1
|
Biernacki M, Skrzydlewska E. Metabolic pathways of eicosanoids-derivatives of arachidonic acid and their significance in skin. Cell Mol Biol Lett 2025; 30:7. [PMID: 39825220 PMCID: PMC11742234 DOI: 10.1186/s11658-025-00685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
The skin is a barrier that protects the human body against environmental factors (physical, including solar radiation, chemicals, and pathogens). The integrity and, consequently, the effective metabolic activity of skin cells is ensured by the cell membrane, the important structural and metabolic elements of which are phospholipids. Phospholipids are subject to continuous transformation, including enzymatic hydrolysis (with the participation of phospholipases A, C, and D) to free polyunsaturated fatty acids (PUFAs), which under the influence of cyclooxygenases (COX1/2), lipoxygenases (LOXs), and cytochrome P450 (CYPs P450) are metabolized to various classes of oxylipins, depending on the type of PUFA being metabolized and the enzyme acting. The most frequently analyzed oxylipins, especially in skin cells, are eicosanoids, which are derivatives of arachidonic acid (AA). Their level depends on both environmental factors and endogenous metabolic disorders. However, they play an important role in homeostasis mechanisms related to the structural and functional integrity of the skin, including maintaining redox balance, as well as regulating inflammatory processes arising in response to endogenous and exogenous factors reaching skin cells. Therefore, it is believed that dysregulation of eicosanoid levels may contribute to the development of skin diseases, such as psoriasis or atopic dermatitis, which in turn suggests that targeted control of the generation of specific eicosanoids may have diagnostic significance and beneficial therapeutic effects. This review is the first systemic and very detailed approach presenting both the causes and consequences of changes in phospholipid metabolism leading to the generation of eicosanoids, changes in the level of which result in specific metabolic disorders in skin cells leading to the development of various diseases. At the same time, existing literature data indicate that further detailed research is necessary to understand a clear relationship between changes in the level of specific eicosanoids and the pathomechanisms of specific skin diseases, as well as to develop an effective diagnostic and therapeutic approach.
Collapse
Affiliation(s)
- Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069, Bialystok, Poland.
| |
Collapse
|
2
|
Nie CZ, Wang L, Tian HH, Huang XH, Qin L. The flavor enhancement mechanism of ultrasound-assisted curing and UV-assisted drying in semi-dried tilapia fillets based on flavoromics, lipidomics, and metabolomics. Food Chem 2025; 463:141386. [PMID: 39332368 DOI: 10.1016/j.foodchem.2024.141386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
This study aimed to investigate the effects of ultrasound-assisted curing and UV-assisted drying on the quality of semi-dried tilapia fillets through flavoromics, lipidomics, and metabolomics. Both treatments enhanced myofibril pore space and reduced moisture content (-14.84 %, P < 0.05), with ultrasound demonstrating greater effectiveness. Additionally, they also facilitated lipid oxidation (P < 0.05), which altered the flavor profile. UV treatment enhancing key aroma compounds (ROAV >1), especially octanal, 1-octen-3-one, ethyl-isovalerate, and 2-pentyl-furan, more effectively than ultrasound (P < 0.05). 420 lipid molecules and 213 metabolites were identified, including 162 differential lipids and 69 differential metabolites (VIP > 1). Correlation analysis indicated that triglycerides, fatty acids, organic acids, and nucleosides were key precursors of flavor. The sensory evaluation demonstrated that ultrasound and UV treatments synergistically enhanced fillet quality. This study introduces an innovative processing method aimed at the industrialized and efficient production of high-quality air-dried aquatic products.
Collapse
Affiliation(s)
- Cheng-Zhen Nie
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Liang Wang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - He-He Tian
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xu-Hui Huang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Lei Qin
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
McCormick E, Han H, Abdel Azim S, Whiting C, Bhamidipati N, Kiss A, Efimova T, Berman B, Friedman A. Topical nanoencapsulated cannabidiol cream as an innovative strategy combating UV-A-induced nuclear and mitochondrial DNA injury: A pilot randomized clinical study. J Am Acad Dermatol 2024; 91:855-862. [PMID: 39025264 DOI: 10.1016/j.jaad.2024.06.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 06/22/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND UV-A radiation contributes to photoaging/photocarcinogenesis by generating inflammation and oxidative damage. Current photoprotective strategies are limited by the availability/utilization of UV-A filters, highlighting an unmet need. Cannabidiol (CBD), having anti-inflammatory/antioxidant properties via regulation of nuclear erythroid 2-related factor, heme oxygenase 1, and peroxisome proliferator-activated receptor gamma, could potentially mitigate damage from UV-A exposure. OBJECTIVE/METHODS This is a prospective, single-center, pilot clinical trial (NCT05279495). Nineteen participants applied nano-CBD (nCBD) or vehicle (VC) cream to randomized, blinded buttock sites twice daily for 14 days; then, the treated sites were irradiated with ≤3× UV-A minimal erythema dose. After 24 hours, punch biopsies were obtained for histology, immunohistochemistry, and real-time polymerase chain reaction. RESULTS At 24 hours, 21% of participants had less observed erythema on CBD-treated skin than on VC skin. Histologically, nCBD-treated skin had reduced UV-A-induced epidermal hyperplasia than VC (P = .01). Immunohistochemistry detected reduced cytoplasmic/nuclear 8-oxoguanine glycosylase 1 staining in nCBD-treated skin compared with VC (P < .01). Quantitative mtDNA polymerase chain reaction demonstrated that UV-A-induced deletion of ND4 (proxy:4977 bp deletion; P = .003) and ND1 (proxy:3895 bp deletion; P = .002) was significantly reduced by in vivo nCBD treatment compared with VC. LIMITATIONS Small sample size is this study's limitation. CONCLUSION Topically applied nCBD cream reduced UV-A-induced formation of a frequent mutagenic nuclear DNA base lesion and protected against mtDNA mutations associated with UV-A-induced skin aging. To our knowledge, this trial is the first to identify UV-protective capacity of CBD-containing topicals in humans.
Collapse
Affiliation(s)
- Erika McCormick
- Department of Dermatology, George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia
| | - Haowei Han
- Center for Clinical and Cosmetic Research, Aventura, Florida
| | - Sara Abdel Azim
- Department of Dermatology, George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia
| | - Cleo Whiting
- Department of Dermatology, George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia
| | | | - Alexi Kiss
- George Washington Cancer Center, Washington, District of Columbia
| | - Tatiana Efimova
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois
| | - Brian Berman
- Center for Clinical and Cosmetic Research, Aventura, Florida; Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida.
| | - Adam Friedman
- Department of Dermatology, George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia.
| |
Collapse
|
4
|
Zhang J, Wu F, Wang J, Qin Y, Pan Y. Unveiling the Metabolomic Profile of Oily Sensitive Skin: A Non-Invasive Approach. Int J Mol Sci 2024; 25:11033. [PMID: 39456816 PMCID: PMC11507585 DOI: 10.3390/ijms252011033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Skin barrier impairment is becoming increasingly common due to changes in lifestyle and modern living environments. Oily sensitive skin (OSS) is a condition that is characterized by an impaired skin barrier. Thus, examining the differences between OSS and healthy skin will enable a more objective evaluation of the characteristics of OSS and facilitate investigations of potential treatments. Initially, a self-assessment questionnaire was used to identify patients with OSS. Biophysical measurements and LAST scores were used to determine whether skin barrier function was impaired. Epidermal biophysical properties, including skin hydration, transepidermal water loss (TEWL), sebum content, erythema index (EI), and a* value, were measured with noninvasive instruments. We subsequently devised a noninvasive D-square sampling technique to identify changes in the skin metabolome in conjunction with an untargeted metabolomics analysis with an Orbitrap Q ExactiveTM series mass spectrometer. In the stratum corneum of 47 subjects, 516 skin metabolites were identified. In subjects with OSS, there was an increase in the abundance of 15 metabolites and a decrease in the abundance of 48 metabolites. The participants with OSS were found to have the greatest disruptions in sphingolipid and amino acid metabolism. The results revealed that an impaired skin barrier is present in patients with OSS and offers a molecular target for screening for skin barrier damage.
Collapse
Affiliation(s)
| | | | | | | | - Yao Pan
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (F.W.); (J.W.); (Y.Q.)
| |
Collapse
|
5
|
Buffon AC, Salm DC, Heymanns AC, Donatello NN, Martins DC, Wichmann JF, Giacomello L, Horewicz VV, Martins DF, Piovezan AP. Complex Regional Pain Syndrome Type I: Evidence for the CB1 and CB2 Receptors Immunocontent and Beneficial Effect of Local Administration of Cannabidiol in Mice. Cannabis Cannabinoid Res 2024; 9:1291-1300. [PMID: 37903029 DOI: 10.1089/can.2023.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Introduction: Complex regional pain syndrome type I (CRPS-I) is a debilitating neuropathic painful condition associated with allodynia, hyperalgesia, sudomotor and/or vasomotor dysfunctions, turning investigation of its pathophysiology and new therapeutic strategies into an essential topic. We aim to investigate the impact of ischemia/reperfusion injury on the immunocontent of CB1 and CB2 cannabinoid receptor isoforms in the paws of mice submitted to a chronic postischemia pain (CPIP) model and the effects of local administration of cannabidiol (CBD) on mechanical hyperalgesia. Methods: Female Swiss mice, 30-35 g, were submitted to the CPIP model on the right hind paw. Skin and muscle samples were removed at different periods for western blot analysis. Results: No changes in the immunocontent of CB1 and CB2 receptors in paw muscle tissues after ischemia-reperfusion were observed. CBD promoted an antihyperalgesic effect in both phases. AM281 reversed the effect of CBD, whereas ruthenium red abolished the late phase. Conclusion: Our results point to the possible beneficial effects of local administration of CBD in modulating CRPS-I in humans. As possible targets for CBD antihyperalgesia in this model, the contribution of cannabinoid receptor CB1, in addition to TRPM8 is suggested.
Collapse
Affiliation(s)
- Alexandre C Buffon
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Medicine Degree Course, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Daiana C Salm
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Ana C Heymanns
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Nathalia N Donatello
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Débora C Martins
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Medicine Degree Course, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | | | - Leandro Giacomello
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Verônica V Horewicz
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Daniel F Martins
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Anna P Piovezan
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Medicine Degree Course, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| |
Collapse
|
6
|
Alves-Silva JM, Pedreiro S, Zuzarte M, Cruz MT, Figueirinha A, Salgueiro L. Unlocking the Bioactive Potential and Exploring Novel Applications for Portuguese Endemic Santolina impressa. PLANTS (BASEL, SWITZERLAND) 2024; 13:1943. [PMID: 39065470 PMCID: PMC11280954 DOI: 10.3390/plants13141943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
The infusion of Santolina impressa, an endemic Portuguese plant, is traditionally used to treat various infections and disorders. This study aimed to assess its chemical profile by HPLC-DAD-ESI-MSn and validate its anti-inflammatory potential. In addition, the antioxidant capacity and effects on wound healing, lipogenesis, melanogenesis, and cellular senescence, all processes in which a dysregulated inflammatory response plays a pivotal role, were unveiled. The anti-inflammatory potential was assessed in lipopolysaccharide (LPS)-stimulated macrophages, cell migration was determined using a scratch wound assay, lipogenesis was assessed on T0901317-stimulated keratinocytes and melanogenesis on 3-isobutyl-1-methylxanthine (IBMX)-activated melanocytes. Etoposide was used to induce senescence in fibroblasts. Our results point out a chemical composition predominantly characterized by dicaffeoylquinic acids and low amounts of flavonols. Regarding the infusion's bioactive potential, an anti-inflammatory effect was evident through a decrease in nitric oxide production and inducible nitric oxide synthase and pro-interleukin-1β protein levels. Moreover, a decrease in fibroblast migration was observed, as well as an inhibition in both intracellular lipid accumulation and melanogenesis. Furthermore, the infusion decreased senescence-associated β-galactosidase activity, γH2AX nuclear accumulation and both p53 and p21 protein levels. Overall, this study confirms the traditional uses of S. impressa and ascribes additional properties of interest in the pharmaceutical and dermocosmetics industries.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.)
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
| | - Sónia Pedreiro
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.)
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
| | - Maria Teresa Cruz
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
- Univ Coimbra Center for Neuroscience and Cell Biology (CNC-UC), Faculty of Medicine, Rua Larga, 3004-504 Coimbra, Portugal
| | - Artur Figueirinha
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
- Univ Coimbra, Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| |
Collapse
|
7
|
Jîtcă G, Ősz BE, Vari CE, Rusz CM, Tero-Vescan A, Pușcaș A. Cannabidiol: Bridge between Antioxidant Effect, Cellular Protection, and Cognitive and Physical Performance. Antioxidants (Basel) 2023; 12:antiox12020485. [PMID: 36830042 PMCID: PMC9952814 DOI: 10.3390/antiox12020485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The literature provides scientific evidence for the beneficial effects of cannabidiol (CBD), and these effects extend beyond epilepsy treatment (e.g., Lennox-Gastaut and Dravet syndromes), notably the influence on oxidative status, neurodegeneration, cellular protection, cognitive function, and physical performance. However, products containing CBD are not allowed to be marketed everywhere in the world, which may ultimately have a negative effect on health as a result of the uncontrolled CBD market. After the isolation of CBD follows the discovery of CB1 and CB2 receptors and the main enzymatic components (diacylglycerol lipase (DAG lipase), monoacyl glycerol lipase (MAGL), fatty acid amino hydrolase (FAAH)). At the same time, the antioxidant potential of CBD is due not only to the molecular structure but also to the fact that this compound increases the expression of the main endogenous antioxidant systems, superoxide dismutase (SOD), and glutathione peroxidase (GPx), through the nuclear complex erythroid 2-related factor (Nrf2)/Keep1. Regarding the role in the control of inflammation, this function is exercised by inhibiting (nuclear factor kappa B) NF-κB, and also the genes that encode the expression of molecules with a pro-inflammatory role (cytokines and metalloproteinases). The other effects of CBD on cognitive function and physical performance should not be excluded. In conclusion, the CBD market needs to be regulated more thoroughly, given the previously listed properties, with the mention that the safety profile is a very good one.
Collapse
Affiliation(s)
- George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Bianca E. Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
- Correspondence:
| | - Camil E. Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Carmen-Maria Rusz
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Amalia Pușcaș
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| |
Collapse
|
8
|
Chen X, Su J, Wang R, Hao R, Fu C, Chen J, Li J, Wang X. Structural Optimization of Cannabidiol as Multifunctional Cosmetic Raw Materials. Antioxidants (Basel) 2023; 12:antiox12020314. [PMID: 36829873 PMCID: PMC9952480 DOI: 10.3390/antiox12020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Cannabidiol (CBD), derived from the plant cannabis, can be used in the cosmetics industry for its antioxidant, anti-inflammatory, anti-wrinkle and whitening effects. However, CBD is purified from the hemp plant extract, its source is very limited and under strict control. So in this study, computational and experimental methods were combined to search for novel CBD substitutes with high biology potencies. The action mode between CBD and target protein cannabidiol receptor 1 was studied to find the key skeleton, which was used to virtually screen a natural products database to search for compounds with 70% similarity. The hit compounds with high docking scores were selected for the ABTS and DPPH free radical scavenging experiments for antioxidant evaluation. The effects on the expressions of nitric oxide (NO), interleukin-6 (IL-6), COX-2 and iNOS in RAW264.7 cell line were detected to demonstrate their anti-inflammatory abilities. The effect of anti-wrinkle ability were evaluated by detecting the extracellular matrix, such as collagen, elastin, fibronectin and reactive oxygen species (ROS) in HFF-1. The effects on melanin production and tyrosinase activity in Bb16F10 were also detected. As a result, two compounds were found to be superior to cannabidiol, in terms of antioxidant, anti-wrinkle and whitening efficacy with a lower cytotoxicity.
Collapse
|
9
|
Atalay Ekiner S, Gęgotek A, Skrzydlewska E. The molecular activity of cannabidiol in the regulation of Nrf2 system interacting with NF-κB pathway under oxidative stress. Redox Biol 2022; 57:102489. [PMID: 36198205 PMCID: PMC9535304 DOI: 10.1016/j.redox.2022.102489] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cannabidiol (CBD), the major non-psychoactive phytocannabinoid of Cannabis sativa L., is one of the most studied compounds in pharmacotherapeutic approaches to treat oxidative stress-related diseases such as cardiovascular, metabolic, neurodegenerative, and neoplastic diseases. The literature data to date indicate the possibility of both antioxidant and pro-oxidative effects of CBD. Thus, the mechanism of action of this natural compound in the regulation of nuclear factor 2 associated with erythroid 2 (Nrf2), which plays the role of the main cytoprotective regulator of redox balance and inflammation under oxidative stress conditions, seems to be particularly important. Moreover, Nrf2 is strongly correlated with the cellular neoplastic profile and malignancy, which in turn is critical in determining the cellular response induced by CBD under pathophysiological conditions. This paper summarizes the CBD-mediated pathways of regulation of the Nrf2 system by altering the expression and modification of both proteins directly involved in Nrf2 transcriptional activity and proteins involved in the relationship between Nrf2 and the nuclear factor kappa B (NF-κB) which is another redox-sensitive transcription factor.
Collapse
Affiliation(s)
- Sinemyiz Atalay Ekiner
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| |
Collapse
|
10
|
Ou-Yang XL, Zhang D, Wang XP, Yu SM, Xiao Z, Li W, Li CM. Nontargeted metabolomics to characterize the effects of isotretinoin on skin metabolism in rabbit with acne. Front Pharmacol 2022; 13:963472. [PMID: 36120319 PMCID: PMC9470959 DOI: 10.3389/fphar.2022.963472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Acne vulgaris is a chronic inflammatory disease of the pilosebaceous unit. This study aimed to explore the pathogenesis of acne and the therapeutic mechanism of isotretinoin from the metabolic perspective in coal tar-induced acne in rabbits.Methods: Ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-qTOF-MS) based metabolomics was used to identify skin metabolites in groups C (blank control), M (model group) and T (isotretinoin group). Multivariate statistical analysis was used to process the metabolomics data.Results: 98 differential metabolites in group C and group M were identified. The highest proportion of differential metabolites were organic acids and derivatives, lipid metabolites, organic heterocyclic compounds, and nucleoside metabolites. The most significant metabolic pathways included protein digestion and absorption, central carbon metabolism in cancer, ABC transporters, aminoacyl-tRNA biosynthesis, biosynthesis of amino acids, and sphingolipid signaling pathway. Isotretinoin treatment normalized eight of these metabolites.Conclusions: Our study will help to further elucidate the pathogenesis of acne, the mechanism of isotretinoin at the metabolite level, and identify new therapeutic targets for treating acne.
Collapse
Affiliation(s)
- Xiao-Liang Ou-Yang
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Deng Zhang
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiu-Ping Wang
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Si-Min Yu
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Zhen Xiao
- Department of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Wei Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Chun-Ming Li
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- *Correspondence: Chun-Ming Li,
| |
Collapse
|
11
|
Habibi J, DeMarco VG, Hulse JL, Hayden MR, Whaley-Connell A, Hill MA, Sowers JR, Jia G. Inhibition of sphingomyelinase attenuates diet - Induced increases in aortic stiffness. J Mol Cell Cardiol 2022; 167:32-39. [PMID: 35331697 PMCID: PMC9107502 DOI: 10.1016/j.yjmcc.2022.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
Sphingomyelinases ensure ceramide production and play an integral role in cell turnover, inward budding of vesicles and outward release of exosomes. Recent data indicate a unique role for neutral sphingomyelinase (nSMase) in the control of ceramide-dependent exosome release and inflammatory pathways. Further, while inhibition of nSMase in vascular tissue attenuates the progression of atherosclerosis, little is known regarding its role on metabolic signaling and arterial vasomotor function. Accordingly, we hypothesized that nSMase inhibition with GW4869, would attenuate Western diet (WD) - induced increases in aortic stiffness through alterations in pathways which lead to oxidative stress, inflammation and vascular remodeling. Six week-old female C57BL/6L mice were fed either a WD containing excess fat (46%) and fructose (17.5%) for 16 weeks or a standard chow diet (CD). Mice were variably treated with GW4869 (2.0 μg/g body weight, intraperitoneal injection every 48 h for 12 weeks). WD feeding increased nSMase2 expression and activation while causing aortic stiffening and impaired vasorelaxation as determined by pulse wave velocity (PWV) and wire myography, respectively. Moreover, these functional abnormalities were associated with aortic remodeling and attenuated AMP-activated protein kinase, Sirtuin 1, and endothelial nitric oxide synthase activation. GW4869 treatment prevented the WD-induced increases in nSMase activation, PWV, and impaired endothelium dependent/independent vascular relaxation. GW4869 also inhibited WD-induced aortic CD36 expression, lipid accumulation, oxidative stress, inflammatory responses, as well as aortic remodeling. These findings indicate that targeting nSMase prevents diet - induced aortic stiffening and impaired vascular relaxation by attenuating oxidative stress, inflammation and adverse vascular remodeling.
Collapse
Affiliation(s)
- Javad Habibi
- Department of Medicine - Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65201, USA
| | - Vincent G DeMarco
- Department of Medicine - Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65201, USA; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Jack L Hulse
- Department of Medicine - Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65201, USA
| | - Melvin R Hayden
- Department of Medicine - Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Adam Whaley-Connell
- Department of Medicine - Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA; Department of Medicine - Nephrology and Hypertension, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65201, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - James R Sowers
- Department of Medicine - Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA; Department of Medicine - Nephrology and Hypertension, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65201, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Guanghong Jia
- Department of Medicine - Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65201, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
12
|
Distinct Effects of Cannabidiol on Sphingolipid Metabolism in Subcutaneous and Visceral Adipose Tissues Derived from High-Fat-Diet-Fed Male Wistar Rats. Int J Mol Sci 2022; 23:ijms23105382. [PMID: 35628194 PMCID: PMC9142011 DOI: 10.3390/ijms23105382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Available data suggest that cannabidiol (CBD) may ameliorate symptoms of insulin resistance by modulating the sphingolipid concentrations in particular organs. However, it is not entirely clear whether its beneficial actions also involve adipose tissues in a state of overnutrition. The aim of the study was to evaluate the effect of CBD on sphingolipid metabolism pathways and, as a result, on the development of insulin resistance in subcutaneous (SAT) and visceral (VAT) adipose tissues of an animal model of HFD-induced insulin resistance. Our experiment was performed on Wistar rats that were fed with a high-fat diet and/or received intraperitoneal CBD injections. We showed that CBD significantly lowered the ceramide content in VAT by reducing its de novo synthesis and increasing its catabolism. However, in SAT, CBD decreased the ceramide level through the inhibition of salvage and de novo synthesis pathways. All of these changes restored adipose tissues’ sensitivity to insulin. Our study showed that CBD sensitized adipose tissue to insulin by influencing the metabolism of sphingolipids under the conditions of increased availability of fatty acids in the diet. Therefore, we believe that CBD use may be considered as a potential therapeutic strategy for treating or reducing insulin resistance, T2DM, and metabolic syndrome.
Collapse
|
13
|
Wang Z, Xue Y, Zeng Q, Zhu Z, Wang Y, Wu Y, Shen C, Zhu H, Jiang C, Liu L, Liu Q. Glycyrrhiza acid-Licochalcone A complexes for enhanced bioavailability and anti-melanogenic effect of Licochalcone A: cellular uptake and in vitro experiments. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Łuczaj W, Jastrząb A, do Rosário Domingues M, Domingues P, Skrzydlewska E. Changes in Phospholipid/Ceramide Profiles and Eicosanoid Levels in the Plasma of Rats Irradiated with UV Rays and Treated Topically with Cannabidiol. Int J Mol Sci 2021; 22:8700. [PMID: 34445404 PMCID: PMC8395479 DOI: 10.3390/ijms22168700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic UV radiation causes oxidative stress and inflammation of skin and blood cells. Therefore, in this study, we assessed the effects of cannabidiol (CBD), a natural phytocannabinoid with antioxidant and anti-inflammatory properties, on the phospholipid (PL) and ceramide (CER) profiles in the plasma of nude rats irradiated with UVA/UVB and treated topically with CBD. The results obtained showed that UVA/UVB radiation increased the levels of phosphatidylcholines, lysophospholipids, and eicosanoids (PGE2, TxB2), while downregulation of sphingomyelins led to an increase in CER[NS] and CER[NDS]. Topical application of CBD to the skin of control rats significantly upregulated plasma ether-linked phosphatidylethanolamines (PEo) and ceramides. However, CBD administered to rats irradiated with UVA/UVB promoted further upregulation of CER and PEo and led to significant downregulation of lysophospholipids. This was accompanied by the anti-inflammatory effect of CBD, manifested by a reduction in the levels of proinflammatory PGE2 and TxB2 and a dramatic increase in the level of anti-inflammatory LPXA4. It can therefore be suggested that topical application of CBD to the skin of rats exposed to UVA/UVB radiation prevents changes in plasma phospholipid profile resulting in a reduction of inflammation by reducing the level of LPE and LPC species and increasing antioxidant capacity due to upregulation of PEo species.
Collapse
Affiliation(s)
- Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland; (A.J.); (E.S.)
| | - Anna Jastrząb
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland; (A.J.); (E.S.)
| | - Maria do Rosário Domingues
- Mass Spectrometry Center, LAQV, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (M.d.R.D.); (P.D.)
- CESAM, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, LAQV, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (M.d.R.D.); (P.D.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland; (A.J.); (E.S.)
| |
Collapse
|
15
|
Biernacki M, Brzóska MM, Markowska A, Gałażyn-Sidorczuk M, Cylwik B, Gęgotek A, Skrzydlewska E. Oxidative Stress and Its Consequences in the Blood of Rats Irradiated with UV: Protective Effect of Cannabidiol. Antioxidants (Basel) 2021; 10:antiox10060821. [PMID: 34063802 PMCID: PMC8224002 DOI: 10.3390/antiox10060821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
UVA/UVB radiation disturbs the redox balance of skin cells, and metabolic consequences can be transferred into the blood and internal tissues, especially after chronic skin exposure to UV radiation. Therefore, the aim of this study was to evaluate the effect of cannabidiol (CBD), an antioxidant and anti-inflammatory phytocannabinoid, on oxidative stress and its consequences in the blood of nude rats whose skin was exposed to UVA/UVB radiation for 4 weeks. It was shown that CBD penetrated the blood and in UVB-irradiated rats was preferentially located in the membranes of polymorphonuclear leukocytes, which promoted reduction of ROS generation and up-regulation of antioxidant ability by increasing the activity of glutathione reductase and thioredoxin reductase, while the level of reduced glutathione decreased by UV radiation. Consequently, reduction in UV-induced lipid peroxidation, assessed as 4-hydroxynonenal (4-HNE) and 8-isoprostane (8-isoPGF2α) as well as protein modifications, estimated as 4-HNE-protein adducts and protein carbonyl groups, was observed. CBD, by countering the UV-induced down-regulation of 2-arachidonylglycerol, promoted its antioxidant/anti-inflammatory effects by reducing CB1 and increasing PPARγ receptor activation and consequently ROS and TNF-α down-regulation. The results suggest that CBD applied topically to the skin minimizes redox changes not only at the skin level, but also at the systemic level.
Collapse
Affiliation(s)
- Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.M.); (A.G.)
| | - Małgorzata Michalina Brzóska
- Department of Toxicology, Medical University of Bialystok, A. Mickiewicza 2C, 15-089 Bialystok, Poland; (M.M.B.); (M.G.-S.)
| | - Agnieszka Markowska
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.M.); (A.G.)
| | - Małgorzata Gałażyn-Sidorczuk
- Department of Toxicology, Medical University of Bialystok, A. Mickiewicza 2C, 15-089 Bialystok, Poland; (M.M.B.); (M.G.-S.)
| | - Bogdan Cylwik
- Department of Pediatric Laboratory Diagnostics, Medical University of Bialystok, J. Waszyngtona 17, 15-269 Białystok, Poland;
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.M.); (A.G.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.M.); (A.G.)
- Correspondence: ; Tel.: +48-857-485-708
| |
Collapse
|
16
|
Atalay S, Gęgotek A, Skrzydlewska E. Protective Effects of Cannabidiol on the Membrane Proteome of UVB-Irradiated Keratinocytes. Antioxidants (Basel) 2021; 10:402. [PMID: 33800305 PMCID: PMC8001542 DOI: 10.3390/antiox10030402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Ultraviolet (UV) radiation contained in sunlight disturbs the redox state of skin cells, leading to changes in the structures and functions of macromolecules including components of biological membranes. Cannabidiol (CBD), which accumulates in biomembranes, may be a promising protective antioxidant compound. Accordingly, the aim of this study was to compare the effects of short-term (24 h) and long-term (48 h) CBD application on the proteomic profile of biological membranes in UVB-irradiated keratinocytes. The data obtained show that UVB radiation quantitatively and qualitatively modified cell membrane proteins, with a particular research focus on adducts of proteins with the lipid peroxidation products malondialdehyde (MDA) or 4-hydroxynonenal (4-HNE). CBD application reduced the UVB-enhanced level of these protein adducts. This was particularly notable amongst proteins related to cell proliferation and apoptosis. Moreover, CBD dramatically increased the UVB-induced expression of proteins involved in the regulation of protein translation and cell proliferation (S3a/L13a/L7a ribosomal proteins), the inflammatory response (S100/S100-A6 proteins), and maintenance of redox balance (peroxiredoxin-1, carbonyl reductase 1, and aldo-keto reductase family 1 members). In contrast, CBD effects on the level of 4-HNE-protein adducts involved in the antioxidant response and proteasomal degradation process indicate that CBD may protect keratinocytes in connection with protein catabolism processes or pro-apoptotic action.
Collapse
Affiliation(s)
| | | | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Białystok, 15-089 Białystok, Poland; (S.A.); (A.G.)
| |
Collapse
|
17
|
Pasini AMF, Cominacini L. Effect of Antioxidant Therapy on Oxidative Stress In Vivo. Antioxidants (Basel) 2021; 10:antiox10030344. [PMID: 33669036 PMCID: PMC7996551 DOI: 10.3390/antiox10030344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
|