1
|
Qu L, Li M, Gong F, He L, Li M, Zhang C, Yin K, Xie W. Oxygen-driven divergence of marine group II archaea reflected by transitions of superoxide dismutases. Microbiol Spectr 2024; 12:e0203323. [PMID: 38047693 PMCID: PMC10783094 DOI: 10.1128/spectrum.02033-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/20/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Reactive oxygen species (ROS), including superoxide anion, is a series of substances that cause oxidative stress for all organisms. Marine group II (MGII) archaea are mainly live in the surface seawater and exposed to considerable ROS. Therefore, it is important to understand the antioxidant capacity of MGII. Our research found that Fe/Mn- superoxide dismutase (Fe/MnSOD) may be more suitable for MGII to resist oxidative damage, and the changes in oxygen concentrations and SOD metallic cofactors play an important role in the selection of SOD by the 17 clades of MGII, which in turn affects the species differentiation of MGII. Overall, this study provides insight into the co-evolutionary history of these uncultivated marine archaea with the earth system.
Collapse
Affiliation(s)
- Liping Qu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Meng Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Fahui Gong
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Lei He
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Minchun Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Chuanlun Zhang
- Department of Ocean Science & Engineering, Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
| | - Kedong Yin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
2
|
Tilahun L, Asrat A, Wessel GM, Simachew A. Ancestors in the Extreme: A Genomics View of Microbial Diversity in Hypersaline Aquatic Environments. Results Probl Cell Differ 2024; 71:185-212. [PMID: 37996679 DOI: 10.1007/978-3-031-37936-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The origin of eukaryotic cells, and especially naturally occurring syncytial cells, remains debatable. While a majority of our biomedical research focuses on the eukaryotic result of evolution, our data remain limiting on the prokaryotic precursors of these cells. This is particularly evident when considering extremophile biology, especially in how the genomes of organisms in extreme environments must have evolved and adapted to unique habitats. Might these rapidly diversifying organisms have created new genetic tools eventually used to enhance the evolution of the eukaryotic single nuclear or syncytial cells? Many organisms are capable of surviving, or even thriving, in conditions of extreme temperature, acidity, organic composition, and then rapidly adapt to yet new conditions. This study identified organisms found in extremes of salinity. A lake and a nearby pond in the Ethiopian Rift Valley were interrogated for life by sequencing the DNA of populations of organism collected from the water in these sites. Remarkably, a vast diversity of microbes were identified, and even though the two sites were nearby each other, the populations of organisms were distinctly different. Since these microbes are capable of living in what for humans would be inhospitable conditions, the DNA sequences identified should inform the next step in these investigations; what new gene families, or modifications to common genes, do these organisms employ to survive in these extreme conditions. The relationship between organisms and their environment can be revealed by decoding genomes of organisms living in extreme environments. These genomes disclose new biological mechanisms that enable life outside moderate environmental conditions, new gene functions for application in biotechnology, and may even result in identification of new species. In this study, we have collected samples from two hypersaline sites in the Danakil depression, the shorelines of Lake As'ale and an actively mixing salt pond called Muda'ara (MUP), to identify the microbial community by metagenomics. Shotgun sequencing was applied to high density sampling, and the relative abundance of Operational Taxonomic Units (OTUs) was calculated. Despite the broad taxonomic similarities among the salt-saturated metagenomes analyzed, MUP stood out from Lake As'ale samples. In each sample site, Archaea accounted for 95% of the total OTUs, largely to the class Halobacteria. The remaining 5% of organisms were eubacteria, with an unclassified strain of Salinibacter ruber as the dominant OTU in both the Lake and the Pond. More than 40 different genes coding for stress proteins were identified in the three sample sites of Lake As'ale, and more than 50% of the predicted stress-related genes were associated with oxidative stress response proteins. Chaperone proteins (DnaK, DnaJ, GrpE, and ClpB) were predicted, with percentage of query coverage and similarities ranging between 9.5% and 99.2%. Long reads for ClpB homologous protein from Lake As'ale metagenome datasets were modeled, and compact 3D structures were generated. Considering the extreme environmental conditions of the Danakil depression, this metagenomics dataset can add and complement other studies on unique gene functions on stress response mechanisms of thriving bio-communities that could have contributed to cellular changes leading to single and/or multinucleated eukaryotic cells.
Collapse
Affiliation(s)
- Lulit Tilahun
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asfawossen Asrat
- Department of Mining and Geological Engineering, Botswana International University of Science and Technology, Palapye, Botswana
- School of Earth Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gary M Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| | - Addis Simachew
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Nasreldin N, EL-Shoukary RD, Abdel-Raheem GSE, Gharib HS, Zigo F, Farkašová Z, Rehan IF, Senosy W. Effect of mineral-vitamin premix supplementation on behavioral, performance, hormonal, oxidative stress, and serum biochemical profiles on rutting male Camelus dromedarius in Egypt. Front Vet Sci 2023; 10:1221830. [PMID: 37929284 PMCID: PMC10623354 DOI: 10.3389/fvets.2023.1221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction The rutting period imposes a stressful condition on male camels, which results in elevated serum cortisol levels and alterations in their sexual behavior. Therefore, the current work was carried out to investigate the effect of mineral-vitamin premix supplementation on behavior, reproductive performance, hormones, serum oxidative stress profile, and other serum biochemical parameters of Camelus dromedarius during the breeding season. Methods Fourteen mature, fertile male Camelus dromedarius were divided into two groups, a control group (n = 7) and a mineral-vitamin premix group (n = 7). The present study lasted for 95 days during the rutting period (1st February to 5th May). Each camel in the premix group received a daily diet of 50 g of mineral-vitamin premix throughout the whole rutting period, during which the frequencies and durations of the following behaviors: maintenance, posture, aggressiveness, and sexual activity were collected every 20 min. At the end of the study, blood samples were collected. Results Results revealed that the premix group showed higher (P < 0.05) maintenance (feeding and rumination), standing, and overall sexual desire-related behavior frequency, besides more times (P < 0.001) for rumination, standing, walking, and lying while showing lower (P < 0.001) frequencies of overall aggressive behaviors than the control group. The serum concentration of malondialdehyde, nitric oxide, cortisol, blood glucose, and urea evidenced a significant decrease in the premix group compared with the control one, while significantly elevated levels of reduced glutathione, testosterone, total antioxidant capacity, triiodothyronine, and thyroxin, total protein, albumin, globulin, calcium, phosphorus, potassium, and magnesium were recorded in the premix group in comparison with the control. Conclusion It could be concluded that daily dietary supplementation of 50 g of mineral-vitamin premix to male camels during the breeding season is necessary to overcome the oxidative stress and serum cortisol concentration with a subsequent decrease in aggressive behavior and improvement to testosterone level in blood, body condition score and body weight gain.
Collapse
Affiliation(s)
- Nani Nasreldin
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| | - Ramadan D. EL-Shoukary
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| | - Ghada S. E. Abdel-Raheem
- Departments of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, Asyut, Egypt
| | - Heba S. Gharib
- Department of Behaviour and Management of Animal, Poultry and Aquatic, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - František Zigo
- Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy, Košice, Komenského, Slovakia
| | - Zuzana Farkašová
- Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy, Košice, Komenského, Slovakia
| | - Ibrahim F. Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Menoufia, Egypt
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya-shi, Japan
| | - Waleed Senosy
- Department of Theriogenology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| |
Collapse
|
4
|
Pan J, Zhang X, Xu W, Liu Y, Liu L, Luo Z, Li M. Wood-Ljungdahl pathway found in novel marine Korarchaeota groups illuminates their evolutionary history. mSystems 2023; 8:e0030523. [PMID: 37458475 PMCID: PMC10469681 DOI: 10.1128/msystems.00305-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023] Open
Abstract
Korarchaeota, due to its rarity in common environments, is one of the archaeal phyla that has received the least attention from researchers. It was previously thought to consist solely of strict thermophiles. However, our study provides genetic evidence for the presence of korarchaeal members in temperate subsurface seawater. Furthermore, a systematic reclassification of the Korarchaeota based on 16S rRNA genes and genomes has revealed three novel marine groups (Kor-6 to Kor-8) at the root of the Korarchaeota branch. Kor-6 contains microbes that are present in moderate temperatures. All three novel marine phyla possess genes for the Wood-Ljungdahl pathway, and Kor-7 and Kor-8 possess fewer genes encoding oxygen resistance traits than other korarchaeal groups, suggesting a distinct lifestyle for these novel phyla. Our results, together with estimations of Korarchaeota divergence times, suggest that oxygen availability may be one of the important factors that have influenced the evolution of Korarchaeota. IMPORTANCE Korarchaeota were previously thought to inhabit exclusively high-temperature environments. However, our study provides genetic evidence for their unexpected presence in temperate marine waters. Through analysis of publicly available korarchaeal reference data, we have systematically reclassified Korarchaeota and identified the existence of three previously unknown marine groups (Kor-6, Kor-7, and Kor-8) at the root of the Korarchaeota branch. Comparative analysis of their gene content revealed that these novel groups exhibit a lifestyle distinct from other Korarchaeota. Specifically, they have the ability to fix carbon exclusively via the Wood-Ljungdahl (WL) pathway, and the genomes within Kor-7 and Kor-8 contain few genes encoding antioxidant enzymes, indicating their strictly anaerobic lifestyle. Further studies suggest that the genes related to methane metabolism and the WL pathway may have been inherited from a common ancestor of the Korarchaeota and that oxygen availability may be one of the important evolutionary factors that shaped the diversification of this archaeal phylum.
Collapse
Affiliation(s)
- Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, Guangdong, China
| | - Xinxu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Lirui Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Řezanka T, Kyselová L, Murphy DJ. Archaeal lipids. Prog Lipid Res 2023; 91:101237. [PMID: 37236370 DOI: 10.1016/j.plipres.2023.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The major archaeal membrane glycerolipids are distinguished from those of bacteria and eukaryotes by the contrasting stereochemistry of their glycerol backbones, and by the use of ether-linked isoprenoid-based alkyl chains rather than ester-linked fatty acyl chains for their hydrophobic moieties. These fascinating compounds play important roles in the extremophile lifestyles of many species, but are also present in the growing numbers of recently discovered mesophilic archaea. The past decade has witnessed significant advances in our understanding of archaea in general and their lipids in particular. Much of the new information has come from the ability to screen large microbial populations via environmental metagenomics, which has revolutionised our understanding of the extent of archaeal biodiversity that is coupled with a strict conservation of their membrane lipid compositions. Significant additional progress has come from new culturing and analytical techniques that are gradually enabling archaeal physiology and biochemistry to be studied in real time. These studies are beginning to shed light on the much-discussed and still-controversial process of eukaryogenesis, which probably involved both bacterial and archaeal progenitors. Puzzlingly, although eukaryotes retain many attributes of their putative archaeal ancestors, their lipid compositions only reflect their bacterial progenitors. Finally, elucidation of archaeal lipids and their metabolic pathways have revealed potentially interesting applications that have opened up new frontiers for biotechnological exploitation of these organisms. This review is concerned with the analysis, structure, function, evolution and biotechnology of archaeal lipids and their associated metabolic pathways.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Lucie Kyselová
- Research Institute of Brewing and Malting, Lípová 511, 120 44 Prague, Czech Republic
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, United Kingdom.
| |
Collapse
|
6
|
Santhosh PB, Genova J. Archaeosomes: New Generation of Liposomes Based on Archaeal Lipids for Drug Delivery and Biomedical Applications. ACS OMEGA 2023; 8:1-9. [PMID: 36643444 PMCID: PMC9835528 DOI: 10.1021/acsomega.2c06034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Archaeosomes are a new generation of stable liposomes composed of natural ether lipids extracted from archaea, or synthetic archaeal lipids. Archaea constitute a domain of single-celled microorganisms that are structurally similar to but evolutionarily distinct from bacteria. They synthesize unique membrane lipids with isoprenoid hydrocarbon side chains attached via an ether linkage to the glycerol-phosphate backbone. Compared to the ester linkages found in the lipids of Eukarya and bacteria, the ether linkages in archaeal lipids are more stable in various environmental conditions such as high/low temperatures, acidic or alkaline pH, bile salts, and enzymatic hydrolysis. This feature has intrigued scientists to use archaeal lipids to prepare archaeosomes with superior physicochemical stability and utilize them as effective carriers to deliver various cargos of biomedical importance such as drugs, proteins, peptides, genes, and antioxidants to the target site. Archaeosomes carrying antigens and/or adjuvants are also proven to be better candidates for stimulating antigen-specific, humoral, and cell-mediated immune responses, which broadens their scope in vaccine delivery. These properties associated with excellent biocompatibility and a safety profile provide numerous advantages to the archaeosomes to function as a versatile delivery system. This mini-review will provide an overview of the unique features of archaeal lipids, preparation and characterization of archaeosomes, and emphasize the prospects related to drug delivery and other biomedical applications.
Collapse
|
7
|
Characterization of L-arabinose/D-galactose 1-dehydrogenase from Thermotoga maritima and its application in galactonate production. World J Microbiol Biotechnol 2022; 38:223. [DOI: 10.1007/s11274-022-03406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
|
8
|
Reactive oxygen species in plants: an invincible fulcrum for biotic stress mitigation. Appl Microbiol Biotechnol 2022; 106:5945-5955. [PMID: 36063177 DOI: 10.1007/s00253-022-12138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Climate change-associated environmental vagaries have amplified the incidence of pests and pathogens on plants, thus imparting the increased quest for management strategies. Plants respond to stresses through intricate signaling networks that regulate diverse cellular mechanisms. Reactive oxygen species (ROS) are cardinal towards the maintenance of normal plant activities as well as improving stress management. Plants that exhibit a fine balance between ROS levels and its management apparently mitigate stresses better. There have been very many compendiums on signaling and management of ROS during several abiotic stresses. However, expansion of knowledge related to ROS induction and homeostasis during biotic stresses is pertinent. Hence, considering its importance, we provide insights in this review on how plants signal and manage ROS upon an oxidative burst during their interaction with pathogens and herbivores. Substantial degree of molecular changes and pivotal roles of ROS have been detected during phyto-pathogen/herbivore interactions, opening novel platforms to understand signaling/management of events under varied biotic stresses. It is interesting to know that, though plants react to biotic stresses through oxidative burst, receptors and elicitors involved in the signal transduction differ across stresses. The review provides explicit details about the specific signaling of ROS production in plants under pathogen and herbivore attack. Furthermore, we also provide an update about tackling the accumulated ROS under biotic stresses as another pivotal step. ROS signaling and homeostasis can be exploited as critical players and a fulcrum to tackle biotic stresses, thus paving the way for futuristic combinatorial stress management strategies. KEY POINTS: • The review is a comprehension of redox signaling and management in plants during herbivory and pathogen infection • Reactive oxygen species (ROS) is an important factor during normal plant activities as well as in their response to stresses. Diverse modes of ROS signaling and management have been observed during both biotic stresses independently • Exploration of plant biology in multi-stress resistant plants like the crop wild relatives could pave the way for combinatorial management of stress for a better tomorrow.
Collapse
|
9
|
Aragaw TA, Bogale FM, Gessesse A. Adaptive Response of Thermophiles to Redox Stress and Their Role in the Process of dye Degradation From Textile Industry Wastewater. Front Physiol 2022; 13:908370. [PMID: 35795652 PMCID: PMC9251311 DOI: 10.3389/fphys.2022.908370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 01/28/2023] Open
Abstract
Release of dye-containing textile wastewater into the environment causes severe pollution with serious consequences on aquatic life. Bioremediation of dyes using thermophilic microorganisms has recently attracted attention over conventional treatment techniques. Thermophiles have the natural ability to survive under extreme environmental conditions, including high dye concentration, because they possess stress response adaptation and regulation mechanisms. Therefore, dye detoxification by thermophiles could offer enormous opportunities for bioremediation at elevated temperatures. In addition, the processes of degradation generate reactive oxygen species (ROS) and subject cells to oxidative stress. However, thermophiles exhibit better adaptation to resist the effects of oxidative stress. Some of the major adaptation mechanisms of thermophiles include macromolecule repair system; enzymes such as superoxide dismutase, catalase, and glutathione peroxidase; and non-enzymatic antioxidants like extracellular polymeric substance (EPSs), polyhydroxyalkanoates (PHAs), etc. In addition, different bacteria also possess enzymes that are directly involved in dye degradation such as azoreductase, laccase, and peroxidase. Therefore, through these processes, dyes are first degraded into smaller intermediate products finally releasing products that are non-toxic or of low toxicity. In this review, we discuss the sources of oxidative stress in thermophiles, the adaptive response of thermophiles to redox stress and their roles in dye removal, and the regulation and crosstalk between responses to oxidative stress.
Collapse
Affiliation(s)
- Tadele Assefa Aragaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- *Correspondence: Tadele Assefa Aragaw,
| | - Fekadu Mazengiaw Bogale
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Amare Gessesse
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
10
|
You X, Li H, Pan B, You M, Sun W. Interactions between antibiotics and heavy metals determine their combined toxicity to Synechocystis sp. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127707. [PMID: 34798547 DOI: 10.1016/j.jhazmat.2021.127707] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Co-pollution of antibiotics and metals is prevailing in aquatic environments. However, risks of coexisted antibiotics and metals on aquatic organisms is unclear. This study investigated the combined toxicity of antibiotics and metals towards Synechocystis sp. PCC 6803, a cyanobacterium. We found that the joint toxicity of antibiotics and metals is dependent on their interplays. The complexation between chlortetracycline (CTC) and copper/cadmium (Cu(II)/Cd(II)) resulted in their antagonistic toxicity. Contrarily, an additive toxicity was found between florfenicol (FLO) and Cu(II)/Cd(II) due to lack of interactions between them. CTC facilitated the intracellular uptake of Cu(II) and Cd(II) by increasing the membrane permeability. However, FLO had no obvious effects on the internalization of metals in Synechocystis sp. Proteomic analysis revealed that the photosynthetic proteins was down-regulated by CTC and FLO, and ribosome was the primary target of FLO. These results were verified by parallel reaction monitoring (PRM). Cu(II) induced the up-regulation of iron-sulfur assembly, while Cd(II) disturbed the cyclic electron transport in Synechocystis sp. The co-exposure of CTC and metals markedly alleviated the dysregulation of proteins, while the co-exposure of FLO and metals down-regulated biological functions such as ATP synthesis, photosynthesis, and carbon fixation of Synechocystis sp., compared with their individuals. This supports their joint toxicity effects. Our findings provide better understanding of combined toxicity between multiple pollutants in aquatic environments.
Collapse
Affiliation(s)
- Xiuqi You
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China
| | - Haibo Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Mingtao You
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China
| | - Weiling Sun
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
11
|
Sarkar RK, Bhowmik M, Biswas Sarkar M, Sircar G, Bhattacharya K. Comprehensive characterization and molecular insights into the salt tolerance of a Cu, Zn-superoxide dismutase from an Indian Mangrove, Avicennia marina. Sci Rep 2022; 12:1745. [PMID: 35110640 PMCID: PMC8810880 DOI: 10.1038/s41598-022-05726-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/24/2021] [Indexed: 11/15/2022] Open
Abstract
Superoxide dismutases are important group of antioxidant metallozyme and play important role in ROS homeostasis in salinity stress. The present study reports the biochemical properties of a salt-tolerant Cu, Zn-superoxide from Avicennia marina (Am_SOD). Am_SOD was purified from the leaf and identified by mass-spectrometry. Recombinant Am_SOD cDNA was bacterially expressed as a homodimeric protein. Enzyme kinetics revealed a high substrate affinity and specific activity of Am_SOD as compared to many earlier reported SODs. An electronic transition in 360-400 nm spectra of Am_SOD is indicative of Cu2+-binding. Am_SOD activity was potentially inhibited by diethyldithiocarbamate and H2O2, a characteristic of Cu, Zn-SOD. Am_SOD exhibited conformational and functional stability at high NaCl concentration as well in alkaline pH. Introgression of Am_SOD in E. coli conferred tolerance to oxidative stress under highly saline condition. Am_SOD was moderately thermostable and retained functional activity at ~ 60 °C. In-silico analyses revealed 5 solvent-accessible N-terminal residues of Am_SOD that were less hydrophobic than those at similar positions of non-halophilic SODs. Substituting these 5 residues with non-halophilic counterparts resulted in > 50% reduction in salt-tolerance of Am_SOD. This indicates a cumulative role of these residues in maintaining low surface hydrophobicity of Am_SOD and consequently high salt tolerance. The molecular information on antioxidant activity and salt-tolerance of Am_SOD may have potential application in biotechnology research. To our knowledge, this is the first report on salt-tolerant SOD from mangrove.
Collapse
Affiliation(s)
- Rajat Kanti Sarkar
- Department of Botany, Siksha Bhavana, Visva-Bharati (A Central University), Santiniketan, West Bengal, 731235, India
| | - Moumita Bhowmik
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, 700009, India
| | | | - Gaurab Sircar
- Department of Botany, Siksha Bhavana, Visva-Bharati (A Central University), Santiniketan, West Bengal, 731235, India.
| | - Kashinath Bhattacharya
- Department of Botany, Siksha Bhavana, Visva-Bharati (A Central University), Santiniketan, West Bengal, 731235, India.
| |
Collapse
|
12
|
Neira G, Vergara E, Cortez D, Holmes DS. A Large-Scale Multiple Genome Comparison of Acidophilic Archaea (pH ≤ 5.0) Extends Our Understanding of Oxidative Stress Responses in Polyextreme Environments. Antioxidants (Basel) 2021; 11:antiox11010059. [PMID: 35052563 PMCID: PMC8773360 DOI: 10.3390/antiox11010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Acidophilic archaea thrive in anaerobic and aerobic low pH environments (pH < 5) rich in dissolved heavy metals that exacerbate stress caused by the production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), hydroxyl radical (OH) and superoxide (O2−). ROS react with lipids, proteins and nucleic acids causing oxidative stress and damage that can lead to cell death. Herein, genes and mechanisms potentially involved in ROS mitigation are predicted in over 200 genomes of acidophilic archaea with sequenced genomes. These organisms are often be subjected to simultaneous multiple stresses such as high temperature, high salinity, low pH and high heavy metal loads. Some of the topics addressed include: (1) the phylogenomic distribution of these genes and what this can tell us about the evolution of these mechanisms in acidophilic archaea; (2) key differences in genes and mechanisms used by acidophilic versus non-acidophilic archaea and between acidophilic archaea and acidophilic bacteria and (3) how comparative genomic analysis predicts novel genes or pathways involved in oxidative stress responses in archaea and likely horizontal gene transfer (HGT) events.
Collapse
Affiliation(s)
- Gonzalo Neira
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago 7780272, Chile; (G.N.); (E.V.); (D.C.)
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago 7780272, Chile; (G.N.); (E.V.); (D.C.)
| | - Diego Cortez
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago 7780272, Chile; (G.N.); (E.V.); (D.C.)
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago 7780272, Chile; (G.N.); (E.V.); (D.C.)
- Facultad de Medicina y Ciencias, Universidad San Sebastián, Santiago 8420524, Chile
- Correspondence:
| |
Collapse
|
13
|
Manoj KM, Bazhin N. The murburn precepts for aerobic respiration and redox homeostasis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:104-120. [DOI: 10.1016/j.pbiomolbio.2021.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/13/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
|
14
|
Rani A, Saini KC, Bast F, Mehariya S, Bhatia SK, Lavecchia R, Zuorro A. Microorganisms: A Potential Source of Bioactive Molecules for Antioxidant Applications. Molecules 2021; 26:molecules26041142. [PMID: 33672774 PMCID: PMC7924645 DOI: 10.3390/molecules26041142] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress originates from an elevated intracellular level of free oxygen radicals that cause lipid peroxidation, protein denaturation, DNA hydroxylation, and apoptosis, ultimately impairing cell viability. Antioxidants scavenge free radicals and reduce oxidative stress, which further helps to prevent cellular damage. Medicinal plants, fruits, and spices are the primary sources of antioxidants from time immemorial. In contrast to plants, microorganisms can be used as a source of antioxidants with the advantage of fast growth under controlled conditions. Further, microbe-based antioxidants are nontoxic, noncarcinogenic, and biodegradable as compared to synthetic antioxidants. The present review aims to summarize the current state of the research on the antioxidant activity of microorganisms including actinomycetes, bacteria, fungi, protozoa, microalgae, and yeast, which produce a variety of antioxidant compounds, i.e., carotenoids, polyphenols, vitamins, and sterol, etc. Special emphasis is given to the mechanisms and signaling pathways followed by antioxidants to scavenge Reactive Oxygen Species (ROS), especially for those antioxidant compounds that have been scarcely investigated so far.
Collapse
Affiliation(s)
- Alka Rani
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151401, India; (A.R.); (K.C.S.); (F.B.)
| | - Khem Chand Saini
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151401, India; (A.R.); (K.C.S.); (F.B.)
| | - Felix Bast
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151401, India; (A.R.); (K.C.S.); (F.B.)
| | - Sanjeet Mehariya
- Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, 00184 Rome, Italy;
- Correspondence: (S.M.); (A.Z.); Tel.: +39-347-494-0910 (S.M.); +39-06-4458-5598 (A.Z.)
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea;
| | - Roberto Lavecchia
- Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, 00184 Rome, Italy;
| | - Antonio Zuorro
- Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, 00184 Rome, Italy;
- Correspondence: (S.M.); (A.Z.); Tel.: +39-347-494-0910 (S.M.); +39-06-4458-5598 (A.Z.)
| |
Collapse
|
15
|
Unlocking Survival Mechanisms for Metal and Oxidative Stress in the Extremely Acidophilic, Halotolerant Acidihalobacter Genus. Genes (Basel) 2020; 11:genes11121392. [PMID: 33255299 PMCID: PMC7760498 DOI: 10.3390/genes11121392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022] Open
Abstract
Microorganisms used for the biohydrometallurgical extraction of metals from minerals must be able to survive high levels of metal and oxidative stress found in bioleaching environments. The Acidihalobacter genus consists of four species of halotolerant, iron–sulfur-oxidizing acidophiles that are unique in their ability to tolerate chloride and acid stress while simultaneously bioleaching minerals. This paper uses bioinformatic tools to predict the genes and mechanisms used by Acidihalobacter members in their defense against a wide range of metals and oxidative stress. Analysis revealed the presence of multiple conserved mechanisms of metal tolerance. Ac. yilgarnensis F5T, the only member of this genus that oxidizes the mineral chalcopyrite, contained a 39.9 Kb gene cluster consisting of 40 genes encoding mobile elements and an array of proteins with direct functions in copper resistance. The analysis also revealed multiple strategies that the Acidihalobacter members can use to tolerate high levels of oxidative stress. Three of the Acidihalobacter genomes were found to contain genes encoding catalases, which are not common to acidophilic microorganisms. Of particular interest was a rubrerythrin genomic cluster containing genes that have a polyphyletic origin of stress-related functions.
Collapse
|