1
|
Andrés-Blasco I, Gallego-Martínez A, Casaroli-Marano RP, Di Lauro S, Arévalo JF, Pinazo-Durán MD. Molecular-Genetic Biomarkers of Diabetic Macular Edema. J Clin Med 2024; 13:7426. [PMID: 39685883 DOI: 10.3390/jcm13237426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Diabetic macular edema (DME) is a leading cause of vision impairment and blindness among diabetic patients, requiring effective diagnostic and monitoring strategies. This systematic review aims to synthesize current knowledge on molecular biomarkers associated with DME, focusing on their potential to improve diagnostic accuracy and disease management. Methods: A comprehensive search was conducted in PubMed, Embase, Medline, and the Cochrane Central Register of Controlled Trials, covering literature from 2004 to 2023. Out of 1074 articles initially identified, 48 relevant articles were included in this systematic review. Results: We found that molecules involved in several cellular processes, such as neuroinflammation, oxidative stress, vascular dysfunction, apoptosis, and cell-to-cell communication, exhibit differential expression profiles in various biological fluids when comparing diabetic individuals with or without macular edema. Conclusions: The study of these molecules could lead to the proper identification of specific biomarkers that may improve the diagnosis, prognosis, and therapeutic management of DME patients.
Collapse
Affiliation(s)
- Irene Andrés-Blasco
- Ophthalmic Research Unit "Santiago Grisolía"/Fisabio, 46017 Valencia, Spain
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicina and Odontology, University of Valencia, 46017 Valencia, Spain
- Research Network in Inflammatory Diseases and Immunopathology of Organs and Systems "REI-RICORS", RD21/0002/0032, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Alex Gallego-Martínez
- Ophthalmic Research Unit "Santiago Grisolía"/Fisabio, 46017 Valencia, Spain
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicina and Odontology, University of Valencia, 46017 Valencia, Spain
| | - Ricardo Pedro Casaroli-Marano
- Research Network in Inflammatory Diseases and Immunopathology of Organs and Systems "REI-RICORS", RD21/0002/0032, Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Surgery, School of Medicine and Hospital Clínic de Barcelona, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Salvatore Di Lauro
- Department of Ophthalmology, University Clinic Hopital, 47003 Valladolid, Spain
| | - Jose Fernando Arévalo
- Research Network in Inflammatory Diseases and Immunopathology of Organs and Systems "REI-RICORS", RD21/0002/0032, Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Maria Dolores Pinazo-Durán
- Ophthalmic Research Unit "Santiago Grisolía"/Fisabio, 46017 Valencia, Spain
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicina and Odontology, University of Valencia, 46017 Valencia, Spain
- Research Network in Inflammatory Diseases and Immunopathology of Organs and Systems "REI-RICORS", RD21/0002/0032, Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Zhang J, Li H, Deng Q, Huang AM, Qiu W, Wang L, Xiang Z, Yang R, Liang J, Liu Z. Correlation between omega-3 intake and the incidence of diabetic retinopathy based on NHANES from 2005 to 2008. Acta Diabetol 2024; 61:997-1005. [PMID: 38625392 DOI: 10.1007/s00592-024-02267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
AIMS To identify correlations between omega-3 intake and incidence of diabetic retinopathy (DR). METHODS This was a cross-sectional study using data from participants over age 40 in the National Health and Nutrition Examination Survey (NHANES) 2005-2008. Metrics included participants' intake of omega-3 fatty acids, specifically three types of representative polyunsaturated fatty acids, DR prevalence, and demographic characteristics. Multiple logistic regression models were used to assess the relationship between omega-3 intake and DR. RESULTS Of the 1243 participants included in this study, omega-3 intake was lower in patients with DR relative to those without DR. Of the three polyunsaturated fatty acids within the omega-3 fatty acid family that we focused on, participants without DR consumed more docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) than those with DR. In contrast, there was no significant difference in the intake of eicosapentaenoic acid (EPA). Higher omega-3 intake was associated with a decreased risk of DR. In a crude model, the odds ratio (OR) was 0.548 (95% CI 0.315, 0.951; p = 0.033). In the fully adjusted model of omega-3 (model II), the adjusted OR was 0.525 (95% CI 0.306, 0.901; p = 0.021). DPA and DHA were also associated with a decreased risk of DR. In the full adjustment model (model II) of DPA and DHA, the adjusted ORs were 0.0002 (95% CI 0.000, 0.166; p = 0.014) and 0.293 (95% CI 0.105, 0.819; p = 0.020). Subgroup analysis showed that the protective effect of omega-3 against DR was more significant in younger patients (p value = 0.015). CONCLUSIONS In this cross-sectional study of the U.S. general population, we found that increased intake of omega-3 and its components, specifically DPA and DHA were negatively associated with DR incidence. This suggests that omega-3 may be a potential protective factor for DR and may help to prevent or delay the onset and progression of DR.
Collapse
Affiliation(s)
- Jingyu Zhang
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Huangdong Li
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Qian Deng
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
- Zhejiang Provincal People's Hospital Bijie Hospital, Bijie, 551700, Guizhou, China
| | - Amy Michelle Huang
- Department of Ophthalmology, University of Colorado, Aurora, CO, 80045, USA
| | - Wangjian Qiu
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
- Department of Ophthalmology, Shenzhen Songgang District People's Hospital, Shenzhen, 518105, China
| | - Li Wang
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Zheng Xiang
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Ruiming Yang
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Jiamian Liang
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Zhiping Liu
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| |
Collapse
|
3
|
Fan L, Li L, Zhao Y, Zhao Y, Wang F, Wang Q, Ma Z, He S, Qiu J, Zhang J, Li J, Chang Z, Zhang Y. Antagonizing Effects of Chromium Against Iron-Decreased Glucose Uptake by Regulating ROS-Mediated PI3K/Akt/GLUT4 Signaling Pathway in C2C12. Biol Trace Elem Res 2024; 202:701-712. [PMID: 37156991 DOI: 10.1007/s12011-023-03695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
To investigate the effect of chromium and iron on glucose metabolism via the PI3K/Akt/GLUT4 signaling pathway. Skeletal muscle gene microarray data in T2DM (GSE7014) was selected using Gene Expression Omnibus database. Element-gene interaction datasets of chromium and iron were extracted from comparative toxicogenomics database (CTD). Gene ontology (GO)and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using DAVID online tool. Cell viability, insulin-stimulated glucose uptake, intracellular reactive oxygen species (ROS) level, and protein expression level were measured in C2C12 cells. The bioinformatics research indicated that PI3K/Akt signaling pathway participated in the effects of chromium and iron associated with T2DM. Insulin-stimulated glucose uptake level was significantly higher in chromium picolinate (Cr group) and lower in ammonium iron citrate (FA group) than that for the control group (P < 0.05); chromium picolinate + ammonium iron citrate (Cr + FA group) glucose uptake level was higher than that for the FA group (P < 0.05). Intracellular ROS level was significantly higher in the FAC group than that for the control group (P < 0.05), and that for the Cr + FA group was lower than that for the FA group (P < 0.05). p-PI3K/PI3K, p-Akt/Akt, and GLUT4 levels were significantly lower in the FA group than that for the control group (P < 0.05), and the Cr + FA group had higher levels than the FA group (P < 0.05). Chromium might have a protective effect on iron-induced glucose metabolism abnormalities through the ROS-mediated PI3K/Akt/GLUT4 signaling pathway.
Collapse
Affiliation(s)
- Ling Fan
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Liping Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yu Zhao
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yi Zhao
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan, Ningxia, China
| | - Faxuan Wang
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan, Ningxia, China
| | - Qingan Wang
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan, Ningxia, China
| | - Zhanbing Ma
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shulan He
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiangwei Qiu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiaxing Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Juan Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhenqi Chang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuhong Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
4
|
Karam-Palos S, Andrés-Blasco I, Campos-Borges C, Zanón-Moreno V, Gallego-Martínez A, Alegre-Ituarte V, García-Medina JJ, Pastor-Idoate S, Sellés-Navarro I, Vila-Arteaga J, Lleó-Perez AV, Pinazo-Durán MD. Oxidative Stress Mediates Epigenetic Modifications and the Expression of miRNAs and Genes Related to Apoptosis in Diabetic Retinopathy Patients. J Clin Med 2023; 13:74. [PMID: 38202081 PMCID: PMC10780047 DOI: 10.3390/jcm13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Knowledge on the underlying mechanisms and molecular targets for managing the ocular complications of type 2 diabetes mellitus (T2DM) remains incomplete. Diabetic retinopathy (DR) is a major cause of irreversible visual disability worldwide. By using ophthalmological and molecular-genetic approaches, we gathered specific information to build a data network for deciphering the crosslink of oxidative stress (OS) and apoptosis (AP) processes, as well as to identify potential epigenetic modifications related to noncoding RNAs in the eyes of patients with T2DM. A total of 120 participants were recruited, being classified into two groups: individuals with T2MD (T2MDG, n = 67), divided into a group of individuals with (+DR, n = 49) and without (-DR, n = 18) DR, and a control group (CG, n = 53). Analyses of compiled data reflected significantly higher plasma levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) and significantly lower total antioxidant capacity (TAC) in the +DR patients compared with the -DR and the CG groups. Furthermore, the plasma caspase-3 (CAS3), highly involved in apoptosis (AP), showed significantly higher values in the +DR group than in the -DR patients. The microRNAs (miR) hsa-miR 10a-5p and hsa-miR 15b-5p, as well as the genes BCL2L2 and TP53 involved in these pathways, were identified in relation to DR clinical changes. Our data suggest an interaction between OS and the above players in DR pathogenesis. Furthermore, potential miRNA-regulated target genes were identified in relation to DR. In this concern, we may raise new diagnostic and therapeutic challenges that hold the potential to significantly improve managing the diabetic eye.
Collapse
Affiliation(s)
- Sarah Karam-Palos
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (S.K.-P.); (I.A.-B.); (C.C.-B.); (V.A.-I.); (A.V.L.-P.)
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, University of Valencia, 46010 Valencia, Spain
- Department of Ophthalmology, University Hospital “Arnau de Vilanova”, 25196 Valencia, Spain
| | - Irene Andrés-Blasco
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (S.K.-P.); (I.A.-B.); (C.C.-B.); (V.A.-I.); (A.V.L.-P.)
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, University of Valencia, 46010 Valencia, Spain
- Net of Research in Inflammatory Diseases and Immunopathology of Organs and Systems “REI-RICORS” RD, Institute of Health Carlos III, 28029 Madrid, Spain; (J.J.G.-M.); (S.P.-I.); (I.S.-N.)
| | - Cristina Campos-Borges
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (S.K.-P.); (I.A.-B.); (C.C.-B.); (V.A.-I.); (A.V.L.-P.)
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, University of Valencia, 46010 Valencia, Spain
- Institute of Biotechnology, University of Porto, 4169-007 Porto, Portugal
| | - Vicente Zanón-Moreno
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (S.K.-P.); (I.A.-B.); (C.C.-B.); (V.A.-I.); (A.V.L.-P.)
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, University of Valencia, 46010 Valencia, Spain
- Net of Research in Inflammatory Diseases and Immunopathology of Organs and Systems “REI-RICORS” RD, Institute of Health Carlos III, 28029 Madrid, Spain; (J.J.G.-M.); (S.P.-I.); (I.S.-N.)
- Department of Preventive Medicine and Public Health, University of Valencia, 46010 Valencia, Spain
| | - Alex Gallego-Martínez
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (S.K.-P.); (I.A.-B.); (C.C.-B.); (V.A.-I.); (A.V.L.-P.)
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, University of Valencia, 46010 Valencia, Spain
| | - Victor Alegre-Ituarte
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (S.K.-P.); (I.A.-B.); (C.C.-B.); (V.A.-I.); (A.V.L.-P.)
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, University of Valencia, 46010 Valencia, Spain
| | - Jose J. García-Medina
- Net of Research in Inflammatory Diseases and Immunopathology of Organs and Systems “REI-RICORS” RD, Institute of Health Carlos III, 28029 Madrid, Spain; (J.J.G.-M.); (S.P.-I.); (I.S.-N.)
- Department of Ophthalmology, University Hospital “Morales Meseguer”, 30008 Murcia, Spain
- Department of Surgery, Pediatrics, Obstetrics and Ginecology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Salvador Pastor-Idoate
- Net of Research in Inflammatory Diseases and Immunopathology of Organs and Systems “REI-RICORS” RD, Institute of Health Carlos III, 28029 Madrid, Spain; (J.J.G.-M.); (S.P.-I.); (I.S.-N.)
- Institute of Applied Ophthalmobiology “IOBA”, University of Valladolid, 47002 Valladolid, Spain
- Department of Ophthalmology, University Clinic Hospital of Valladolid, 47003 Valladolid, Spain
| | - Inmaculada Sellés-Navarro
- Net of Research in Inflammatory Diseases and Immunopathology of Organs and Systems “REI-RICORS” RD, Institute of Health Carlos III, 28029 Madrid, Spain; (J.J.G.-M.); (S.P.-I.); (I.S.-N.)
- Department of Surgery, Pediatrics, Obstetrics and Ginecology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
- Department of Ophthalmology, University Hospital “Reina Sofia”, 30003 Murcia, Spain
| | - Jorge Vila-Arteaga
- Department of Ophthalmology, University and Polyclinic Hospital “La Fé”, 46026 Valencia, Spain;
- Innova Ocular Vila Clinic, 46004 Valencia, Spain
| | - Antonio V. Lleó-Perez
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (S.K.-P.); (I.A.-B.); (C.C.-B.); (V.A.-I.); (A.V.L.-P.)
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, University of Valencia, 46010 Valencia, Spain
- Department of Ophthalmology, University Hospital “Arnau de Vilanova”, 25196 Valencia, Spain
| | - Maria D. Pinazo-Durán
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (S.K.-P.); (I.A.-B.); (C.C.-B.); (V.A.-I.); (A.V.L.-P.)
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, University of Valencia, 46010 Valencia, Spain
- Net of Research in Inflammatory Diseases and Immunopathology of Organs and Systems “REI-RICORS” RD, Institute of Health Carlos III, 28029 Madrid, Spain; (J.J.G.-M.); (S.P.-I.); (I.S.-N.)
| |
Collapse
|
5
|
Shaukat A, Zaidi A, Anwar H, Kizilbash N. Mechanism of the antidiabetic action of Nigella sativa and Thymoquinone: a review. Front Nutr 2023; 10:1126272. [PMID: 37818339 PMCID: PMC10561288 DOI: 10.3389/fnut.2023.1126272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/27/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Long used in traditional medicine, Nigella sativa (NS; Ranunculaceae) has shown significant efficacy as an adjuvant therapy for diabetes mellitus (DM) management by improving glucose tolerance, decreasing hepatic gluconeogenesis, normalizing blood sugar and lipid imbalance, and stimulating insulin secretion from pancreatic cells. In this review, the pharmacological and pharmacokinetic properties of NS as a herbal diabetes medication are examined in depth, demonstrating how it counteracts oxidative stress and the onset and progression of DM. Methods This literature review drew on databases such as Google Scholar and PubMed and various gray literature sources using search terms like the etiology of diabetes, conventional versus herbal therapy, subclinical pharmacology, pharmacokinetics, physiology, behavior, and clinical outcomes. Results The efficiency and safety of NS in diabetes, notably its thymoquinone (TQ) rich volatile oil, have drawn great attention from researchers in recent years; the specific therapeutic dose has eluded determination so far. TQ has anti-diabetic, anti-inflammatory, antioxidant, and immunomodulatory properties but has not proved druggable. DM's intimate link with oxidative stress, makes NS therapy relevant since it is a potent antioxidant that energizes the cell's endogenous arsenal of antioxidant enzymes. NS attenuates insulin resistance, enhances insulin signaling, suppresses cyclooxygenase-2, upregulates insulin-like growth factor-1, and prevents endothelial dysfunction in DM. Conclusion The interaction of NS with mainstream drugs, gut microbiota, and probiotics opens new possibilities for innovative therapies. Despite its strong potential to treat DM, NS and TQ must be examined in more inclusive clinical studies targeting underrepresented patient populations.
Collapse
Affiliation(s)
- Arslan Shaukat
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College - NIBGE-C, Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences - PIEAS, Nilore, Islamabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Nadeem Kizilbash
- Department Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
6
|
Li Y, Baccouche B, Del-Risco N, Park J, Song A, McAnany JJ, Kazlauskas A. The Slow Progression of Diabetic Retinopathy Is Associated with Transient Protection of Retinal Vessels from Death. Int J Mol Sci 2023; 24:10869. [PMID: 37446043 PMCID: PMC10341443 DOI: 10.3390/ijms241310869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The purpose of this study was to investigate the reason that diabetic retinopathy (DR) is delayed from the onset of diabetes (DM) in diabetic mice. To this end, we tested the hypothesis that the deleterious effects of DM are initially tolerated because endogenous antioxidative defense is elevated and thereby confers resistance to oxidative stress-induced death. We found that this was indeed the case in both type 1 DM (T1D) and type 2 DM (T2D) mouse models. The retinal expression of antioxidant defense genes was increased soon after the onset of DM. In addition, ischemia/oxidative stress caused less death in the retinal vasculature of DM versus non-DM mice. Further investigation with T1D mice revealed that protection was transient; it waned as the duration of DM was prolonged. Finally, a loss of protection was associated with the manifestation of both neural and vascular abnormalities that are diagnostic of DR in mice. These observations demonstrate that DM can transiently activate protection from oxidative stress, which is a plausible explanation for the delay in the development of DR from the onset of DM.
Collapse
Affiliation(s)
- Yanliang Li
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.L.); (B.B.); (N.D.-R.); (J.P.); (A.S.); (J.J.M.)
| | - Basma Baccouche
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.L.); (B.B.); (N.D.-R.); (J.P.); (A.S.); (J.J.M.)
| | - Norma Del-Risco
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.L.); (B.B.); (N.D.-R.); (J.P.); (A.S.); (J.J.M.)
| | - Jason Park
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.L.); (B.B.); (N.D.-R.); (J.P.); (A.S.); (J.J.M.)
| | - Amy Song
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.L.); (B.B.); (N.D.-R.); (J.P.); (A.S.); (J.J.M.)
| | - J. Jason McAnany
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.L.); (B.B.); (N.D.-R.); (J.P.); (A.S.); (J.J.M.)
| | - Andrius Kazlauskas
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.L.); (B.B.); (N.D.-R.); (J.P.); (A.S.); (J.J.M.)
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Jiang F, Zhou L, Zhang C, Jiang H, Xu Z. Malondialdehyde levels in diabetic retinopathy patients: a systematic review and meta-analysis. Chin Med J (Engl) 2023; 136:1311-1321. [PMID: 37101358 PMCID: PMC10309507 DOI: 10.1097/cm9.0000000000002620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND It remains unclear whether circulating malondialdehyde (MDA) levels change in people with diabetic retinopathy (DR). This systematic review compared circulating MDA levels in diabetic people with and without DR. METHODS PubMed, Medline (Ovid), Embase (Ovid), and Web of Science were searched for case-control studies conducted before May 2022 in English that compared circulating MDA levels in people with and without DR. The following MeSH search terms were used: ("malondialdehyde" or "thiobarbituric acid reactive substances [TBARS]" or "lipid peroxidation" or "oxidative stress") and "diabetic retinopathy." Newcastle-Ottawa Quality Assessment Scale was used to evaluate the quality of the included studies. Random-effects pairwise meta-analysis pooled the effect size with standardized mean difference (SMD) and 95% confidence intervals (CIs). RESULTS This meta-analysis included 29 case-control studies with 1680 people with DR and 1799 people with diabetes but not DR. Compared to people without DR, the circulating MDA levels were higher in those with DR (SMD, 0.897; 95% CI, 0.631 to 1.162; P < 0.001). The study did not identify credible subgroup effects or publication bias and the sensitivity analysis confirmed the robustness of the study. CONCLUSIONS Circulating MDA levels are higher in people with DR compared to those without. Future comparative studies that use more specific methods are required to draw firm conclusions. REGISTRATION PROSPERO; https://www.crd.york.ac.uk/PROSPERO/ ; No. CRD42022352640.
Collapse
Affiliation(s)
- Fanwen Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | | | | | | | | |
Collapse
|
8
|
Andrés-Blasco I, Gallego-Martínez A, Machado X, Cruz-Espinosa J, Di Lauro S, Casaroli-Marano R, Alegre-Ituarte V, Arévalo JF, Pinazo-Durán MD. Oxidative Stress, Inflammatory, Angiogenic, and Apoptotic molecules in Proliferative Diabetic Retinopathy and Diabetic Macular Edema Patients. Int J Mol Sci 2023; 24:ijms24098227. [PMID: 37175931 PMCID: PMC10179600 DOI: 10.3390/ijms24098227] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of this study is to evaluate molecules involved in oxidative stress (OS), inflammation, angiogenesis, and apoptosis, and discern which of these are more likely to be implicated in proliferative diabetic retinopathy (PDR) and diabetic macular edema (DME) by investigating the correlation between them in the plasma (PLS) and vitreous body (VIT), as well as examining data obtained from ophthalmological examinations. Type 2 diabetic (T2DM) patients with PDR/DME (PDRG/DMEG; n = 112) and non-DM subjects as the surrogate controls (SCG n = 48) were selected according to the inclusion/exclusion criteria and programming for vitrectomy, either due to having PDR/DME or macular hole (MH)/epiretinal membrane (ERM)/rhegmatogenous retinal detachment. Blood samples were collected and processed to determine the glycemic profile, total cholesterol, and C reactive protein, as well as the malondialdehyde (MDA), 4-hydroxynonenal (4HNE), superoxide dismutase (SOD), and catalase (CAT) levels and total antioxidant capacity (TAC). In addition, interleukin 6 (IL6), vascular endothelial growth factor (VEGF), and caspase 3 (CAS3) were assayed. The VITs were collected and processed to measure the expression levels of all the abovementioned molecules. Statistical analyses were conducted using the R Core Team (2022) program, including group comparisons and correlation analyses. Compared with the SCG, our findings support the presence of molecules involved in OS, inflammation, angiogenesis, and apoptosis in the PLS and VIT samples from T2DM. In PLS from PDRG, there was a decrease in the antioxidant load (p < 0.001) and an increase in pro-angiogenic molecules (p < 0.001), but an increase in pro-oxidants (p < 0.001) and a decline in antioxidants (p < 0.001) intravitreally. In PLS from DMEG, pro-oxidants and pro-inflammatory molecules were augmented (p < 0.001) and the antioxidant capacity diminished (p < 0.001), but the pro-oxidants increased (p < 0.001) and antioxidants decreased (p < 0.001) intravitreally. Furthermore, we found a positive correlation between the PLS-CAT and the VIT-SOD levels (rho = 0.5; p < 0.01) in PDRG, and a negative correlation between the PSD-4HNE and the VIT-TAC levels (rho = 0.5; p < 0.01) in DMEG. Integrative data of retinal imaging variables showed a positive correlation between the central subfield foveal thickness (CSFT) and the VIT-SOD levels (rho = 0.5; p < 0.01), and a negative correlation between the CSFT and the VIT-4HNE levels (rho = 0.4; p < 0.01) in PDRG. In DMEG, the CSFT displayed a negative correlation with the VIT-CAT (rho = 0.5; p < 0.01). Exploring the relationship of the abovementioned potential biomarkers between PLS and VIT may help detecting early molecular changes in PDR/DME, which can be used to identify patients at high risk of progression, as well as to monitor therapeutic outcomes in the diabetic retina.
Collapse
Affiliation(s)
- Irene Andrés-Blasco
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, 46017 Valencia, Spain
- Spanish Net of Inflammatory Diseases and Immunopathology of Organs and Systems (REI/RICORS), Institute of Health Carlos III, Ministry of Science and Innovation, 28029 Madrid, Spain
| | - Alex Gallego-Martínez
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, 46017 Valencia, Spain
| | - Ximena Machado
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, 46017 Valencia, Spain
| | | | - Salvatore Di Lauro
- Department of Ophthalmology, University Clinic Hospital, 47003 Valladolid, Spain
| | - Ricardo Casaroli-Marano
- Spanish Net of Inflammatory Diseases and Immunopathology of Organs and Systems (REI/RICORS), Institute of Health Carlos III, Ministry of Science and Innovation, 28029 Madrid, Spain
- Spanish Net of Ophthalmic Pathology Research OFTARED, Institute of Health Carlos III, Ministry of Science and Innovation, 28029 Madrid, Spain
- Department of Ophthalmology, Clinic Hospital, 08036 Barcelona, Spain
| | - Víctor Alegre-Ituarte
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, 46017 Valencia, Spain
- Department of Ophthalmology, University Hospital Dr. Peset, 46017 Valencia, Spain
| | - José Fernando Arévalo
- Spanish Net of Inflammatory Diseases and Immunopathology of Organs and Systems (REI/RICORS), Institute of Health Carlos III, Ministry of Science and Innovation, 28029 Madrid, Spain
- Wilmer at Johns Hopkins Bayview Medical Center, Baltimore, MA 21224, USA
| | - María Dolores Pinazo-Durán
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, 46017 Valencia, Spain
- Spanish Net of Inflammatory Diseases and Immunopathology of Organs and Systems (REI/RICORS), Institute of Health Carlos III, Ministry of Science and Innovation, 28029 Madrid, Spain
- Spanish Net of Ophthalmic Pathology Research OFTARED, Institute of Health Carlos III, Ministry of Science and Innovation, 28029 Madrid, Spain
| |
Collapse
|
9
|
Georgiou M, Prokopiou E. Diabetic retinopathy and the role of Omega-3 PUFAs: A narrative review. Exp Eye Res 2023; 231:109494. [PMID: 37149278 DOI: 10.1016/j.exer.2023.109494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/07/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Diabetes mellitus has been a major cause of concern for the past few decades. As the number of diabetic patients increases, so too does the occurrence of its complications. Diabetic retinopathy (DR) is one of these and constitutes the most common cause of blindness amongst working-age individuals. Chronic exposure to a hyperglycaemic environment remains the driving force of a cascade of molecular events that disrupt the microvasculature of the retina and if left untreated can lead to blindness. In this review, we identify oxidative stress as a major implication in the pathway to the development of DR and speculate that it plays a central role especially in the early stages of the disease. Cells lose their antioxidant capacity under a hyperglycaemic state, free radicals are formed and eventually apoptosis ensues. The polyol pathway; advanced glycation end-product formation; the protein kinase C pathway, and the hexosamine pathway are found to contribute to the increase in oxidative stress observed in diabetic patients. We also investigate the use of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in DR. These molecules possess antioxidant and anti-inflammatory properties and have been previously investigated for use in other ocular pathologies with promising results. In this review we present the latest findings in pre-clinical and clinical studies for the use of ω-3 PUFAs in DR. We hypothesise that ω-3 PUFAs could be beneficial for DR in ways of reducing the oxidative stress and limiting the progression of the disease that threatens the eyesight of the patient, in conjunction with conventional therapy.
Collapse
Affiliation(s)
- Maria Georgiou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2414, Nicosia, Cyprus
| | - Ekatherine Prokopiou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2414, Nicosia, Cyprus; Ophthalmos Research and Educational Institute, 2417, Nicosia, Cyprus.
| |
Collapse
|
10
|
Trimethylamine-N-Oxide Promotes High-Glucose-Induced Dysfunction and NLRP3 Inflammasome Activation in Retinal Microvascular Endothelial Cells. J Ophthalmol 2023; 2023:8224752. [PMID: 36895266 PMCID: PMC9991475 DOI: 10.1155/2023/8224752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Along with blood glucose levels, diabetic retinopathy (DR) development also involves endogenous risk factors, such as trimethylamine-N-oxide (TMAO), a product of intestinal flora metabolic disorder, which exacerbates diabetic microvascular complications. However, the effect of TMAO on retinal cells under high-glucose conditions remains unclear. Therefore, this study examined the effects of TMAO on high-glucose-induced retinal dysfunction in the context of NLRP3 inflammasome activation, which is involved in DR. Materials and Methods TMAO was assessed in the serum and aqueous humor of patients using ELISA. Human retinal microvascular endothelial cells (HRMECs) were treated for 72 h as follows: NG (normal glucose, D-glucose 5.5 mM), NG + TMAO (5 μM), HG (high glucose, D-glucose 30 mM), and HG + TMAO (5 μM). The CCK8 assay was then used to assess cell proliferation; wound healing, cell migration, and tube formation assays were used to verify changes in cell phenotype. ZO-1 expression was determined using immunofluorescence and western blotting. Reactive oxygen species (ROS) formation was assessed using DCFH-DA. NLRP3 inflammasome complex activation was determined using a western blot. Results The serum and aqueous humor from patients with PDR contained higher levels of TMAO compared to patients with nontype 2 diabetes (Control), non-DR (NDR), and non-PDR (NPDR). TMAO showed significant acceleration of high-glucose-induced cell proliferation, wound healing, cell migration, and tube formation. ZO-1 expression decreased remarkably with the combined action of TMAO and a high glucose compared to either treatment alone. TMAO also promoted high-glucose-activated NLRP3 inflammasome complex. Conclusion The combination of TMAO and high-glucose results in increased levels of ROS and NLRP3 inflammasome complex activation in HRMECs, leading to exacerbated retinal dysfunction and barrier failure. Thus, TMAO can accelerate PDR occurrence and development, thus indicating the need for early fundus monitoring in diabetic patients with intestinal flora disorders.
Collapse
|
11
|
Discovery of Therapeutic Candidates for Diabetic Retinopathy Based on Molecular Switch Analysis: Application of a Systematic Process. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3412032. [PMID: 35035658 PMCID: PMC8758313 DOI: 10.1155/2022/3412032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
The pathogenesis of diabetic retinopathy (DR) is complicated, and there is no effective drug. Oxidative stress-induced human retinal microvascular endothelial cells (HRMECs) injury is one of the pathogenic factors for DR. Molecular switches are considered high-risk targets in disease progression. Identification of molecular switch is crucial to interpret the pathogenesis of disease and screen effective ingredients. In this study, a systematic process was executed to discover therapeutic candidates for DR based on HRMECs injury. First of all, the molecular mechanism of HRMECs oxidative stress injury was revealed by transcriptomics and network pharmacology. We found that oxidative stress was one of the pivotal pathogenic factors, which interfered with vascular system development, inflammation, cell adhesion, and cytoskeleton damaged HRMECs through crosstalk. Then, network topology analysis was used to recognize molecular switches. The results indicated that the Keap1-Nrf2-ARE signaling pathway was the molecular switch in HRMECs oxidative stress injury. On this basis, the HEK293-ARE overexpression cell line was applied to obtain 18 active traditional Chinese medicine (TCM) ingredients. Furthermore, andrographolide, one of the 18 candidates, was applied in the HRMECs oxidative stress model to evaluate the accuracy of the systematic process. The efficacy evaluation results showed that andrographolide could regulate oxidative stress, vascular system development, inflammation, adhesion, and skeleton tissue to inhibit HRMECs injury cooperatively. And its mechanism was related to the Nrf2 signaling pathway. Overall, our data suggest that the Nrf2 signaling pathway is the molecular switch in the HRMECs oxidative stress injury. 18 potential Nrf2 agonists are likely to be promising DR candidates.
Collapse
|
12
|
Understanding Neurodegeneration from a Clinical and Therapeutic Perspective in Early Diabetic Retinopathy. Nutrients 2022; 14:nu14040792. [PMID: 35215442 PMCID: PMC8877033 DOI: 10.3390/nu14040792] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
Recent evidence indicates that neurodegeneration is a critical element of diabetic retinopathy (DR) pathogenesis. The neuronal cells’ apoptosis contributes to microvascular impairment and blood–retinal barrier breakdown. Therefore, neurodegeneration represents an early intervention target to slow and prevent the development of microvascular alterations visible on clinical examination. Multimodal imaging features and functional assessment can permit the identification of neuronal damage in a subclinical stage before the recognition of DR signs. Clinical features of neurodegeneration are crucial in identifying patients at high risk of developing a vascular impairment and, thus, serve as outcome measures to understand the efficacy of supplementation. The optimal approach for targeting neurodegeneration contemplates the use of topical compounds that possibly act on different elements of the pathogenic cascade. To date, clinical trials available on humans tested three different topical agents, including brimonidine, somatostatin, and citicoline, with promising results.
Collapse
|
13
|
Dammak A, Huete-Toral F, Carpena-Torres C, Martin-Gil A, Pastrana C, Carracedo G. From Oxidative Stress to Inflammation in the Posterior Ocular Diseases: Diagnosis and Treatment. Pharmaceutics 2021; 13:1376. [PMID: 34575451 PMCID: PMC8467715 DOI: 10.3390/pharmaceutics13091376] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Most irreversible blindness observed with glaucoma and retina-related ocular diseases, including age-related macular degeneration and diabetic retinopathy, have their origin in the posterior segment of the eye, making their physiopathology both complex and interconnected. In addition to the age factor, these diseases share the same mechanism disorder based essentially on oxidative stress. In this context, the imbalance between the production of reactive oxygen species (ROS) mainly by mitochondria and their elimination by protective mechanisms leads to chronic inflammation. Oxidative stress and inflammation share a close pathophysiological process, appearing simultaneously and suggesting a relationship between both mechanisms. The biochemical end point of these two biological alarming systems is the release of different biomarkers that can be used in the diagnosis. Furthermore, oxidative stress, initiating in the vulnerable tissue of the posterior segment, is closely related to mitochondrial dysfunction, apoptosis, autophagy dysfunction, and inflammation, which are involved in each disease progression. In this review, we have analyzed (1) the oxidative stress and inflammatory processes in the back of the eye, (2) the importance of biomarkers, detected in systemic or ocular fluids, for the diagnosis of eye diseases based on recent studies, and (3) the treatment of posterior ocular diseases, based on long-term clinical studies.
Collapse
Affiliation(s)
- Azza Dammak
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
| | - Fernando Huete-Toral
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
| | - Carlos Carpena-Torres
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
| | - Alba Martin-Gil
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
| | - Cristina Pastrana
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
| | - Gonzalo Carracedo
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
- Department of Optometry and Vsiion, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain
| |
Collapse
|
14
|
Valero-Vello M, Peris-Martínez C, García-Medina JJ, Sanz-González SM, Ramírez AI, Fernández-Albarral JA, Galarreta-Mira D, Zanón-Moreno V, Casaroli-Marano RP, Pinazo-Duran MD. Searching for the Antioxidant, Anti-Inflammatory, and Neuroprotective Potential of Natural Food and Nutritional Supplements for Ocular Health in the Mediterranean Population. Foods 2021; 10:1231. [PMID: 34071459 PMCID: PMC8229954 DOI: 10.3390/foods10061231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Adherence to a healthy diet offers a valuable intervention to compete against the increasing cases of ocular diseases worldwide, such as dry eye disorders, myopia progression, cataracts, glaucoma, diabetic retinopathy, or age macular degeneration. Certain amounts of micronutrients must be daily provided for proper functioning of the visual system, such as vitamins, carotenoids, trace metals and omega-3 fatty acids. Among natural foods, the following have to be considered for boosting eye/vision health: fish, meat, eggs, nuts, legumes, citrus fruits, nuts, leafy green vegetables, orange-colored fruits/vegetables, olives-olive oil, and dairy products. Nutritional supplements have received much attention as potential tools for managing chronic-degenerative ocular diseases. A systematic search of PubMed, Web of Science, hand-searched publications and historical archives were performed by the professionals involved in this study, to include peer-reviewed articles in which natural food, nutrient content, and its potential relationship with ocular health. Five ophthalmologists and two researchers collected the characteristics, quality and suitability of the above studies. Finally, 177 publications from 1983 to 2021 were enclosed, mainly related to natural food, Mediterranean diet (MedDiet) and nutraceutic supplementation. For the first time, original studies with broccoli and tigernut (chufa de Valencia) regarding the ocular surface dysfunction, macular degeneration, diabetic retinopathy and glaucoma were enclosed. These can add value to the diet, counteract nutritional defects, and help in the early stages, as well as in the course of ophthalmic pathologies. The main purpose of this review, enclosed in the Special Issue "Health Benefits and Nutritional Quality of Fruits, Nuts and Vegetables," is to identify directions for further research on the role of diet and nutrition in the eyes and vision, and the potential antioxidant, anti-inflammatory and neuroprotective effects of natural food (broccoli, saffron, tigernuts and walnuts), the Mediterranean Diet, and nutraceutic supplements that may supply a promising and highly affordable scenario for patients at risk of vision loss. This review work was designed and carried out by a multidisciplinary group involved in ophthalmology and ophthalmic research and especially in nutritional ophthalmology.
Collapse
Affiliation(s)
- Mar Valero-Vello
- Ophthalmic Research Unit “Santiago Grisolía” Foundation for the Promotion of Health and Biomedical Research of Valencia FISABIO, 46017 Valencia, Spain; (M.V.-V.); (J.J.G.-M.); (S.M.S.-G.); (M.D.P.-D.)
| | - Cristina Peris-Martínez
- Ophthalmic Medical Center (FOM), Foundation for the Promotion of Health and Biomedical Research of Valencia (FISABIO), 46015 Valencia, Spain;
- Department of Surgery, University of Valencia, 46019 Valencia, Spain
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
| | - José J. García-Medina
- Ophthalmic Research Unit “Santiago Grisolía” Foundation for the Promotion of Health and Biomedical Research of Valencia FISABIO, 46017 Valencia, Spain; (M.V.-V.); (J.J.G.-M.); (S.M.S.-G.); (M.D.P.-D.)
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Department of Ophthalmology, General University Hospital “Morales Meseguer”, 30007 Murcia, Spain
- Department of Ophthalmology and Optometry, University of Murcia, 30120 Murcia, Spain
| | - Silvia M. Sanz-González
- Ophthalmic Research Unit “Santiago Grisolía” Foundation for the Promotion of Health and Biomedical Research of Valencia FISABIO, 46017 Valencia, Spain; (M.V.-V.); (J.J.G.-M.); (S.M.S.-G.); (M.D.P.-D.)
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Cellular and Molecular Ophthalmobiology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Ana I. Ramírez
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Department of Immunology, Ophthalmology and Otorrinolaringology, Institute of Ophthalmic Research “Ramón Castroviejo”, Complutense University of Madrid, 28040 Madrid, Spain;
| | - José A. Fernández-Albarral
- Department of Immunology, Ophthalmology and Otorrinolaringology, Institute of Ophthalmic Research “Ramón Castroviejo”, Complutense University of Madrid, 28040 Madrid, Spain;
| | - David Galarreta-Mira
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Department of Ophthalmology. University Clinic Hospital of Valladolid, 47003 Valladolid, Spain
| | - Vicente Zanón-Moreno
- Ophthalmic Research Unit “Santiago Grisolía” Foundation for the Promotion of Health and Biomedical Research of Valencia FISABIO, 46017 Valencia, Spain; (M.V.-V.); (J.J.G.-M.); (S.M.S.-G.); (M.D.P.-D.)
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Faculty of Health Sciences, International University of Valencia, 46002 Valencia, Spain
| | - Ricardo P. Casaroli-Marano
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Departament of Surgery, School of Medicine and Health Sciences, Clinic Hospital of Barcelona, Universitat de Barcelona, 08036 Barcelona, Spain
| | - María D. Pinazo-Duran
- Ophthalmic Research Unit “Santiago Grisolía” Foundation for the Promotion of Health and Biomedical Research of Valencia FISABIO, 46017 Valencia, Spain; (M.V.-V.); (J.J.G.-M.); (S.M.S.-G.); (M.D.P.-D.)
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Cellular and Molecular Ophthalmobiology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
15
|
Pinazo-Durán MD, García-Medina JJ, Sanz-González SM, O’Connor JE, Casaroli-Marano RP, Valero-Velló M, López-Gálvez M, Peris-Martínez C, Zanón-Moreno V, Diaz-Llopis M. Signature of Circulating Biomarkers in Recurrent Non-Infectious Anterior Uveitis. Immunomodulatory Effects of DHA-Triglyceride. A Pilot Study. Diagnostics (Basel) 2021; 11:724. [PMID: 33921773 PMCID: PMC8072877 DOI: 10.3390/diagnostics11040724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to identify circulating biomarkers of recurrent non-infectious anterior uveitis (NIAU), and to address the anti-inflammatory effects of triglyceride containing docosahexaenoic acid (DHA-TG). A prospective multicenter study was conducted in 72 participants distributed into: patients diagnosed with recurrent NIAU in the quiescence stage (uveitis group (UG); n = 36) and healthy controls (control group (CG); n = 36). Each group was randomly assigned to the oral supplementation of one pill/day (+) containing DHA-TG (n = 18) or no-pill condition (-) (n = 17) for three consecutive months. Data from demographics, risk factors, comorbidities, eye complications and therapy were recorded. Blood was collected and processed to determine pro-inflammatory biomarkers by bead-base multiplex assay. Statistical processing with multivariate statistical analysis was performed. The mean age was 50, 12 (10, 31) years. The distribution by gender was 45% males and 55% females. The mean number of uveitis episodes was 5 (2). Higher plasma expression of interleukin (IL)-6 was detected in the UG versus the CG (p = 5 × 10-5). Likewise, significantly higher plasma levels were seen for IL-1β, IL-2, INFγ (p = 10-4), and TNFα (p = 2 × 10-4) in the UG versus the CG. Significantly lower values of the above molecules were found in the +DHA-TG than in the -DHA-TG subgroups, after 3 months of follow-up, TNFα (p = 10-7) and IL-6 (p = 3 × 10-6) being those that most significantly changed. Signatures of circulating inflammatory mediators were obtained in the quiescent stage of recurrent NIAU patients. This 3-month follow-up strongly reinforces that a regular oral administration of DHA-TG reduces the inflammatory load and may potentially supply a prophylaxis-adjunctive mediator for patients at risk of uveitis vision loss.
Collapse
Affiliation(s)
- Maria D. Pinazo-Durán
- Ophthalmic Research Unit “Santiago Grisolía”, Fundación Investigación Sanitaria y Biomédica (FISABIO), Ave. Gaspar Aguilar 90, 46017 Valencia, Spain; (M.D.P.-D.); (J.J.G.-M.); (M.V.-V.)
- Research Group in Cellular and Molecular Ophthalmo-Biology, Department of Surgery, University of Valencia, Ave. Blasco Ibañez 15, 46010 Valencia, Spain;
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (R.P.C.-M.); (M.L.-G.); (C.P.-M.); (V.Z.-M.)
| | - Jose J. García-Medina
- Ophthalmic Research Unit “Santiago Grisolía”, Fundación Investigación Sanitaria y Biomédica (FISABIO), Ave. Gaspar Aguilar 90, 46017 Valencia, Spain; (M.D.P.-D.); (J.J.G.-M.); (M.V.-V.)
- Research Group in Cellular and Molecular Ophthalmo-Biology, Department of Surgery, University of Valencia, Ave. Blasco Ibañez 15, 46010 Valencia, Spain;
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (R.P.C.-M.); (M.L.-G.); (C.P.-M.); (V.Z.-M.)
- Department of Ophthalmology, General University Hospital “Morales Meseguer”, Ave. Marqués de los Vélez, s/n, 30008 Murcia, Spain
- Department of Ophthalmology and Optometry, University of Murcia, Edificio LAIB Planta 5ª, Carretera Buenavista s/n, 30120 El Palmar Murcia, Spain
| | - Silvia M. Sanz-González
- Ophthalmic Research Unit “Santiago Grisolía”, Fundación Investigación Sanitaria y Biomédica (FISABIO), Ave. Gaspar Aguilar 90, 46017 Valencia, Spain; (M.D.P.-D.); (J.J.G.-M.); (M.V.-V.)
- Research Group in Cellular and Molecular Ophthalmo-Biology, Department of Surgery, University of Valencia, Ave. Blasco Ibañez 15, 46010 Valencia, Spain;
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (R.P.C.-M.); (M.L.-G.); (C.P.-M.); (V.Z.-M.)
| | - Jose E. O’Connor
- Laboratory of Cytomics, Joint Research Unit Principe Felipe Research Center and University of Valencia, 46010 Valencia, Spain;
| | - Ricardo P. Casaroli-Marano
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (R.P.C.-M.); (M.L.-G.); (C.P.-M.); (V.Z.-M.)
- Department of Surgery, School of Medicine and Hospital Clinic de Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Mar Valero-Velló
- Ophthalmic Research Unit “Santiago Grisolía”, Fundación Investigación Sanitaria y Biomédica (FISABIO), Ave. Gaspar Aguilar 90, 46017 Valencia, Spain; (M.D.P.-D.); (J.J.G.-M.); (M.V.-V.)
- Research Group in Cellular and Molecular Ophthalmo-Biology, Department of Surgery, University of Valencia, Ave. Blasco Ibañez 15, 46010 Valencia, Spain;
| | - Maribel López-Gálvez
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (R.P.C.-M.); (M.L.-G.); (C.P.-M.); (V.Z.-M.)
- Department of Ophthalmology, University Clinic Hospital of Valladolid, 47003 Valladolid, Spain
| | - Cristina Peris-Martínez
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (R.P.C.-M.); (M.L.-G.); (C.P.-M.); (V.Z.-M.)
- Ophthalmic Medical Center (FOM), Foundation for the Promotion of Health and Biomedical Research of Valencia (FISABIO), 46015 Valencia, Spain
| | - Vicente Zanón-Moreno
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (R.P.C.-M.); (M.L.-G.); (C.P.-M.); (V.Z.-M.)
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
| | - Manuel Diaz-Llopis
- Research Group in Cellular and Molecular Ophthalmo-Biology, Department of Surgery, University of Valencia, Ave. Blasco Ibañez 15, 46010 Valencia, Spain;
| |
Collapse
|
16
|
Role of Oral Antioxidant Supplementation in the Current Management of Diabetic Retinopathy. Int J Mol Sci 2021; 22:ijms22084020. [PMID: 33924714 PMCID: PMC8069935 DOI: 10.3390/ijms22084020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress has been postulated as an underlying pathophysiologic mechanism of diabetic retinopathy (DR), the main cause of avoidable blindness in working-aged people. This review addressed the current daily clinical practice of DR and the role of antioxidants in this practice. A systematic review of the studies on antioxidant supplementation in DR patients was presented. Fifteen studies accomplished the inclusion criteria. The analysis of these studies concluded that antioxidant supplementation has a IIB level of recommendation in adult Type 1 and Type 2 diabetes mellitus subjects without retinopathy or mild-to-moderate nonproliferative DR without diabetic macular oedema as a complementary therapy together with standard medical care.
Collapse
|