1
|
Sepúlveda M, Costa J, Cayún Y, Gallardo V, Barría E, Rigotto Caruso G, von Zeska Kress MR, Cornejo P, Santos C. Chemical composition and antifungal activity of Capsicum pepper aqueous extracts against plant pathogens and food spoilage fungi. Front Cell Infect Microbiol 2024; 14:1451287. [PMID: 39421640 PMCID: PMC11484085 DOI: 10.3389/fcimb.2024.1451287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
Capsicum pepper is a rich source of phytochemical compounds such as capsaicinoids, phenols, flavonoids, and so forth. Due to their antimicrobial and antioxidant potential all of these compounds have been assessed and used for both human and plant health benefits. Herein, three fresh varieties of Capsicum annuum (Cacho de Cabra, Bell pepper, and Hungarian Wax varieties) and one fresh and ripe variety of C. baccatum (Cristal) were evaluated. Capsaicin, dihydrocapsaicin, nordihydrocapsaicin and the phenolic content of Capsicum spp. extracts were characterised. The antifungal potential of capsaicinoids and antioxidant activities, and the ecotoxicity of each Capsicum spp. extract, using the model Galleria mellonella, were also evaluated. Phytochemical analyses showed that the Cristal and Hungarian Wax varieties presented the highest amount of capsaicin, dihydrocapsaicin, and nordihydrocapsaicin; while Bell Pepper had the highest phenol content and antioxidant activity. Capsaicinoids' standards and Capsicum spp. extracts showed fungistatic activity against the fungal strains assessed. For the fungal strains assessed, the fungistatic activities of capsaicinoids' standards were higher than those observed in Capsicum spp. extracts. The Hungarian Wax extracts inhibited slightly the growth of Aspergillus niger MUM05.11 and Fusarium oxysporum MUM16.143. Similarly, A. niger, F. oxysporum, Rhizopus arrhizus MUM16.05 and Alternaria sp. UFRO17.178 had their growth retarded by the use of Cacho de Cabra and Cristal extracts. Noticeable changes were observed in the fungal strains' morphologies, such as the presence of fragile fungal structures, pigmentation loss, variation in the reproductive structures size and the conidia number. Capsicum extracts weaken the growth of fungi, indicating their fungistatic potential. Considering the fungistatic potential and non-ecotoxicity of these extracts, it is possible to suggest their use as a tool for pest management in the agri-food sector, controlling the growth and reproduction of fungi without posing a risk to non-target biodiversity.
Collapse
Affiliation(s)
- Marcela Sepúlveda
- Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Jéssica Costa
- Departamento de Biologia, Instituto de Ciências Biológicas-ICB, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Yasna Cayún
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco, Chile
| | - Víctor Gallardo
- Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Programa de Pós-Graduação em Biotecnologia, Universidade Tecnológica Federal do Paraná, Ponta Grossa, Paraná, Brazil
| | - Elsa Barría
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco, Chile
| | - Glaucia Rigotto Caruso
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcia Regina von Zeska Kress
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales (CERES), Quillota, Chile
| | - Cledir Santos
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco, Chile
- Programa de Pós-Graduação em Biotecnologia, Universidade Tecnológica Federal do Paraná, Ponta Grossa, Paraná, Brazil
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales (CERES), Quillota, Chile
| |
Collapse
|
2
|
Mengistu HK, Beri GB. Cooking effect on bioactive compounds and antioxidant capacity of red pepper ( Capsicum annuum L.). Heliyon 2024; 10:e35418. [PMID: 39296013 PMCID: PMC11408815 DOI: 10.1016/j.heliyon.2024.e35418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/21/2024] Open
Abstract
The present review assessed the effect of heat processing on red peppers' (Capsicum annum L.) bioactive compounds and antioxidant capacity. The Google Scholar and Scopus databases were used to search the existing literature. Out of 422 articles accessed based on the inclusion and exclusion criterias included, only 15 studies were qualified for detailed review. The studies examined effects of processing on red hot peppers' bioactive compounds and antioxidant capacity. Information on type of heat applied for individual processes and the conditions used, countries in which the studies were carried out and effect of heat processing's were assessed. The review showed many studies were incomprehensive to details of processing condition constraining the validity of the results obtained from various cooking effects on bioactive compounds and antioxidant capacity. Further studies aimed at gaining a better understanding of the heat processing conditions and factors that influence the bioactive compounds and antioxidant capacity of red peppers are needed.
Collapse
Affiliation(s)
- Habtamu Kide Mengistu
- Department of Food Science and Postharvest Technology, Haramaya Institute of Technology, Haramaya University, Harar, Ethiopia. P.O.Box: 138, Dire Dawa, Ethiopia
| | - Geremew Bultosa Beri
- Department of Food Science and Technology, Botswana University of Agriculture and Natural Resources, Private Bag: 0027, Gaborone, Botswana
| |
Collapse
|
3
|
Wu Y, Liu Y, Jia Y, Feng CH, Zhang H, Ren F, Zhao G. Effects of thermal processing on natural antioxidants in fruits and vegetables. Food Res Int 2024; 192:114797. [PMID: 39147492 DOI: 10.1016/j.foodres.2024.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Research on the content of polyphenolic compounds in fruits and vegetables, the extraction of bioactive compounds, and the study of their impact on the human body has received growing attention in recent years. This is due to the great interest in bioactive compounds and their health benefits, resulting in increased market demand for natural foods. Bioactive compounds from plants are generally categorized as natural antioxidants with health benefits such as anti-inflammatory, antioxidant, anti-diabetic, anti-carcinogenic, etc. Thermal processing has been used in the food sector for a long history. Implementing different thermal processing methods could be essential in retaining the quality of the natural antioxidant compounds in plant-based foods. A comprehensive review is presented on the effects of thermal blanching (i.e., hot water, steam, superheated steam impingement, ohmic and microwave blanching), pasteurization, and sterilization and drying technologies on natural antioxidants in fruits and vegetables.
Collapse
Affiliation(s)
- Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Chao-Hui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Hokkaido, Japan
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Guoping Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
4
|
De Luca F, Gola F, Azzalin A, Casali C, Gaiaschi L, Milanesi G, Vicini R, Rossi P, Bottone MG. A Lombard Variety of Sweet Pepper Regulating Senescence and Proliferation: The Voghera Pepper. Nutrients 2024; 16:1681. [PMID: 38892614 PMCID: PMC11174795 DOI: 10.3390/nu16111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Aging and its related disorders are important issues nowadays and the first cause of this physio-pathological condition is the overproduction of ROS. Ascorbic acid is an antioxidant mediator and its anti-aging proprieties are well known. Our previous data demonstrated that Voghera sweet pepper (VP), a distinctive type of pepper cultivated in Italy, is particularly rich in ascorbic acid. Based on these data, the anti-aging effect mediated by extracts of the edible part of VP was evaluated on an in vitro model of both young and old Normal Human Diploid Fibroblasts (NHDF). Using phase contrast microscopy, we observed that VP may help cells in the maintenance of physiological morphology during aging. Cytofluorimetric analyses revealed that VP extracts led to an increase in DNA synthesis and percentage of living cells, linked to a consequent increase in mitotic events. This hypothesis is supported by the enhancement of PCNA expression levels observed in old, treated fibroblasts, corroborating the idea that this extract could recover a young phenotype in adult fibroblasts, confirmed by the study of p16 and p53 expression levels and TEM analyses. Based on these results, we may suppose that VP can lead to the partial recovery of "young-like" phenotypes in old fibroblasts.
Collapse
Affiliation(s)
- Fabrizio De Luca
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.G.); (A.A.); (C.C.); (L.G.); (G.M.); (P.R.); (M.G.B.)
| | - Federica Gola
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.G.); (A.A.); (C.C.); (L.G.); (G.M.); (P.R.); (M.G.B.)
| | - Alberto Azzalin
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.G.); (A.A.); (C.C.); (L.G.); (G.M.); (P.R.); (M.G.B.)
| | - Claudio Casali
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.G.); (A.A.); (C.C.); (L.G.); (G.M.); (P.R.); (M.G.B.)
| | - Ludovica Gaiaschi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.G.); (A.A.); (C.C.); (L.G.); (G.M.); (P.R.); (M.G.B.)
| | - Gloria Milanesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.G.); (A.A.); (C.C.); (L.G.); (G.M.); (P.R.); (M.G.B.)
| | | | - Paola Rossi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.G.); (A.A.); (C.C.); (L.G.); (G.M.); (P.R.); (M.G.B.)
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (F.G.); (A.A.); (C.C.); (L.G.); (G.M.); (P.R.); (M.G.B.)
| |
Collapse
|
5
|
Alonso-Villegas R, González-Amaro RM, Figueroa-Hernández CY, Rodríguez-Buenfil IM. The Genus Capsicum: A Review of Bioactive Properties of Its Polyphenolic and Capsaicinoid Composition. Molecules 2023; 28:molecules28104239. [PMID: 37241977 DOI: 10.3390/molecules28104239] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Chili is one of the world's most widely used horticultural products. Many dishes around the world are prepared using this fruit. The chili belongs to the genus Capsicum and is part of the Solanaceae family. This fruit has essential biomolecules such as carbohydrates, dietary fiber, proteins, and lipids. In addition, chili has other compounds that may exert some biological activity (bioactivities). Recently, many studies have demonstrated the biological activity of phenolic compounds, carotenoids, and capsaicinoids in different varieties of chili. Among all these bioactive compounds, polyphenols are one of the most studied. The main bioactivities attributed to polyphenols are antioxidant, antimicrobial, antihyperglycemic, anti-inflammatory, and antihypertensive. This review describes the data from in vivo and in vitro bioactivities attributed to polyphenols and capsaicinoids of the different chili products. Such data help formulate functional foods or food ingredients.
Collapse
Affiliation(s)
- Rodrigo Alonso-Villegas
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Av. Pascual Orozco s/n, Campus 1, Santo Niño, Chihuahua 31350, Chihuahua, Mexico
| | - Rosa María González-Amaro
- CONACYT-Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Col. El Haya, Xalapa 91073, Veracruz, Mexico
| | - Claudia Yuritzi Figueroa-Hernández
- CONACYT-Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, M. A. de Quevedo 2779, Veracruz 91897, Veracruz, Mexico
| | - Ingrid Mayanin Rodríguez-Buenfil
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. Subsede Sureste, Tablaje Catastral, 31264, Carretera Sierra Papacal-Chuburna Puerto km 5.5, Parque Científico Tecnológico de Yucatán, Mérida 97302, Yucatán, Mexico
| |
Collapse
|
6
|
Karaman K, Pinar H, Ciftci B, Kaplan M. Characterization of phenolics and tocopherol profile, capsaicinoid composition and bioactive properties of fruits in interspecies (Capsicum annuum X Capsicum frutescens) recombinant inbred pepper lines (RIL). Food Chem 2023; 423:136173. [PMID: 37209546 DOI: 10.1016/j.foodchem.2023.136173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/22/2023]
Abstract
In this study, 104 RIL (Recombinant Inbred Pepper Lines: F6) populations which generated by selfing Capsicum annuum (Long pepper) × Capsicum frutescens (PI281420) F6 population were characterized in terms of detailed bioactive properties, major phenolic composition, tocopherol and capsaicinoid profile. Total phenolics, flavonoid and total anthocyanin contents of the red pepper lines were in the range of 7.06-17.15 mg gallic acid equivalent (GAE)/g dw, 1.10-5.46 mg catechin equivalent (CE)/g dw and 7.9-516.6 mg/kg dw extract, respectively. Antiradical activity and antioxidant capacity values also ranged between 18.99 and 49.73% and 6.97-16.47 mg ascorbic acid equivalent (AAE)/kg dw, respectively. Capsaicin and dihydrocapsaicin levels showed a wide variance with the range of 27.9-1405.9 and 12.3-640.4 mg/100 g dw, respectively. Scoville heat unit revealed that the 95% of the peppers were highly pungent. The major tocopherol was alpha tocopherol for the pepper samples with the highest level of 1078.4 µg/g dw. The major phenolics were detected as p-coumaric acid, ferulic acid, myricetin, luteolin and quercetin. Pepper genotypes showed significant differences in terms of the characterized properties and principal component analysis was applied successfully to reveal the similar genotypes.
Collapse
Affiliation(s)
- Kevser Karaman
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Erciyes, Kayseri, Turkiye.
| | - Hasan Pinar
- Department of Horticulture, Faculty of Agriculture, University of Erciyes, Kayseri, Turkiye
| | - Beyza Ciftci
- Department of Field Crops, Faculty of Agriculture, University of Erciyes, Kayseri, Turkiye
| | - Mahmut Kaplan
- Department of Field Crops, Faculty of Agriculture, University of Erciyes, Kayseri, Turkiye
| |
Collapse
|
7
|
Rosa-Martínez E, Bovy A, Plazas M, Tikunov Y, Prohens J, Pereira-Dias L. Genetics and breeding of phenolic content in tomato, eggplant and pepper fruits. FRONTIERS IN PLANT SCIENCE 2023; 14:1135237. [PMID: 37025131 PMCID: PMC10070870 DOI: 10.3389/fpls.2023.1135237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Phenolic acids and flavonoids are large groups of secondary metabolites ubiquitous in the plant kingdom. They are currently in the spotlight due to the numerous health benefits associated with their consumption, as well as for their vital roles in plant biological processes and in plant-environment interaction. Tomato, eggplant and pepper are in the top ten most consumed vegetables in the world, and their fruit accumulation profiles have been extensively characterized, showing substantial differences. A broad array of genetic and genomic tools has helped to identify QTLs and candidate genes associated with the fruit biosynthesis of phenolic acids and flavonoids. The aim of this review was to synthesize the available information making it easily available for researchers and breeders. The phenylpropanoid pathway is tightly regulated by structural genes, which are conserved across species, along with a complex network of regulatory elements like transcription factors, especially of MYB family, and cellular transporters. Moreover, phenolic compounds accumulate in tissue-specific and developmental-dependent ways, as different paths of the metabolic pathway are activated/deactivated along with fruit development. We retrieved 104 annotated putative orthologues encoding for key enzymes of the phenylpropanoid pathway in tomato (37), eggplant (29) and pepper (38) and compiled 267 QTLs (217 for tomato, 16 for eggplant and 34 for pepper) linked to fruit phenolic acids, flavonoids and total phenolics content. Combining molecular tools and genetic variability, through both conventional and genetic engineering strategies, is a feasible approach to improve phenolics content in tomato, eggplant and pepper. Finally, although the phenylpropanoid biosynthetic pathway has been well-studied in the Solanaceae, more research is needed on the identification of the candidate genes behind many QTLs, as well as their interactions with other QTLs and genes.
Collapse
Affiliation(s)
- Elena Rosa-Martínez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Arnaud Bovy
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Leandro Pereira-Dias
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
- Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Zhang J, Wang C, Wang J, Yang Y, Han K, Bakpa EP, Li J, Lyu J, Yu J, Xie J. Comprehensive fruit quality assessment and identification of aroma-active compounds in green pepper ( Capsicum annuum L.). Front Nutr 2023; 9:1027605. [PMID: 36704799 PMCID: PMC9871545 DOI: 10.3389/fnut.2022.1027605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
The wrinkled pepper (Capsicum annuum L.) is a type of chili pepper domesticated in northwestern China, with a characteristic flavor. Fifteen wrinkled and four smooth-skinned pepper varieties were evaluated for morphology, texture, color, nutrients, capsaicinoids, and volatile compounds at the mature fruit stage. The sensory evaluation showed wrinkled pepper was superior to smooth pepper in texture, and it has a highly significant correlation (p < 0.01) with cuticle thickness, maximum penetrating force, lignin content, and moisture content. Citric acid was the major organic acid in peppers, accounting for 39.10-63.55% of the total organic acids, followed by quininic acid. The average oxalic acid content of smooth peppers was 26.19% higher than that of wrinkled peppers. The pungency of wrinkled pepper fruits ranged from 1748.9 to 25529.4 SHU, which can be considered slightly to very spicy, while the four smooth varieties ranged between 866.63 and 8533.70 SHU, at slightly to moderately spicy. A total of 199 volatile compounds were detected in the 19 pepper varieties. The average volatile content of wrinkled pepper was 39.79% higher than that of smooth pepper. Twenty-nine volatile compounds, including 14 aldehydes, four alcohols, three esters, three ketones, two furans, one pyrazine, one acid, and one phenol, contributed to the fragrance of peppers and could be regarded as aroma-active compounds, with 2-isobutyl-3-methoxypyrazine being the major contributor among the 19 pepper varieties. Wrinkled pepper can be confidently distinguished from smooth pepper and is of superior quality. The current findings outlined the major texture-related characteristics of pepper as well as the main aroma-active compounds, providing valuable information for pepper quality breeding and consumer guidelines.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Cheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Junwen Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yan Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Kangning Han
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | | | - Jing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China,State Key Laboratory of Aridland Corp Science, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China,*Correspondence: Jianming Xie,
| |
Collapse
|
9
|
Huh SU. Functional analysis of hot pepper ethylene responsive factor 1A in plant defense. PLANT SIGNALING & BEHAVIOR 2022; 17:2027137. [PMID: 35192782 PMCID: PMC9176226 DOI: 10.1080/15592324.2022.2027137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ethylene-responsive factors play important roles in the biotic and abiotic stresses. Only some ERF genes from Capsicum annuum have been characterized. In the study, the CaERF1A gene is characterized in response to biotic stress. CaERF1A transcripts were induced by various plant defense-related hormone treatments. Knockdown of CaERF1A in hot pepper plants are negatively affected Tobacco mosaic virus-P0-mediated hypersensitive response cell death, resulting in reduced gene expression of pathogenesis-related genes and ethylene and jasmonic acid synthesis-related gene. Overexpressing CaERF1A transgenic plants show enhanced resistance to fungal pathogen via regulating ethylene and jasmonic acid synthesis-related gene expression. Thus, CaERF1A is a positive regulator of plant defense by modulating ethylene and jasmonic acid synthesis-related gene expressions.
Collapse
Affiliation(s)
- Sung Un Huh
- Department of Biology, Kunsan National University, Gunsan, Republic of Korea
- CONTACT Sung Un Huh Department of Biology, Kunsan National University, Gunsan54150, Republic of Korea
| |
Collapse
|
10
|
Rasekh M, Karami H, Fuentes S, Kaveh M, Rusinek R, Gancarz M. Preliminary study non-destructive sorting techniques for pepper (Capsicum annuum L.) using odor parameter. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Cervantes-Hernández F, Ochoa-Alejo N, Martínez O, Ordaz-Ortiz JJ. Metabolomic Analysis Identifies Differences Between Wild and Domesticated Chili Pepper Fruits During Development ( Capsicum annuum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:893055. [PMID: 35769305 PMCID: PMC9234519 DOI: 10.3389/fpls.2022.893055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Capsicum spp. members are a rich source of specialized compounds due to their secondary metabolism. Some metabolic pathways have suffered modifications during the domestication process and improvement of agricultural traits. Here, we compared non-targeted LC-MS profiles from several areas: wild accessions (C. annuum L. var. glabriusculum), domesticated cultivars (C. annuum L.), and the F1 progeny of a domesticated, and a wild accession cross (in both directions) throughout seven stages of fruit development of chili pepper fruits. The main detected differences were in glycerophospholipid metabolism, flavone and flavonol biosynthesis, sphingolipid metabolism, and cutin biosynthesis. The domesticated group exhibited a higher abundance in 12'-apo-β-carotenal, among others capsorubin, and β-tocopherol. Palmitic acid and derivates, terpenoids, and quercitrin were prevalent in the wild accessions. F1 progeny showed a higher abundance of capsaicin, glycol stearate, and soyacerebroside I. This work supports evidence of the side-affectation of trait selection over the metabolism of chili pepper fruit development. Furthermore, it was also observed that there was a possible heterosis effect over the secondary metabolism in the F1 progeny.
Collapse
Affiliation(s)
- Felipe Cervantes-Hernández
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Irapuato, Mexico
| | - Neftalí Ochoa-Alejo
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Mexico
| | - Octavio Martínez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Irapuato, Mexico
| | - José Juan Ordaz-Ortiz
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Irapuato, Mexico
| |
Collapse
|
12
|
Ding X, Zhang H, Qian T, He L, Jin H, Zhou Q, Yu J. Nutrient Concentrations Induced Abiotic Stresses to Sweet Pepper Seedlings in Hydroponic Culture. PLANTS (BASEL, SWITZERLAND) 2022; 11:1098. [PMID: 35448826 PMCID: PMC9027179 DOI: 10.3390/plants11081098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 05/16/2023]
Abstract
The primary goal of this experiment was to investigate the effects of nutrient electrical conductivity (EC) on the growth and physiological responses of sweet pepper (Capsicum annuum L.) in hydroponic culture in a greenhouse. The plant growth parameters, leaf photosynthesis, root activity, soluble protein, malondialdehyde (MDA), proline, activities of antioxidant enzymes (AE), and the contents of plant mineral elements (PME) were measured in six different EC treatments. The results showed that very high or low EC treatments clearly decreased the plant height, stem diameter, shoot dry weight, and leaf net photosynthetic rate, while increasing the content of MDA and the activities of ascorbate peroxidase and guaiacol peroxidase. The contents of proline and soluble protein increased gradually from the low to high EC treatments. The root activities decreased significantly, and the main PME clearly did not increase or even decreased at high EC levels. Very high EC treatments suppressed growth even more than those of very low EC. Treatments that were too low or high EC suppressed plant growth, owing to abiotic stress (either nutrient deficiency or salinity), since the plants had to regulate the activities of AE and increase the accumulation of osmolytes to adjust to the abiotic stresses.
Collapse
Affiliation(s)
- Xiaotao Ding
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
- Shanghai Dushi Green Engineering Co., Ltd., Shanghai 201106, China
| | - Hongmei Zhang
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
| | - Tingting Qian
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
| | - Lizhong He
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
| | - Haijun Jin
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
| | - Qiang Zhou
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
- Shanghai Dushi Green Engineering Co., Ltd., Shanghai 201106, China
| | - Jizhu Yu
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
| |
Collapse
|
13
|
CRUZ JG, SILVEIRA T, RICHTER V, WAGNER JG, NEITZKE RS, BARBIERI RL, VIZZOTTO M. Genetic variability of bioactive compounds in Capsicum chinense. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.123721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Fratianni F, d’Acierno A, Albanese D, Matteo MD, Coppola R, Nazzaro F. Biochemical Characterization of Traditional Varieties of Apricots ( Prunus armeniaca L.) of the Campania Region, Southern Italy. Foods 2021; 11:foods11010100. [PMID: 35010226 PMCID: PMC8750576 DOI: 10.3390/foods11010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Campania is the most important region of Italy in the apricot cultivation, present mostly in the Vesuvio area. At least to the best of our knowledge, no studies are reporting the biochemical characterization of the considerable number of traditional apricot varieties present on this territory, including the qualitative and quantitative profile of the polyphenols present. Our work evaluated the content of β-carotene, total phenolics, phenolic profiles, ascorbic acid and antioxidant activity of 23 traditional varieties of apricots of the Campania region. Principal component analysis (PCA) highlighted that, in the two main groups, the antioxidant activity was strongly affected by the content of ascorbic acid (-0.89), or slightly affected by the content of total polyphenols (-0.67), respect to the content of ascorbic acid (-0.55), never by β-carotene. Chlorogenic acid (up to 55.07 μg g-1) and catechin (up to 96.15 μg g-1) resulted the most abundant polyphenols recognized through the chromatographic analysis. PCA, extended to the polyphenol profile, confirmed the distribution of the varieties in two large groups, evidencing once again the hierarchical distance of four varieties ("Panzona", "Paolona" "Baracca" and "Boccucia Eboli") compared to the others.
Collapse
Affiliation(s)
- Florinda Fratianni
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (R.C.); (F.N.)
| | - Antonio d’Acierno
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (R.C.); (F.N.)
- Correspondence: ; Tel.: +39-0825299509
| | - Donatella Albanese
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (D.A.); (M.D.M.)
| | - Marisa Di Matteo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (D.A.); (M.D.M.)
| | - Raffaele Coppola
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (R.C.); (F.N.)
- Department of Agriculture, Environment and Food, University of Molise, Via de Sanctis Snc, 86100 Campobasso, Italy
| | - Filomena Nazzaro
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (R.C.); (F.N.)
| |
Collapse
|
15
|
Tripodi P, Francese G, Sanajà VO, Di Cesare C, Festa G, D’Alessandro A, Mennella G. A multi-methodological approach to study genomic footprints and environmental influence on agronomic and metabolic profiles in a panel of Italian traditional sweet pepper varieties. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Abstract
Sweet pepper (Capsicum annuum L.) is one of the most consumed vegetables in the world, being recognized as a food with high nutritional value. Recently, the market for sweet and colorful mini peppers has increased, especially among the most demanding consumers in the novelties in vegetables and functional foods. In this sense, we evaluated mini sweet peppers genotypes (Akamu, Kaiki, Kalani, Kaolin e Moke from Isla® seeds) regarding the physical-chemical, nutritional and sensory analysis aspects. A wide variability was observed among genotypes, highlighting the Kalani genotype for total carotenoids, and the genotypes Akamu, Kaiki and Kaolin for phenolic totals content and antioxidant activity. Moke and Kaolin showed higher vitamin C content and fruit firmness. Based on sensory analysis, Kalani, Kaiki, Kaolin and Akamu obtained greater global acceptance. The genotypes can be considered an important marketing strategy of mini sweet peppers trade, associating different shapes, colors and nutritional quality.
Collapse
|
17
|
Tartaglia M, Sciarrillo R, Zuzolo D, Amoresano A, Illiano A, Pinto G, Jorrín-Novo JV, Guarino C. Why Consumers Prefer Green Friariello Pepper: Changes in the Protein and Metabolite Profiles Along the Ripening. FRONTIERS IN PLANT SCIENCE 2021; 12:668562. [PMID: 33995464 PMCID: PMC8121147 DOI: 10.3389/fpls.2021.668562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Fruit ripening is a physiologically complex process altering texture, color, flavor, nutritional value, and aroma. However, some fruits are consumed at an early stage of ripening due to the very peculiar characteristics varying during ripening. An example is a particular ecotype of pepper, the Friariello pepper, among the most important representatives of Campania (Southern Italy) agro-alimentary culture. In this study, for the first time, the physiological variations during Friariello ripening (green, veraison, and fully ripe) were evaluated by hyphenated mass spectrometric techniques in a proteomic and metabolomic approach. We found that Lutein and Thaumatin are particularly abundant in the green Friariello. Friariello at an early stage of ripening, is rich in volatile compounds like butanol, 1 3 5-cycloheptatriene, dimethylheptane, α-pinene, furan-2-penthyl, ethylhexanol, 3-carene, detected by gas chromatography-mass spectrometry (GC-MS) analysis, which give it the peculiar fresh and pleasant taste. The detected features of Friariello may justify its preferential consumption in the early ripening stage and outline new knowledge aimed at preserving specific agro-cultural heritage.
Collapse
Affiliation(s)
- Maria Tartaglia
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Anna Illiano
- CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Jesús V. Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, UCO-CeiA3, Córdoba, Spain
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, Benevento, Italy
| |
Collapse
|
18
|
Giorio P, Sellami MH. Polyphasic OKJIP Chlorophyll a Fluorescence Transient in a Landrace and a Commercial Cultivar of Sweet Pepper ( Capsicum annuum, L.) under Long-Term Salt Stress. PLANTS 2021; 10:plants10050887. [PMID: 33924904 PMCID: PMC8145502 DOI: 10.3390/plants10050887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022]
Abstract
In a soilless long-term salt-stress experiment, we tested the differences between the commercial sweet pepper cultivar “Quadrato d’Asti” and the landrace “Cazzone Giallo” in the structure and function of PSII through the JIP test analysis of the fast chlorophyll fluorescence transients (OKJIP). Salt stress inactivated the oxygen-evolving complex. Performance index detected the stress earlier than the maximum quantum yield of PSII, which remarkably decreased in the long term. The detrimental effects of salinity on the oxygen evolving-complex, the trapping of light energy in PSII, and delivering in the electron transport chain occurred earlier and more in the landrace than the cultivar. Performance indexes decreased earlier than the maximum quantum yield of PSII. Stress-induced inactivation of PSII reaction centers reached 22% in the cultivar and 45% in the landrace. The resulted heat dissipation had the trade-off of a correspondent reduced energy flow per sample leaf area, thus an impaired potential carbon fixation. These results corroborate the reported higher tolerance to salt stress of the commercial cultivar than the landrace in terms of yield. PSII was more affected than PSI, which functionality recovered in the late of trial, especially in the cultivar, possibly due to heat dissipation mechanisms. This study gives valuable information for breeding programs aiming to improve tolerance in salt stress sensitive sweet pepper genotypes.
Collapse
|
19
|
Guevara L, Domínguez-Anaya MÁ, Ortigosa A, González-Gordo S, Díaz C, Vicente F, Corpas FJ, Pérez del Palacio J, Palma JM. Identification of Compounds with Potential Therapeutic Uses from Sweet Pepper ( Capsicum annuum L.) Fruits and Their Modulation by Nitric Oxide (NO). Int J Mol Sci 2021; 22:ijms22094476. [PMID: 33922964 PMCID: PMC8123290 DOI: 10.3390/ijms22094476] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Plant species are precursors of a wide variety of secondary metabolites that, besides being useful for themselves, can also be used by humans for their consumption and economic benefit. Pepper (Capsicum annuum L.) fruit is not only a common food and spice source, it also stands out for containing high amounts of antioxidants (such as vitamins C and A), polyphenols and capsaicinoids. Particular attention has been paid to capsaicin, whose anti-inflammatory, antiproliferative and analgesic activities have been reported in the literature. Due to the potential interest in pepper metabolites for human use, in this project, we carried out an investigation to identify new bioactive compounds of this crop. To achieve this, we applied a metabolomic approach, using an HPLC (high-performance liquid chromatography) separative technique coupled to metabolite identification by high resolution mass spectrometry (HRMS). After chromatographic analysis and data processing against metabolic databases, 12 differential bioactive compounds were identified in sweet pepper fruits, including quercetin and its derivatives, L-tryptophan, phytosphingosin, FAD, gingerglycolipid A, tetrahydropentoxylin, blumenol C glucoside, colnelenic acid and capsoside A. The abundance of these metabolites varied depending on the ripening stage of the fruits, either immature green or ripe red. We also studied the variation of these 12 metabolites upon treatment with exogenous nitric oxide (NO), a free radical gas involved in a good number of physiological processes in higher plants such as germination, growth, flowering, senescence, and fruit ripening, among others. Overall, it was found that the content of the analyzed metabolites depended on the ripening stage and on the presence of NO. The metabolic pattern followed by quercetin and its derivatives, as a consequence of the ripening stage and NO treatment, was also corroborated by transcriptomic analysis of genes involved in the synthesis of these compounds. This opens new research perspectives on the pepper fruit’s bioactive compounds with nutraceutical potentiality, where biotechnological strategies can be applied for optimizing the level of these beneficial compounds.
Collapse
Affiliation(s)
- Lucía Guevara
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - María Ángeles Domínguez-Anaya
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - Alba Ortigosa
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - Salvador González-Gordo
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - Caridad Díaz
- Department of Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain; (C.D.); (F.V.); (J.P.d.P.)
| | - Francisca Vicente
- Department of Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain; (C.D.); (F.V.); (J.P.d.P.)
| | - Francisco J. Corpas
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - José Pérez del Palacio
- Department of Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain; (C.D.); (F.V.); (J.P.d.P.)
| | - José M. Palma
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
- Correspondence: ; Tel.: +34-958-181-1600; Fax: +34-958-181-609
| |
Collapse
|
20
|
To Be or Not to Be… An Antioxidant? That Is the Question. Antioxidants (Basel) 2020; 9:antiox9121234. [PMID: 33291380 PMCID: PMC7762054 DOI: 10.3390/antiox9121234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
|
21
|
Antioxidant Profile of Pepper ( Capsicum annuum L.) Fruits Containing Diverse Levels of Capsaicinoids. Antioxidants (Basel) 2020; 9:antiox9090878. [PMID: 32957493 PMCID: PMC7554748 DOI: 10.3390/antiox9090878] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
Capsicum is the genus where a number of species and varieties have pungent features due to the exclusive content of capsaicinoids such as capsaicin and dihydrocapsaicin. In this work, the main enzymatic and non-enzymatic systems in pepper fruits from four varieties with different pungent capacity have been investigated at two ripening stages. Thus, a sweet pepper variety (Melchor) from California-type fruits and three autochthonous Spanish varieties which have different pungency levels were used, including Piquillo, Padrón and Alegría riojana. The capsaicinoids contents were determined in the pericarp and placenta from fruits, showing that these phenyl-propanoids were mainly localized in placenta. The activity profiles of catalase, total and isoenzymatic superoxide dismutase (SOD), the enzymes of the ascorbate–glutathione cycle (AGC) and four NADP-dehydrogenases indicate that some interaction with capsaicinoid metabolism seems to occur. Among the results obtained on enzymatic antioxidants, the role of Fe-SOD and the glutathione reductase from the AGC is highlighted. Additionally, it was found that ascorbate and glutathione contents were higher in those pepper fruits which displayed the greater contents of capsaicinoids. Taken together, all these data indicate that antioxidants may contribute to preserve capsaicinoids metabolism to maintain their functionality in a framework where NADPH is perhaps playing an essential role.
Collapse
|