1
|
Rostom B, Goya-Jorge E, Muro LV, Boubrik I, Wiorek S, Karaky R, Kassab I, Rodríguez MEJ, Sylla-Iyarreta Veitía M. Fishing antioxidant 4-hydroxycoumarin derivatives: synthesis, characterization, and in vitro assessments. Can J Physiol Pharmacol 2024; 102:361-373. [PMID: 38447123 DOI: 10.1139/cjpp-2023-0455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Coumarins represent a diverse class of natural compounds whose importance in pharmaceutical and agri-food sectors has motivated multiple novel synthetic derivatives with broad applicability. The phenolic moiety in 4-hydroxycoumarins underscores their potential to modulate the equilibrium between free radicals and antioxidant species within biological systems. The aim of this work was to assess the antioxidant activity of 18 4-hydroxycoumarin coumarin derivatives, six of which are commercially available and the other 12 were synthesized and chemically characterized and described herein. The 4-hydroxycoumarins were prepared by a two steps synthetic strategy with satisfactory yields. Their antioxidant potential was evaluated through three in vitro methods, two free radical-scavenging assays (DPPH• and ABTS•+) and a metal chelating activity assay. Six synthetic coumarins (4a, 4g, 4h, 4i, 4k, 4l) had a scavenging capacity of DPPH• higher than butylated hydroxytoluene (BHT) (IC50 = 0.58 mmol/L) and compound 4a (4-hydroxy-6-methoxy-2 H-chromen-2-one) with an IC50 = 0.05 mmol/L outperformed both BHT and ascorbic acid (IC50 = 0.06 mmol/L). Nine hydroxycoumarins had a scavenging capacity against ABTS•+ greater (C3, 4a, 4c) or comparable (C1, C2, C4, C6, 4g, 4l) to Trolox (IC50 = 34.34 µmol/L). Meanwhile, the set had a modest ferrous chelation capacity, but most of them (C2, C5, C6, 4a, 4b, 4h, 4i, 4j, 4k, 4l) reached up to more than 20% chelating ability percentage. Collectively, this research work provides valuable structural insights that may determine the scavenging and metal chelating activity of 4-hydroxycoumarins. Notably, substitutions at the C6 position appeared to enhance scavenging potential, while the introduction of electron-withdrawing groups showed promise in augmenting chelation efficiency.
Collapse
Affiliation(s)
- Batoul Rostom
- Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire (EA 7528), Conservatoire National des Arts et Métiers (Cnam), HESAM Université, Paris, France
- Laboratoire de valorisation des ressources naturelles et des produits de santé, Faculté de Pharmacie, Université Libanaise, Campus Universitaire Rafik Hariri, Hadat, Liban
| | - Elizabeth Goya-Jorge
- Departamento de Farmacia, Facultad de Química-Farmacia, Universidad Central "Marta Abreu" de las Villas, Santa Clara, Villa Clara 54830, Cuba
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Liliana Vicet Muro
- Departamento de Farmacia, Facultad de Química-Farmacia, Universidad Central "Marta Abreu" de las Villas, Santa Clara, Villa Clara 54830, Cuba
| | - Imrane Boubrik
- Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire (EA 7528), Conservatoire National des Arts et Métiers (Cnam), HESAM Université, Paris, France
| | - Sarah Wiorek
- Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire (EA 7528), Conservatoire National des Arts et Métiers (Cnam), HESAM Université, Paris, France
| | - Racha Karaky
- Laboratoire de valorisation des ressources naturelles et des produits de santé, Faculté de Pharmacie, Université Libanaise, Campus Universitaire Rafik Hariri, Hadat, Liban
| | - Issam Kassab
- Laboratoire de valorisation des ressources naturelles et des produits de santé, Faculté de Pharmacie, Université Libanaise, Campus Universitaire Rafik Hariri, Hadat, Liban
| | - María Elisa Jorge Rodríguez
- Departamento de Farmacia, Facultad de Química-Farmacia, Universidad Central "Marta Abreu" de las Villas, Santa Clara, Villa Clara 54830, Cuba
| | - Maité Sylla-Iyarreta Veitía
- Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire (EA 7528), Conservatoire National des Arts et Métiers (Cnam), HESAM Université, Paris, France
| |
Collapse
|
2
|
Bello II, Omigbodun A, Morhason-Bello I. Common salt aggravated pathology of testosterone-induced benign prostatic hyperplasia in adult male Wistar rat. BMC Urol 2023; 23:207. [PMID: 38082261 PMCID: PMC10712029 DOI: 10.1186/s12894-023-01371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a major health concern associated with lower urinary tract symptoms and sexual dysfunction in men. Recurrent inflammation, decreased apoptotic rate and oxidative stress are some of the theories that explain the pathophysiology of BPH. Common salt, a food additive, is known to cause systemic inflammation and redox imbalance, and may serve as a potential risk factor for BPH development or progression. This study examined the effect of common salt intake on the pathology of testosterone-induced BPH. METHODS Forty male Wistar rats were randomly divided into four equal groups of 10: a control and three salt diet groups-low-salt diet (LSD), standard-salt diet (SSD) and high-salt diet (HSD). The rats were castrated, allowed to recuperate and placed on salt-free diet (control), 0.25% salt diet (LSD), 0.5% salt diet (SSD) and 1.25% salt diet (HSD) for 60 days ad libitum. On day 33, BPH was induced in all the rats with daily injections of testosterone propionate-Testost® (3 mg/kg body weight) for 28 days. The rats had overnight fast (12 h) on day 60 and were euthanized the following day in order to collect blood and prostate samples for biochemical, molecular and immunohistochemistry (IHC) analyses. Mean ± SD values were calculated for each group and compared for significant difference with ANOVA followed by post hoc test (Tukey HSD) at p < 0.05. RESULTS This study recorded a substantially higher level of IL-6, IL-8 and COX-2 in salt diet groups and moderate IHC staining of COX-2 in HSD group. The prostatic level of IL-17, IL-1β, PGE2, relative prostate weight and serum PSA levels were not statistically different. The concentrations of IGF-1, TGF-β were similar in all the groups but there were multiple fold increase in Bcl-2 expression in salt diet groups-LSD (13.2), SSD (9.5) and HSD (7.9) and multiple fold decrease in VEGF expression in LSD (-6.3), SSD (-5.1) and HSD (-14.1) compared to control. Activity of superoxide dismutase (SOD) and concentration of nitric oxide rose in LSD and SSD groups, and SSD and HSD groups respectively. Activities of glutathione peroxidase and catalase, and concentration of NADPH and hydrogen peroxide were not significantly different. IHC showed positive immunostaining for iNOS expression in all the groups while histopathology revealed moderate to severe prostatic hyperplasia in salt diet groups. CONCLUSIONS These findings suggest that low, standard and high salt diets aggravated the pathology of testosterone-induced BPH in Wistar rats by promoting inflammation, oxidative stress, while suppressing apoptosis and angiogenesis.
Collapse
Affiliation(s)
- Idris Idowu Bello
- Department of Reproductive Health Sciences, Pan African University Life and Earth Sciences Institute (including Health and Agriculture), PAULESI, University of Ibadan, Ibadan, Nigeria.
- Department of Animal Health Technology, Oyo State College of Agriculture and Technology, Igboora, Oyo State, Nigeria.
| | - Akinyinka Omigbodun
- Department of Obstetrics and Gynaecology, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Imran Morhason-Bello
- Department of Obstetrics and Gynaecology, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
3
|
Rodríguez-Ruiz M, Ramos MC, Campos MJ, Díaz-Sánchez I, Cautain B, Mackenzie TA, Vicente F, Corpas FJ, Palma JM. Pepper Fruit Extracts Show Anti-Proliferative Activity against Tumor Cells Altering Their NADPH-Generating Dehydrogenase and Catalase Profiles. Antioxidants (Basel) 2023; 12:1461. [PMID: 37507999 PMCID: PMC10376568 DOI: 10.3390/antiox12071461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is considered one of the main causes of human death worldwide, being characterized by an alteration of the oxidative metabolism. Many natural compounds from plant origin with anti-tumor attributes have been described. Among them, capsaicin, which is the molecule responsible for the pungency in hot pepper fruits, has been reported to show antioxidant, anti-inflammatory, and analgesic activities, as well as anti-proliferative properties against cancer. Thus, in this work, the potential anti-proliferative activity of pepper (Capsicum annuum L.) fruits from diverse varieties with different capsaicin contents (California < Piquillo < Padrón < Alegría riojana) against several tumor cell lines (lung, melanoma, hepatoma, colon, breast, pancreas, and prostate) has been investigated. The results showed that the capsaicin content in pepper fruits did not correspond with their anti-proliferative activity against tumor cell lines. By contrast, the greatest activity was promoted by the pepper tissues which contained the lowest capsaicin amount. This indicates that other compounds different from capsaicin have this anti-tumor potentiality in pepper fruits. Based on this, green fruits from the Alegría riojana variety, which has negligible capsaicin levels, was used to study the effect on the oxidative and redox metabolism of tumor cell lines from liver (Hep-G2) and pancreas (MIA PaCa-2). Different parameters from both lines treated with crude pepper fruit extracts were determined including protein nitration and protein S-nitrosation (two post-translational modifications (PTMs) promoted by nitric oxide), the antioxidant capacity, as well as the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), among others. In addition, the activity of the NADPH-generating enzymes glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and NADP-isocitrate dehydrogenase (NADP-ICDH) was followed. Our data revealed that the treatment of both cell lines with pepper fruit extracts altered their antioxidant capacity, enhanced their catalase activity, and considerably reduced the activity of the NADPH-generating enzymes. As a consequence, less H2O2 and NADPH seem to be available to cells, thus avoiding cell proliferation and possibly triggering cell death in both cell lines.
Collapse
Affiliation(s)
- Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| | - María C Ramos
- Department Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain
| | - María J Campos
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| | - Inmaculada Díaz-Sánchez
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| | - Bastien Cautain
- Evotec, University Paul Sabatier Toulouse III, 31100 Toulouse, France
| | - Thomas A Mackenzie
- Department Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain
| | - Francisca Vicente
- Department Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| |
Collapse
|
4
|
Losoya-Sifuentes C, Pinto-Jimenez K, Cruz M, Rodriguez-Jasso RM, Ruiz HA, Loredo-Treviño A, López-Badillo CM, Belmares R. Determination of Nutritional and Antioxidant Properties of Maya Nut Flour (Brosimum alicastrum) for Development of Functional Foods. Foods 2023; 12:foods12071398. [PMID: 37048219 PMCID: PMC10093398 DOI: 10.3390/foods12071398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Maya nut (Brosimum alicastrum) is a novel food with high nutritional value. This research aimed to evaluate the nutritional and antioxidant properties of Maya nut flour (MNF) made from seeds dried by different methods (sun-dried and using hot air at 45 °C and 60 °C) to explore its incorporation into cookies and evaluate its nutritional and functional properties. The naturally sun-dried flour (NF) had the highest content of ash (3.64 ± 0.11 g/100 g), protein (6.35 ± 0.44 g/100 g), crude fiber (6.75 ± 0.29 g/100 g), and functional properties (water and oil absorption). The color of the flour was affected by the different drying methods. While the drying methods influenced the total polyphenolic content (TPC) and antioxidant activity (AA) of MNF, they did not affect the morphology of the native starch or generated important molecular-structural changes. The substitution of 60% of wheat flour with NF in the cookie’s formula increased the protein and fiber content, whereas 20% substitution increased its AA. MNF is a source of protein, dietary fiber, micronutrients, and functional compounds that can enrich cookie formulations.
Collapse
Affiliation(s)
- Carolina Losoya-Sifuentes
- Functional Foods & Nutrition Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, República Oriente, Saltillo 25280, CP, Mexico
| | - Karen Pinto-Jimenez
- Department of Food Science and Technology, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Colonia Buenavista, Saltillo 25315, CP, Mexico
| | - Mario Cruz
- Department of Food Science and Technology, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Colonia Buenavista, Saltillo 25315, CP, Mexico
- Correspondence: (M.C.); (R.B.)
| | - Rosa M. Rodriguez-Jasso
- Functional Foods & Nutrition Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, República Oriente, Saltillo 25280, CP, Mexico
| | - Hector A. Ruiz
- Functional Foods & Nutrition Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, República Oriente, Saltillo 25280, CP, Mexico
| | - Araceli Loredo-Treviño
- Functional Foods & Nutrition Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, República Oriente, Saltillo 25280, CP, Mexico
| | - Claudia Magdalena López-Badillo
- Functional Foods & Nutrition Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, República Oriente, Saltillo 25280, CP, Mexico
| | - Ruth Belmares
- Functional Foods & Nutrition Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, República Oriente, Saltillo 25280, CP, Mexico
- Correspondence: (M.C.); (R.B.)
| |
Collapse
|
5
|
Drozdz-Afelt JM, Koim-Puchowska BB, Kaminski P. Analysis of oxidative stress indicators in Polish patients with prostate cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4632-4640. [PMID: 34409535 PMCID: PMC8741701 DOI: 10.1007/s11356-021-15922-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The aim of the study was to analyze the activity of antioxidant enzymes (glutathione S-transferase, catalase, superoxide dismutase) and the concentration of malondialdehyde in order to determine the role of detoxification mechanisms in prostate cancer. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) were measured using ready-made kits; lipid peroxidation intensity was determined by the thiobarbituric acid method. Superoxide dismutase was the only enzyme among antioxidant and detoxification enzymes for which a statistically significant difference in activity was found between the studied groups (1.4 U·ml-1 in patients vs. 1.6 U·ml-1 in control). No statistically significant differences were found for GST, CAT or the concentration of MDA between the group of men with prostate cancer and the control group. The lower SOD activity in men with prostate cancer may be due to a deficiency in their antioxidant defense system.
Collapse
Affiliation(s)
- Joanna Maria Drozdz-Afelt
- Department of Biotechnology, Kazimierz Wielki University, Księcia Józefa Poniatowskiego St.12, PL 85-671, Bydgoszcz, Poland.
| | - Beata Barbara Koim-Puchowska
- Department of Biotechnology, Kazimierz Wielki University, Księcia Józefa Poniatowskiego St.12, PL 85-671, Bydgoszcz, Poland
| | - Piotr Kaminski
- Collegium Medicum in Bydgoszczy, Faculty of Medicine, Department of Medical Biology and Biochemistry, Department of Ecology and Environmental Protection, Nicolaus Copernicus University in Toruń, M. Curie Skłodowskiej St.9, PL 85-094, Bydgoszcz, Poland
- Faculty of Biological Sciences, Department of Biotechnology, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516, Zielona Góra, Poland
| |
Collapse
|
6
|
Becerril-Sánchez AL, Quintero-Salazar B, Dublán-García O, Escalona-Buendía HB. Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants (Basel) 2021; 10:1700. [PMID: 34829570 PMCID: PMC8614671 DOI: 10.3390/antiox10111700] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 02/02/2023] Open
Abstract
Honey has been employed since antiquity due to its sensory, nutritional, and therapeutic properties. These characteristics are related to its physical and chemical composition. For example, phenolic compounds are substances that can determine antioxidant activity, as well as sensory characteristics, and can be employed as biomarkers of floral and geographical origin. This has generated a growing interest in the study of phenolic compounds and their influence in the intrinsic properties of this beekeeping product. This review aims to summarize, analyze, and update the status of the research that demonstrates the role of phenolic compounds in antioxidant activity, botanical-geographical origin, and the sensory characteristics of honey. These phenolic compounds, according to various results reported, have great relevance in honey's biological and functional activity. This leads to research that will link phenolic compounds to their floral, geographical, productive, and territorial origin, as well as some sensory and functional characteristics.
Collapse
Affiliation(s)
- Ana L. Becerril-Sánchez
- Food and Environmental Toxicology Laboratory, Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Mexico;
| | | | - Octavio Dublán-García
- Food and Environmental Toxicology Laboratory, Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Mexico;
| | - Héctor B. Escalona-Buendía
- Sensory Evaluation and Consumer Studies Laboratory, Biotechnology Department, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico;
| |
Collapse
|
7
|
Guevara L, Domínguez-Anaya MÁ, Ortigosa A, González-Gordo S, Díaz C, Vicente F, Corpas FJ, Pérez del Palacio J, Palma JM. Identification of Compounds with Potential Therapeutic Uses from Sweet Pepper ( Capsicum annuum L.) Fruits and Their Modulation by Nitric Oxide (NO). Int J Mol Sci 2021; 22:ijms22094476. [PMID: 33922964 PMCID: PMC8123290 DOI: 10.3390/ijms22094476] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Plant species are precursors of a wide variety of secondary metabolites that, besides being useful for themselves, can also be used by humans for their consumption and economic benefit. Pepper (Capsicum annuum L.) fruit is not only a common food and spice source, it also stands out for containing high amounts of antioxidants (such as vitamins C and A), polyphenols and capsaicinoids. Particular attention has been paid to capsaicin, whose anti-inflammatory, antiproliferative and analgesic activities have been reported in the literature. Due to the potential interest in pepper metabolites for human use, in this project, we carried out an investigation to identify new bioactive compounds of this crop. To achieve this, we applied a metabolomic approach, using an HPLC (high-performance liquid chromatography) separative technique coupled to metabolite identification by high resolution mass spectrometry (HRMS). After chromatographic analysis and data processing against metabolic databases, 12 differential bioactive compounds were identified in sweet pepper fruits, including quercetin and its derivatives, L-tryptophan, phytosphingosin, FAD, gingerglycolipid A, tetrahydropentoxylin, blumenol C glucoside, colnelenic acid and capsoside A. The abundance of these metabolites varied depending on the ripening stage of the fruits, either immature green or ripe red. We also studied the variation of these 12 metabolites upon treatment with exogenous nitric oxide (NO), a free radical gas involved in a good number of physiological processes in higher plants such as germination, growth, flowering, senescence, and fruit ripening, among others. Overall, it was found that the content of the analyzed metabolites depended on the ripening stage and on the presence of NO. The metabolic pattern followed by quercetin and its derivatives, as a consequence of the ripening stage and NO treatment, was also corroborated by transcriptomic analysis of genes involved in the synthesis of these compounds. This opens new research perspectives on the pepper fruit’s bioactive compounds with nutraceutical potentiality, where biotechnological strategies can be applied for optimizing the level of these beneficial compounds.
Collapse
Affiliation(s)
- Lucía Guevara
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - María Ángeles Domínguez-Anaya
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - Alba Ortigosa
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - Salvador González-Gordo
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - Caridad Díaz
- Department of Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain; (C.D.); (F.V.); (J.P.d.P.)
| | - Francisca Vicente
- Department of Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain; (C.D.); (F.V.); (J.P.d.P.)
| | - Francisco J. Corpas
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - José Pérez del Palacio
- Department of Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain; (C.D.); (F.V.); (J.P.d.P.)
| | - José M. Palma
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
- Correspondence: ; Tel.: +34-958-181-1600; Fax: +34-958-181-609
| |
Collapse
|
8
|
Wang B, Xu CC, Liu C, Qu YH, Zhang H, Luo HL. The Effect of Dietary Lycopene Supplementation on Drip Loss during Storage of Lamb Meat by iTRAQ Analysis. Antioxidants (Basel) 2021; 10:198. [PMID: 33573002 PMCID: PMC7911479 DOI: 10.3390/antiox10020198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
This study was designed to investigate the impact of dietary lycopene (antioxidant extracted from tomato) supplementation on postmortem antioxidant capacity, drip loss and protein expression profiles of lamb meat during storage. Thirty male Hu lambs were randomly divided into three treatment groups and housed in individual pens and received 0, 200 or 400 mg·kg-1 lycopene in their diet, respectively. All lambs were slaughtered after 3 months of fattening, and the longissimus thoracis (LT) muscle was collected for analyses. The results indicated that drip loss of LT muscle increased with storage days (P < 0.05). After storage for 7 days, significantly lower drip loss of meat was found in fed the lycopene-supplemented diet (P < 0.05). Dietary lycopene supplementation increased the activity of antioxidant enzymes (total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT)) (P < 0.05) and decreased the thiobarbituric acid reactive substance (TBARS) and carbonyl contents (P < 0.05). During the storage period (days 0, 5 and 7), a number of differentially abundant proteins (DAPs), including oxidases, metabolic enzymes, calcium channels and structural proteins, were identified based on iTRAQ data, with roles predominantly in carbon metabolism, oxidative phosphorylation, cardiac muscle contraction and proteasome pathways, and which contribute to decreased drip loss of lamb meat during storage. It can be concluded that dietary lycopene supplementation increased antioxidant capacity after slaughter, and the decreased drip loss during postmortem storage might occur by changing the expression of proteins related to enzyme activity and cellular structure in lamb muscle.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, NO.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China; (B.W.); (C.-c.X.); (C.L.); (Y.-h.Q.)
| | - Chen-chen Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, NO.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China; (B.W.); (C.-c.X.); (C.L.); (Y.-h.Q.)
| | - Ce Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, NO.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China; (B.W.); (C.-c.X.); (C.L.); (Y.-h.Q.)
| | - Yang-hua Qu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, NO.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China; (B.W.); (C.-c.X.); (C.L.); (Y.-h.Q.)
| | - Hao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian, Beijing 100083, China;
| | - Hai-ling Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, NO.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China; (B.W.); (C.-c.X.); (C.L.); (Y.-h.Q.)
| |
Collapse
|