathology in Adult and Developmental Age “Gaetano Barresi,”University of MessinaMessinaItaly
| | - Serafina Perrone
- Neonatal UnitDepartment of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Lucia Marseglia
- Neonatal and Pediatric Intensive Care UnitDepartment of Human Pathology in Adult and Developmental Age “Gaetano Barresi,”University of MessinaMessinaItaly
| | - Valeria Viola
- Neonatal and Pediatric Intensive Care UnitDepartment of Human Pathology in Adult and Developmental Age “Gaetano Barresi,”University of MessinaMessinaItaly
| | - Gabriella Di Rosa
- Neonatal and Pediatric Intensive Care UnitDepartment of Human Pathology in Adult and Developmental Age “Gaetano Barresi,”University of MessinaMessinaItaly
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care UnitDepartment of Human Pathology in Adult and Developmental Age “Gaetano Barresi,”University of MessinaMessinaItaly
| |
Collapse
|
24
|
Ozdemir R, Gokce IK, Tekin S, Cetin Taslidere A, Turgut H, Tanbek K, Gul CC, Deveci MF, Aslan M. The protective effects of apocynin in hyperoxic lung injury in neonatal rats. Pediatr Pulmonol 2022; 57:109-121. [PMID: 34581514 DOI: 10.1002/ppul.25707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/08/2022]
Abstract
AIM Inflammation and oxidate stress are significant factors in the pathogenesis of bronchopulmonary dysplasia (BPD). The aim of this study is to investigate the efficacy of apocynin (APO), an anti-inflammatory, antioxidant, and antiapoptotic drug, in the prophylaxis of neonatal hyperoxic lung injury. METHOD This experimental study included 40 neonatal rats divided into the control, APO, BPD, and BPD + APO groups. The control and APO groups were kept in a normal room environment, while the BPD and BPD + APO groups were kept in a hyperoxic environment. The rats in the APO and BPD + APO groups were administered intraperitoneal APO, while the control and BPD rats were administered ordinary saline. At the end of the trial, lung tissue was evaluated with respect to the degree of histopathological injury, apoptosis, oxidant and antioxidant capacity, and severity of inflammation. RESULT The BPD and BPD + APO groups exhibited higher mean histopathological injury and alveolar macrophage scores compared to the control and APO groups. Both scores were lower in the BPD + APO group in comparison to the BPD group. The BPD + APO group had a significantly lower average of TUNEL positive cells than the BPD group. The lung tissue examination indicated significantly higher levels of mean malondialdehyde (MDA), total oxidant status (TOS), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in the BPD group compared to the control and APO groups. While the TNF-α and IL-1β levels of the BPD + APO group were similar to that of the control group, the MDA and TOS levels were higher compared to the controls and lower compared to the BPD group. The BPD group demonstrated significantly lower levels/activities of mean total antioxidant status, glutathione reductase, superoxide dismutase, glutathione peroxidase in comparison to the control and APO groups. While the mean antioxidant enzyme activity of the BPD + APO group was lower than the control group, it was significantly higher compared to the BPD group. CONCLUSION This is the first study in the literature to reveal through an experimental neonatal hyperoxic lung injury that APO, an anti-inflammatory, antioxidant, and antiapoptotic drug, exhibits protective properties against the development of BPD.
Collapse
Affiliation(s)
- Ramazan Ozdemir
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Ismail Kursat Gokce
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Suat Tekin
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Asli Cetin Taslidere
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Hatice Turgut
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Kevser Tanbek
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Cemile Ceren Gul
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Mehmet Fatih Deveci
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Mehmet Aslan
- Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| |
Collapse
|
25
|
Lembo C, Buonocore G, Perrone S. Oxidative Stress in Preterm Newborns. Antioxidants (Basel) 2021; 10:antiox10111672. [PMID: 34829543 PMCID: PMC8614893 DOI: 10.3390/antiox10111672] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
Preterm babies are highly susceptible to oxidative stress (OS) due to an imbalance between the oxidant and antioxidant systems. The generation of free radicals (FR) induces oxidative damage to multiple body organs and systems. OS is the main factor responsible for the development of typical premature infant diseases, such as bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, intraventricular hemorrhage, periventricular leukomalacia, kidney damage, eryptosis, and also respiratory distress syndrome and patent ductus arteriosus. Many biomarkers have been detected to early identify newborns at risk of developing a free radical-mediated disease and to investigate new antioxidant strategies. This review reports the current knowledge on OS in the preterm newborns and the newest findings concerning the use of OS biomarkers as diagnostic tools, as well as in implementing antioxidant therapeutic strategies for the prevention and treatment of these diseases and their sequelae.
Collapse
Affiliation(s)
- Chiara Lembo
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.L.); (G.B.)
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.L.); (G.B.)
| | - Serafina Perrone
- Department of Medicine and Surgery, Neonatology Unit, University of Parma, 43126 Parma, Italy
- Correspondence:
| |
Collapse
|
26
|
Melnik BC, Stremmel W, Weiskirchen R, John SM, Schmitz G. Exosome-Derived MicroRNAs of Human Milk and Their Effects on Infant Health and Development. Biomolecules 2021; 11:biom11060851. [PMID: 34200323 PMCID: PMC8228670 DOI: 10.3390/biom11060851] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple biologically active components of human milk support infant growth, health and development. Milk provides a wide spectrum of mammary epithelial cell-derived extracellular vesicles (MEVs) for the infant. Although the whole spectrum of MEVs appears to be of functional importance for the growing infant, the majority of recent studies report on the MEV subfraction of milk exosomes (MEX) and their miRNA cargo, which are in the focus of this review. MEX and the dominant miRNA-148a play a key role in intestinal maturation, barrier function and suppression of nuclear factor-κB (NF-κB) signaling and may thus be helpful for the prevention and treatment of necrotizing enterocolitis. MEX and their miRNAs reach the systemic circulation and may impact epigenetic programming of various organs including the liver, thymus, brain, pancreatic islets, beige, brown and white adipose tissue as well as bones. Translational evidence indicates that MEX and their miRNAs control the expression of global cellular regulators such as DNA methyltransferase 1-which is important for the up-regulation of developmental genes including insulin, insulin-like growth factor-1, α-synuclein and forkhead box P3-and receptor-interacting protein 140, which is important for the regulation of multiple nuclear receptors. MEX-derived miRNA-148a and miRNA-30b may stimulate the expression of uncoupling protein 1, the key inducer of thermogenesis converting white into beige/brown adipose tissue. MEX have to be considered as signalosomes derived from the maternal lactation genome emitted to promote growth, maturation, immunological and metabolic programming of the offspring. Deeper insights into milk's molecular biology allow the conclusion that infants are both "breast-fed" and "breast-programmed". In this regard, MEX miRNA-deficient artificial formula is not an adequate substitute for breastfeeding, the birthright of all mammals.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Correspondence: ; Tel.: +49-5241-988060
| | - Wolfgang Stremmel
- Private Praxis for Internal Medicine, Beethovenstraße 2, D-76530 Baden-Baden, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
27
|
Al Za'abi M, Ali H, Al Sabahi M, Ali BH. The salutary action of melatonin and betaine, given singly or concomitantly, on cisplatin-induced nephrotoxicity in mice. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1693-1701. [PMID: 34003327 DOI: 10.1007/s00210-021-02097-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Cisplatin (CP) is commonly used in the treatment of various solid tumors. Its use, however, is hampered by nephrotoxicity. In this study, we compared the effect of betaine and melatonin given singly, with that of a combination of these two agents on CP-induced nephrotoxicity in mice. CP (20 mg/kg, given intraperitoneally on the 8th day of 12 days of the experiment) showed the typical physiological, biochemical, and histologic features of nephrotoxicity. CP-treated mice showed a significant reduction in food intake, body weight, and urine and fecal output. It also induced significant increases in the plasma concentrations of urea, creatinine, uric acid, phosphorous, adiponectin, interleukin-1β, interleukin-6, transforming growth factor -β1, tumor necrosis factor-α, and cystatin C. All these effects were significantly reduced by daily administration of betaine or melatonin at oral doses of 200 mg/kg and 10 mg/kg, respectively. Furthermore, using the two agents in combination caused further significant reductions in the above parameters. These findings suggest that betaine and melatonin concomitant use is likely to provide greater protection against CP-induced nephrotoxicity than when they are given singly, rendering them potentially suitable and safe agents to use in clinical trials to assess their possible beneficial actions in cancer patients receiving CP.
Collapse
Affiliation(s)
- Mohammed Al Za'abi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoud, P. O. Box 35, Muscat, Postal code 123, Oman.
| | - Haytham Ali
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Postal code 123, Oman
| | - Mohammed Al Sabahi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoud, P. O. Box 35, Muscat, Postal code 123, Oman
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoud, P. O. Box 35, Muscat, Postal code 123, Oman
| |
Collapse
|
28
|
Li GZ, Liu J, Chen SJ, Wang PF, Liu HT, Dong J, Zheng YX, Xie YX, Wang CY, Guo TC, Kang GZ. Melatonin promotes potassium deficiency tolerance by regulating HAK1 transporter and its upstream transcription factor NAC71 in wheat. J Pineal Res 2021; 70:e12727. [PMID: 33666955 DOI: 10.1111/jpi.12727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 02/01/2023]
Abstract
Melatonin (MT) is involved in various physiological processes and stress responses in animals and plants. However, little is known about the molecular mechanisms by which MT regulates potassium deficiency (DK) tolerance in crops. In this study, an appropriate concentration (50 μmol/L) was found to enhance the tolerance of wheat plants against DK. RNA-seq analysis showed that a total of 6253 and 5873 differentially expressed genes (DEGs) were separately identified in root and leaf tissues of the DK + MT-treated wheat plants. They functionally involved biological processes of secondary metabolite, signal transduction, and transport or catabolism. Of these, an upregulated high-affinity K transporter 1 (TaHAK1) gene was next characterized. TaHAK1 overexpression markedly enhanced the K absorption, while its transient silencing exhibited the opposite effect, suggesting its important role in MT-mediated DK tolerance. Moreover, yeast one-hybrid (Y1H) was used to screen the upstream regulators of TaHAK1 gene and the transcription factor TaNAC71 was identified. The binding between TaNAC71 and TaHAK1 promoter was evidenced by using Y1H, LUC, and EMSA assays. Transient overexpression of TaNAC71 in wheat protoplasts activated the TaHAK1 expression, whereas its transient silencing inhibited the TaHAK1 expression and aggravated the sensitivity to DK. Exogenous MT application greatly upregulated the expression of TaHAK1 in both transient overexpression and silencing systems. Our findings revealed some molecular mechanisms underlying MT-mediated DK tolerance and helped broaden its practical application in agriculture.
Collapse
Affiliation(s)
- Ge-Zi Li
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Jin Liu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Shi-Juan Chen
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Peng-Fei Wang
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Hai-Tao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Jie Dong
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Yong-Xing Zheng
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Ying-Xin Xie
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Chen-Yang Wang
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Tian-Cai Guo
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Guo-Zhang Kang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
29
|
Cheng G, Ma T, Deng Z, Gutiérrez-Gamboa G, Ge Q, Xu P, Zhang Q, Zhang J, Meng J, Reiter RJ, Fang Y, Sun X. Plant-derived melatonin from food: a gift of nature. Food Funct 2021; 12:2829-2849. [PMID: 33877242 DOI: 10.1039/d0fo03213a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In recent years, people have become increasingly interested in bioactive ingredients from plants, especially antioxidant molecules such as melatonin, which are beneficial to human health. The purpose of this article is to provide new information on plant-derived foods with a high content of melatonin. We comprehensively summarize the content of melatonin in plant-derived foods and discuss the factors that influence melatonin levels to provide new ideas on enhancement. Additionally, we describe the biosynthetic pathway of melatonin and identify its major functions. Medicinal herbs are often rich in melatonin while many vegetables and fruits exhibit somewhat lower levels with wide variations among species. The genetic traits of plants, the phenological stage of the cultivar, the photoperiod, the level of stress to which the plants are exposed at the time of harvest, exposure to agrochemicals and determination methods are the main factors affecting the melatonin content. To date, standardization of uniform sampling times and the use of suitable pretreatments as well as determination methods have not been achieved. The results of the studies reviewed highlight the potentially important role of plant melatonin in influencing the progression of human diseases. Based on the health promotional aspects of melatonin, consuming foods containing higher concentrations of tryptophan and melatonin is suggested.
Collapse
Affiliation(s)
- Guo Cheng
- College of Enology, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wan WC, Long Y, Wan WW, Liu HZ, Zhang HH, Zhu W. Plasma melatonin levels in patients with diabetic retinopathy secondary to type 2 diabetes. World J Diabetes 2021; 12:138-148. [PMID: 33594333 PMCID: PMC7839166 DOI: 10.4239/wjd.v12.i2.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Melatonin is reported to be related to diabetes mellitus (DM) risk; however, the effect of melatonin on diabetic retinopathy (DR) risk remains unclear.
AIM The aim of this study was to determine the effect of melatonin on DR risk.
METHODS A hospital-based case-control study was conducted from January 2020 to June 2020. DR was assessed using the Diabetic Retinopathy preferred practice pattern (PPP)-updated 2019 criteria. The participants were divided into the DM cases without DR (NDR) group, non-proliferative DR (NPDR) group and proliferative DR (PDR) group. Plasma melatonin concentration was detected with the enzyme-linked immunosorbent assay kit. The relationship between plasma melatonin concentration and DR risk as well as severity was assessed.
RESULTS It was found that plasma melatonin was 72.83 ± 16.25, 60.38 ± 13.43, 44.48 ± 10.30 and 44.69 ± 8.95 pg/mL in healthy controls, NDR group, NPDR and PDR group, respectively. In addition, it was found that plasma melatonin could be used as a potential diagnostic biomarker for DR (AUC = 0.893, P < 0.001). There was a significant positive relationship between total bilirubin and melatonin content (P < 0.001) based on the correlation assay. Significant associations between total bilirubin and melatonin content were also detected in the NPDR (R2 = 0.360, P < 0.001) and PDR (R2 = 0.183, P < 0.001) groups.
CONCLUSION The data obtained in this study demonstrated that plasma melatonin concen-tration was decreased in DR cases and could be used as a sensitive and specific marker for the diagnosis of DR. A significant positive relationship between total bilirubin and melatonin was detected. More related studies are required to understand the role of melatonin in DR.
Collapse
Affiliation(s)
- Wen-Cui Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yang Long
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Wei-Wei Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hong-Zhuo Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hao-Hao Zhang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Wei Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu 215000, Jiangsu Province, China
| |
Collapse
|
31
|
The Developing Cerebellum as a Target for Toxic Substances: Protective Role of Antioxidants. THE CEREBELLUM 2021; 20:614-630. [PMID: 33474620 DOI: 10.1007/s12311-021-01231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Cerebellar development begins during the late embryological period and continues to undergo organizational changes long after birth. The cerebellum is particularly susceptible to developmental abnormalities on exposure to oxidants and free radicals, thus leading to oxidative stress. Oxidative stress occurs when there is an imbalance between reactive oxygen species generation and antioxidant defences which may disrupt signalling pathways, leading to cerebellar anomalies and dysfunction. In this regard, this review assesses current research underlining the importance of the cerebellum, provides an update on substances affecting cerebellar development and highlights some promising antioxidants that may play a role in attenuating toxicity in the developing cerebellum. To accomplish this, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) system was employed and key scientific databases such as Science Direct, PubMed, Scopus, Web of Science and Google Scholar were searched to explore and collect information on the cerebellum and the role of antioxidants during its development. Originally, 109 articles were obtained but 22 articles which met the inclusion criteria were selected for the review. These findings provide an updated compilation of antioxidants capable of attenuating oxidative damage in the developing cerebellum, thus allowing future interdisciplinary studies in the form of clinical applications for screening and possible development of novel therapeutic agents from the identified products.
Collapse
|
32
|
Ali BH, Abdelrahman A, Al Suleimani Y, Manoj P, Ali H, Nemmar A, Al Za'abi M. Effect of concomitant treatment of curcumin and melatonin on cisplatin-induced nephrotoxicity in rats. Biomed Pharmacother 2020; 131:110761. [PMID: 33152924 DOI: 10.1016/j.biopha.2020.110761] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Cisplatin (CP) is a potent anticancer drug used to treat solid tumors. Its use, however, is dose-limited by its nephrotoxicity. We aimed to compare the effect of melatonin and curcumin given singly, with that of a combination of these two agents on CP-induced nephrotoxicity in rats. CP (6 mg/kg, given once intraperitoneally) induced nephrotoxicity as evidenced by several significant adverse physiological, biochemical and histopathological actions that included a reduction in body weight, increased urine production, and significant alterations in some conventional and novel renal damage indices in plasma, urine and kidneys. CP also elevated several pro-inflammatory cytokines and caused renal oxidative/nitrosative stress. Supplementation with either curcumin (200 mg/kg) or melatonin (10 mg /kg) given singly by oral gavage for eight consecutive days prior to CP injection and four days thereafter, significantly mitigated the adverse renal effects of CP, by attenuating the pro-inflammatory and apoptotic mediators and improving antioxidant competence in renal tissues of CP- treated rats. When curcumin and melatonin were given together, the ameliorative effect was augmented in some of the measured indices e.g. tumor necrosis factor alpha, cystatin C, uric acid, phosphorus in plasma and, urine creatinine and creatinine clearance. Renal platinum concertation was reduced more with curcumin than that with melatonin, while the reduction was maximized when both melatonin and curcumin were given. Pending further pharmacological and toxicological studies, a combination of these two agents is likely to be mor effective in mitigating the adverse renal effects of CP administered to cancer patients.
Collapse
Affiliation(s)
- Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P. O. Box 35 Al Khoud, 123, Oman
| | - Aly Abdelrahman
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P. O. Box 35 Al Khoud, 123, Oman
| | - Yousuf Al Suleimani
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P. O. Box 35 Al Khoud, 123, Oman
| | - Priyadarsini Manoj
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P. O. Box 35 Al Khoud, 123, Oman
| | - Haytham Ali
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, 123, Oman
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Mohammed Al Za'abi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P. O. Box 35 Al Khoud, 123, Oman.
| |
Collapse
|
33
|
Wang L, Jayawardena TU, Yang HW, Lee HG, Jeon YJ. The Potential of Sulfated Polysaccharides Isolated from the Brown Seaweed Ecklonia maxima in Cosmetics: Antioxidant, Anti-melanogenesis, and Photoprotective Activities. Antioxidants (Basel) 2020; 9:antiox9080724. [PMID: 32784879 PMCID: PMC7465393 DOI: 10.3390/antiox9080724] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Sulfated polysaccharides prepared from marine algae are potential ingredients in nutraceutical, pharmaceutical, and cosmeceutical industries. In the present study, the antioxidant, anti-melanogenesis, and photoprotective effects of sulfated polysaccharides obtained from Ecklonia maxima (EMC) were investigated to evaluate their potential in cosmetic. EMC was successfully prepared through Celluclast-assisted extraction and ethanol precipitation, and it contained 79.88% of sulfated polysaccharides that with 69.37% carbohydrates and 10.51% sulfate. EMC effectively suppressed 2,2-azobis(2-amidinopropane) hydrochloride (AAPH)-induced oxidative stress in vitro in Vero cells and in vivo in zebrafish. Furthermore, EMC significantly inhibited mushroom tyrosinase and reduced melanin synthesis in alpha-melanocyte-stimulating hormone-stimulated B16F10 cells. In addition, EMC remarkably attenuated photodamage induced by UVB irradiation in vitro in human keratinocytes (HaCaT cells) and in vivo in zebrafish. Furthermore, EMC effectively inhibited wrinkle-related enzymes and improved collagen synthesis in UVB-irradiated human dermal fibroblasts (HDF cells). These results indicate that EMC possesses strong antioxidant, anti-melanogenesis, and photoprotective activities, and suggest that EMC may be an ideal ingredient in the pharmaceutical and cosmeceutical industries.
Collapse
Affiliation(s)
- Lei Wang
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, Jeju 63243, Korea; (L.W.); (T.U.J.); (H.-W.Y.); (H.-G.L.)
- Marine Science Institute, Jeju National University, Jeju Self-Governing Province, Jeju 63243, Korea
| | - Thilina U. Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, Jeju 63243, Korea; (L.W.); (T.U.J.); (H.-W.Y.); (H.-G.L.)
| | - Hye-Won Yang
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, Jeju 63243, Korea; (L.W.); (T.U.J.); (H.-W.Y.); (H.-G.L.)
| | - Hyo-Geun Lee
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, Jeju 63243, Korea; (L.W.); (T.U.J.); (H.-W.Y.); (H.-G.L.)
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, Jeju 63243, Korea; (L.W.); (T.U.J.); (H.-W.Y.); (H.-G.L.)
- Marine Science Institute, Jeju National University, Jeju Self-Governing Province, Jeju 63243, Korea
- Correspondence: ; Tel.: +82-64-754-3475; Fax: +82-64-756-3493
| |
Collapse
|