1
|
Doose C, Hubas C. The metabolites of light: Untargeted metabolomic approaches bring new clues to understand light-driven acclimation of intertidal mudflat biofilm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168692. [PMID: 38008320 DOI: 10.1016/j.scitotenv.2023.168692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
The microphytobenthos (MPB), a microbial community of primary producers, play a key role in coastal ecosystem functioning, particularly in intertidal mudflats. These mudflats experience challenging variations of irradiance, forcing the micro-organisms to develop photoprotective mechanisms to survive and thrive in this dynamic environment. Two major adaptations to light are well described in literature: the excess of light energy dissipation through non-photochemical quenching (NPQ), and the vertical migration in the sediment. These mechanisms trigger considerable scientific interest, but the biological processes and metabolic mechanisms involved in light-driven vertical migration remain largely unknown. To our knowledge, this study investigates for the first time metabolomic responses of a migrational mudflat biofilm exposed for 30 min to a light gradient of photosynthetically active radiation (PAR) from 50 to 1000 μmol photons m-2 s-1. The untargeted metabolomic analysis allowed to identify metabolites involved in two types of responses to light irradiance levels. On the one hand, the production of SFAs and MUFAs, primarily derived from bacteria, indicates a healthy photosynthetic state of MPB under low light (LL; 50 and 100 PAR) and medium light (ML; 250 PAR) conditions. Conversely, when exposed to high light (HL; 500, 750 and 1000 PAR), the MPB experienced light-induced stress, triggering the production of alka(e)nes and fatty alcohols. The physiological and ecological roles of these compounds are poorly described in literature. This study sheds new light on the topic, as it suggests that these compounds may play a crucial and previously unexplored role in light-induced stress acclimation of migrational MPB biofilms. Since alka(e)nes are produced from FAs decarboxylation, these results thus emphasize for the first time the importance of FAs pathways in microphytobenthic biofilms acclimation to light.
Collapse
Affiliation(s)
- Caroline Doose
- Muséum National d'Histoire Naturelle, UMR BOREA, MNHN-CNRS-UCN-UPMC-IRD-UA, Station Marine de Concarneau, Concarneau, France.
| | - Cédric Hubas
- Muséum National d'Histoire Naturelle, UMR BOREA, MNHN-CNRS-UCN-UPMC-IRD-UA, Station Marine de Concarneau, Concarneau, France.
| |
Collapse
|
2
|
Seo S, Chang KS, Choi MS, Jin E. Overexpression of PtVDL1 in Phaeodactylum tricornutum Increases Fucoxanthin Content under Red Light. J Microbiol Biotechnol 2024; 34:198-206. [PMID: 37957112 PMCID: PMC10840463 DOI: 10.4014/jmb.2309.09018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/13/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Phaeodactylum tricornutum is a model diatom with significant biotechnological applications, including enhancing biomass, biofuel, and carotenoid production. Specifically, owing to the capacity of this organism to serve as a valuable source of essential raw materials for pharmaceuticals and nutraceuticals, ongoing research is actively focused on enhancing its productivity. One of the genes involved in various stages of fucoxanthin (Fx) biosynthesis, violaxanthin de-epoxidase like 1 (VDL1), has recently been identified. To validate the intracellular function of this gene and boost Fx production through overexpression, we established and examined three transgenic P. tricornutum lines characterized by elevated P. tricortunum VDL1 ( PtVDL1) expression and evaluate their cell growth and Fx productivity. These transgenic lines exhibited substantially increased PtVDL1 mRNA and protein levels compared to the wild type (WT). Notably, the enzyme substrate violaxanthin was entirely depleted and could not be detected in the transformants, whereas it remained at constant levels in the WT. Interestingly, under standard white light conditions, Fx productivity in the transformants remained unchanged; however, but after 48 h of exposure to red light, it increased by up to 15%. These results indicate that PtVDL1-overexpressing P. tricornutum has industrial potential, particularly for enhancing Fx production under red light conditions.
Collapse
Affiliation(s)
- Seungbeom Seo
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Kwang Suk Chang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Sun Choi
- Korea Radio-Isotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
3
|
Svenning JB, Vasskog T, Campbell K, Bæverud AH, Myhre TN, Dalheim L, Forgereau ZL, Osanen JE, Hansen EH, Bernstein HC. Lipidome Plasticity Enables Unusual Photosynthetic Flexibility in Arctic vs. Temperate Diatoms. Mar Drugs 2024; 22:67. [PMID: 38393038 PMCID: PMC10890139 DOI: 10.3390/md22020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The diatom lipidome actively regulates photosynthesis and displays a high degree of plasticity in response to a light environment, either directly as structural modifications of thylakoid membranes and protein-pigment complexes, or indirectly via photoprotection mechanisms that dissipate excess light energy. This acclimation is crucial to maintaining primary production in marine systems, particularly in polar environments, due to the large temporal variations in both the intensity and wavelength distributions of downwelling solar irradiance. This study investigated the hypothesis that Arctic marine diatoms uniquely modify their lipidome, including their concentration and type of pigments, in response to wavelength-specific light quality in their environment. We postulate that Arctic-adapted diatoms can adapt to regulate their lipidome to maintain growth in response to the extreme variability in photosynthetically active radiation. This was tested by comparing the untargeted lipidomic profiles, pigmentation, specific growth rates and carbon assimilation of the Arctic diatom Porosira glacialis vs. the temperate species Coscinodiscus radiatus during exponential growth under red, blue and white light. Here, we found that the chromatic wavelength influenced lipidome remodeling and growth in each strain, with P. glacialis showing effective utilization of red light coupled with increased inclusion of primary light-harvesting pigments and polar lipid classes. These results indicate a unique photoadaptation strategy that enables Arctic diatoms like P. glacialis to capitalize on a wide chromatic growth range and demonstrates the importance of active lipid regulation in the Arctic light environment.
Collapse
Affiliation(s)
- Jon Brage Svenning
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; (L.D.); (E.H.H.); (H.C.B.)
- SINTEF Nord, Storgata 118, 9008 Tromsø, Norway
| | - Terje Vasskog
- Department of Pharmacy, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; (T.V.); (A.H.B.); (T.N.M.)
| | - Karley Campbell
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; (K.C.); (Z.L.F.); (J.E.O.)
| | - Agnethe Hansen Bæverud
- Department of Pharmacy, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; (T.V.); (A.H.B.); (T.N.M.)
| | - Torbjørn Norberg Myhre
- Department of Pharmacy, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; (T.V.); (A.H.B.); (T.N.M.)
| | - Lars Dalheim
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; (L.D.); (E.H.H.); (H.C.B.)
| | - Zoé Lulu Forgereau
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; (K.C.); (Z.L.F.); (J.E.O.)
| | - Janina Emilia Osanen
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; (K.C.); (Z.L.F.); (J.E.O.)
| | - Espen Holst Hansen
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; (L.D.); (E.H.H.); (H.C.B.)
| | - Hans C. Bernstein
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; (L.D.); (E.H.H.); (H.C.B.)
- The Arctic Centre for Sustainable Energy—ARC, UiT—The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
4
|
Dhanker R, Saxena A, Tiwari A, Kumar Singh P, Kumar Patel A, Dahms HU, Hwang JS, González-Meza GM, Melchor-Martínez EM, Iqbal HMN, Parra-Saldívar R. Towards sustainable diatom biorefinery: Recent trends in cultivation and applications. BIORESOURCE TECHNOLOGY 2024; 391:129905. [PMID: 37923226 DOI: 10.1016/j.biortech.2023.129905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Diatoms, with their complex cellular architecture, have been recognized as a source of limitless potential. These microbes are common in freshwater and marine habitats and are essential for primary production and carbon sequestration. They are excellent at utilizing nutrients, providing a sustainable method of treating wastewater while also producing biomass rich in beneficial substances like vitamins, carotenoids, polysaccharides, lipids, omega-3 fatty acids, pigments, and novel bioactive molecules. Additionally, they are highly efficient organisms that can be employed to monitor the environment by acting as trustworthy indicators of water quality. This comprehensive review explores the multifaceted applications of diatoms in a variety of fields, such as bioremediation, aquaculture, value-added products, and other applications. The review set out on a path towards greener, more sustainable methods amicable to both industry and the environment by utilizing theenormous diverse biotechnological potentials of diatoms.
Collapse
Affiliation(s)
- Raunak Dhanker
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India
| | - Abhishek Saxena
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India
| | - Archana Tiwari
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India.
| | - Pankaj Kumar Singh
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, ROC; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City-804, Taiwan, ROC
| | - Jiang-Shiou Hwang
- National Taiwan Ocean University, Institute of Marine Biology, Keelung 20224, Taiwan, ROC
| | - Georgia Maria González-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
5
|
Sands E, Davies S, Puxty RJ, Vergé V, Bouget FY, Scanlan DJ, Carré IA. Genetic and physiological responses to light quality in a deep ocean ecotype of Ostreococcus, an ecologically important photosynthetic picoeukaryote. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6773-6789. [PMID: 37658791 PMCID: PMC10662239 DOI: 10.1093/jxb/erad347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Phytoplankton are exposed to dramatic variations in light quality when cells are carried by upwelling or downwelling currents or encounter sediment. We investigated the potential impact of light quality changes in Ostreococcus, a key marine photosynthetic picoeukaryote, by analysing changes in its transcriptome, pigment content, and photophysiology after acclimation to monochromatic red, green, or blue light. The clade B species RCC809, isolated from the deep euphotic zone of the tropical Atlantic Ocean, responded to blue light by accelerating cell division at the expense of storage reserves and by increasing the relative level of blue-light-absorbing pigments. It responded to red and green light by increasing its potential for photoprotection. In contrast, the clade A species OTTH0595, which originated from a shallow water environment, showed no difference in photosynthetic properties and minor differences in carotenoid contents between light qualities. This was associated with the loss of candidate light-quality responsive promoter motifs identified in RCC809 genes. These results demonstrate that light quality can have a major influence on the physiology of eukaryotic phytoplankton and suggest that different light quality environments can drive selection for diverse patterns of responsiveness and environmental niche partitioning.
Collapse
Affiliation(s)
- Elizabeth Sands
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sian Davies
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Valerie Vergé
- Université Pierre et Marie Curie, Paris 06, UMR 7621, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique, Banyuls sur Mer, France
| | - François-Yves Bouget
- Université Pierre et Marie Curie, Paris 06, UMR 7621, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique, Banyuls sur Mer, France
| | | | | |
Collapse
|
6
|
Murison V, Hérault J, Côme M, Guinio S, Lebon A, Chamot C, Bénard M, Galas L, Schoefs B, Marchand J, Bardor M, Ulmann L. Comparison of two Phaeodactylum tricornutum ecotypes under nitrogen starvation and resupply reveals distinct lipid accumulation strategies but a common degradation process. FRONTIERS IN PLANT SCIENCE 2023; 14:1257500. [PMID: 37810403 PMCID: PMC10556672 DOI: 10.3389/fpls.2023.1257500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Introduction Phaeodactylum tricornutum is a model species frequently used to study lipid metabolism in diatoms. When exposed to a nutrient limitation or starvation, diatoms are known to accumulate neutral lipids in cytoplasmic lipid droplets (LDs). Those lipids are produced partly de novo and partly from the recycle of plastid membrane lipids. Under a nitrogen resupply, the accumulated lipids are catabolized, a phenomenon about which only a few data are available. Various strains of P. tricornutum have been isolated around the world that may differ in lipid accumulation patterns. Methods To get further information on this topic, two genetically distant ecotypes of P. tricornutum (Pt1 and Pt4) have been cultivated under nitrogen deprivation during 11 days followed by a resupply period of 3 days. The importance of cytoplasmic LDs relative to the plastid was assessed by a combination of confocal laser scanning microscopy and cell volume estimation using bright field microscopy pictures. Results and discussion We observed that in addition to a basal population of small LDs (0.005 μm3 to 0.7 μm3) present in both strains all along the experiment, Pt4 cells immediately produced two large LDs (up to 12 μm3 after 11 days) while Pt1 cells progressively produced a higher number of smaller LDs (up to 7 μm3 after 11 days). In this work we showed that, in addition to intracellular available space, lipid accumulation may be limited by the pre-starvation size of the plastid as a source of membrane lipids to be recycled. After resupplying nitrogen and for both ecotypes, a fragmentation of the largest LDs was observed as well as a possible migration of LDs to the vacuoles that would suggest an autophagic degradation. Altogether, our results deepen the understanding of LDs dynamics and open research avenues for a better knowledge of lipid degradation in diatoms.
Collapse
Affiliation(s)
- Victor Murison
- Biology of Organisms, Stress, Health and Environment, IUT Département Génie Biologique, Le Mans Université, IUML-FR 3473 CNRS, Laval, France
| | - Josiane Hérault
- Biology of Organisms, Stress, Health and Environment, IUT Département Génie Biologique, Le Mans Université, IUML-FR 3473 CNRS, Laval, France
| | - Martine Côme
- Biology of Organisms, Stress, Health and Environment, IUT Département Génie Biologique, Le Mans Université, IUML-FR 3473 CNRS, Laval, France
| | - Sabrina Guinio
- Biology of Organisms, Stress, Health and Environment, IUT Département Génie Biologique, Le Mans Université, IUML-FR 3473 CNRS, Laval, France
| | - Alexis Lebon
- Université de Rouen Normandie, INSERM, CNRS, HeRacLeS US51 UAR2026, PRIMACEN, Rouen, France
| | - Christophe Chamot
- Université de Rouen Normandie, INSERM, CNRS, HeRacLeS US51 UAR2026, PRIMACEN, Rouen, France
| | - Magalie Bénard
- Université de Rouen Normandie, INSERM, CNRS, HeRacLeS US51 UAR2026, PRIMACEN, Rouen, France
| | - Ludovic Galas
- Université de Rouen Normandie, INSERM, CNRS, HeRacLeS US51 UAR2026, PRIMACEN, Rouen, France
| | - Benoît Schoefs
- Biology of Organisms, Stress, Health and Environment, UFR Sciences et Techniques, Le Mans Université, IUML-FR 3473 CNRS, Le Mans, France
| | - Justine Marchand
- Biology of Organisms, Stress, Health and Environment, UFR Sciences et Techniques, Le Mans Université, IUML-FR 3473 CNRS, Le Mans, France
| | - Muriel Bardor
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen, France
| | - Lionel Ulmann
- Biology of Organisms, Stress, Health and Environment, IUT Département Génie Biologique, Le Mans Université, IUML-FR 3473 CNRS, Laval, France
| |
Collapse
|
7
|
Liu W, Ji Y, Long Y, Huang W, Zhang C, Wang H, Xu Y, Lei Z, Huang W, Liu D. The role of light wavelengths in regulating algal-bacterial granules formation, protein and lipid accumulation, and microbial functions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117750. [PMID: 36934501 DOI: 10.1016/j.jenvman.2023.117750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
High value-added products recovery from algal-bacterial granular sludge (ABGS) has received great attention recently. This study aimed to explore the role of different light wavelengths in regulating granule formation, protein and lipid production, and microbial functions. Bacterial granular sludge (BGS, R0) was most conducive to forming ABGS under blue (R2) light with the highest chlorophyll a (10.2 mg/g-VSS) and diameter (1800 μm), followed by red (R1) and white (R3) lights. R0-R3 acquired high protein contents (>164.8 mg/g-VSS) with essential amino acids above 44.4%, all of which were suitable for recycling, but R2 was the best. Also, blue light significantly increased total lipid production, while red light promoted the accumulation of some unsaturated fatty acids (C18:2 and C18:3). Some unique algae and dominant bacteria (e.g., Stigeoclonium, Chlamydomonas, and Flavobacteria) enrichment and some key functions (e.g., amino acid, fatty acid, and lipid biosynthesis) up-regulation in R2 might help to improve proteins and lipids quality. Combined, this study provides valuable guidance for protein and lipid recovery from ABGS.
Collapse
Affiliation(s)
- Wenhao Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Ji
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhan Long
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Renmin Road, Haikou 570228, China
| | - Chuanbing Zhang
- Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou, Henan 450000, China
| | - Huifang Wang
- Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou, Henan 450000, China
| | - Yahui Xu
- Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou, Henan 450000, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Wenli Huang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Dongfang Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
8
|
Combined application of exogenous phytohormones and blue light illumination to the marine diatom Phaeodactylum tricornutum. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
9
|
Murison V, Hérault J, Schoefs B, Marchand J, Ulmann L. Bioinformatics-Based Screening Approach for the Identification and Characterization of Lipolytic Enzymes from the Marine Diatom Phaeodactylum tricornutum. Mar Drugs 2023; 21:md21020125. [PMID: 36827166 PMCID: PMC9964374 DOI: 10.3390/md21020125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Oleaginous diatoms accumulate lipids of biotechnological interest when exposed to nutrient stress conditions such as nitrogen starvation. While accumulation mechanisms are well-known and have been engineered to improve lipid production, degradation mechanisms remain poorly investigated in diatoms. Identifying lipid-degrading enzymes is the initial step to understanding the catabolic processes. In this study, an in silico screening of the genome of Phaeodactylum tricornutum led to the identification of 57 putative triacylglycerol lipases (EC 3.1.1.3) grouped in 4 families. Further analysis revealed the presence of conserved domains and catalytic residues of lipases. Physico-chemical characteristics and subcellular localization predictions highlighted that a majority of these putative proteins are hydrophilic and cytosolic, suggesting they could be recruited to lipid droplets directly from the cytosol. Among the 57 identified putative proteins, three lipases were identified as possibly involved in lipophagy due to a potential vacuolar localization. The expression of the mRNA corresponding to the 57 proteins was then searched in 3 transcriptomic datasets obtained under nitrogen starvation. Nine genes were highly regulated and were considered as encoding enzymes with a probable important function in lipid catabolism. A tertiary structure prediction of these nine candidates yielded eight functional 3D models. Among those, two downregulated enzymes, Phatr3_J54974 and Phatr3_EG00720, were highlighted as good targets for future functional genomics and purification studies to investigate their role in lipid degradation.
Collapse
Affiliation(s)
- Victor Murison
- BiOSSE, Biology of Organisms: Stress, Health, Environment, Département Génie Biologique, Institut Universitaire de Technologie, Le Mans Université, F-53020 Laval, France
| | - Josiane Hérault
- BiOSSE, Biology of Organisms: Stress, Health, Environment, Département Génie Biologique, Institut Universitaire de Technologie, Le Mans Université, F-53020 Laval, France
| | - Benoît Schoefs
- BiOSSE, Biology of Organisms: Stress, Health, Environment, UFR Sciences et Techniques, Le Mans Université, F-72085 Le Mans, France
| | - Justine Marchand
- BiOSSE, Biology of Organisms: Stress, Health, Environment, UFR Sciences et Techniques, Le Mans Université, F-72085 Le Mans, France
| | - Lionel Ulmann
- BiOSSE, Biology of Organisms: Stress, Health, Environment, Département Génie Biologique, Institut Universitaire de Technologie, Le Mans Université, F-53020 Laval, France
- Correspondence:
| |
Collapse
|
10
|
Effects of Hypoxia on Coral Photobiology and Oxidative Stress. BIOLOGY 2022; 11:biology11071068. [PMID: 36101446 PMCID: PMC9312924 DOI: 10.3390/biology11071068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Global ocean oxygen (O2) content is decreasing as climate change drives declines in oxygen solubility, strengthened stratification of seawater masses, increased biological oxygen consumption and coastal eutrophication. Studies on the biological effects of nocturnal decreased oxygen concentrations (hypoxia) on coral reefs are very scarce. Coral reefs are fundamental for supporting one quarter of all marine species and essential for around 275 million people worldwide. This study investigates acute physiological and photobiological responses of a scleractinian coral (Acropora spp.) to overnight hypoxic conditions (<2 mg/L of O2). Bleaching was not detected, and visual and physical aspects of corals remained unchanged under hypoxic conditions. Most photobiological-related parameters also did not show significant changes between treatments. In addition to this, no significant differences between treatments were observed in the pigment composition. However, hypoxic conditions induced a significant decrease in coral de-epoxidation state of the xanthophyll cycle pigments and increase in DNA damage. Although the present findings suggest that Acropora spp. is resilient to some extent to short-term daily oxygen oscillations, long-term exposure to hypoxia, as predicted to occur with climate change, may still have deleterious effects on corals.
Collapse
|
11
|
Light Intensity- and Spectrum-Dependent Redox Regulation of Plant Metabolism. Antioxidants (Basel) 2022; 11:antiox11071311. [PMID: 35883801 PMCID: PMC9312225 DOI: 10.3390/antiox11071311] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Both light intensity and spectrum (280–800 nm) affect photosynthesis and, consequently, the formation of reactive oxygen species (ROS) during photosynthetic electron transport. ROS, together with antioxidants, determine the redox environment in tissues and cells, which in turn has a major role in the adjustment of metabolism to changes in environmental conditions. This process is very important since there are great spatial (latitude, altitude) and temporal (daily, seasonal) changes in light conditions which are accompanied by fluctuations in temperature, water supply, and biotic stresses. The blue and red spectral regimens are decisive in the regulation of metabolism because of the absorption maximums of chlorophylls and the sensitivity of photoreceptors. Based on recent publications, photoreceptor-controlled transcription factors such as ELONGATED HYPOCOTYL5 (HY5) and changes in the cellular redox environment may have a major role in the coordinated fine-tuning of metabolic processes during changes in light conditions. This review gives an overview of the current knowledge of the light-associated redox control of basic metabolic pathways (carbon, nitrogen, amino acid, sulphur, lipid, and nucleic acid metabolism), secondary metabolism (terpenoids, flavonoids, and alkaloids), and related molecular mechanisms. Light condition-related reprogramming of metabolism is the basis for proper growth and development of plants; therefore, its better understanding can contribute to more efficient crop production in the future.
Collapse
|
12
|
Roma J, Feijão E, Vinagre C, Duarte B, Matos AR. Impacts of dissolved Zn and nanoparticle forms in the fatty acid landscape of Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152807. [PMID: 35016933 DOI: 10.1016/j.scitotenv.2021.152807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The introduction of waste containing heavy metals into the marine environment has been increasing for the past few decades, yet there are still several pending questions regarding how it impacts aquatic fauna. This study compared the effects of zinc exposure in its ionic- and nanoparticle forms on the mussel Mytilus galloprovincialis and sampled at different time-points. Zinc accumulation was observable after one week. Exposure to 100 μg L-1 of either form for 28 days also resulted in the higher depletion of fatty acids, lipid peroxidation products accumulation, and changes in the fatty acid profiles. This was also observed for lower concentrations, although to a smaller extent. Given the importance of fatty acids in the marine trophic chains, these zinc-induced alterations have significant potential of introducing negative impacts on the ecosystem and ultimately on human nutrition. Finally, we show that fatty acids may be used as efficient biomarkers of zinc-induced stress.
Collapse
Affiliation(s)
- Joana Roma
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal..
| | - Eduardo Feijão
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Catarina Vinagre
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal.; CCMAR, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal.; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana Rita Matos
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.; BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
13
|
Pajot A, Lavaud J, Carrier G, Garnier M, Saint-Jean B, Rabilloud N, Baroukh C, Bérard JB, Bernard O, Marchal L, Nicolau E. The Fucoxanthin Chlorophyll a/c-Binding Protein in Tisochrysis lutea: Influence of Nitrogen and Light on Fucoxanthin and Chlorophyll a/c-Binding Protein Gene Expression and Fucoxanthin Synthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:830069. [PMID: 35251102 PMCID: PMC8891753 DOI: 10.3389/fpls.2022.830069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/20/2022] [Indexed: 06/13/2023]
Abstract
We observed differences in lhc classification in Chromista. We proposed a classification of the lhcf family with two groups specific to haptophytes, one specific to diatoms, and one specific to seaweeds. Identification and characterization of the Fucoxanthin and Chlorophyll a/c-binding Protein (FCP) of the haptophyte microalgae Tisochrysis lutea were performed by similarity analysis. The FCP family contains 52 lhc genes in T. lutea. FCP pigment binding site candidates were characterized on Lhcf protein monomers of T. lutea, which possesses at least nine chlorophylls and five fucoxanthin molecules, on average, per monomer. The expression of T. lutea lhc genes was assessed during turbidostat and chemostat experiments, one with constant light (CL) and changing nitrogen phases, the second with a 12 h:12 h sinusoidal photoperiod and changing nitrogen phases. RNA-seq analysis revealed a dynamic decrease in the expression of lhc genes with nitrogen depletion. We observed that T. lutea lhcx2 was only expressed at night, suggesting that its role is to protect \cells from return of light after prolonged darkness exposure.
Collapse
Affiliation(s)
- Anne Pajot
- IFREMER, Physiology and Biotechnology of Algae Laboratory, Nantes, France
| | - Johann Lavaud
- LEMAR-Laboratoire des Sciences de l’Environnement Marin, UMR 6539, CNRS/Univ Brest/Ifremer/IRD, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Plouzané, France
| | - Gregory Carrier
- IFREMER, Physiology and Biotechnology of Algae Laboratory, Nantes, France
| | - Matthieu Garnier
- IFREMER, Physiology and Biotechnology of Algae Laboratory, Nantes, France
| | - Bruno Saint-Jean
- IFREMER, Physiology and Biotechnology of Algae Laboratory, Nantes, France
| | - Noémie Rabilloud
- IFREMER, Physiology and Biotechnology of Algae Laboratory, Nantes, France
| | - Caroline Baroukh
- IFREMER, Physiology and Biotechnology of Algae Laboratory, Nantes, France
| | | | - Olivier Bernard
- Université Côte d’Azur, Biocore, INRIA, CNRS, Sorbonne Université (LOV, UMR 7093), Sophia-Antipolis, France
| | | | - Elodie Nicolau
- IFREMER, Physiology and Biotechnology of Algae Laboratory, Nantes, France
| |
Collapse
|
14
|
Optimal Nitrate Supplementation in Phaeodactylum tricornutum Culture Medium Increases Biomass and Fucoxanthin Production. Foods 2022; 11:foods11040568. [PMID: 35206051 PMCID: PMC8871257 DOI: 10.3390/foods11040568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/31/2022] Open
Abstract
Phaeodactylum tricornutum is a model diatom with numerous potential applications in the industry, including the production of high-value carotenoid pigments such as fucoxanthin. This compound is a potent antioxidant currently extracted mainly from brown macroalgae. Fucoxanthin exhibits several biological properties with well-known beneficial effects in the treatment and prevention of lifestyle-related diseases. P. tricornutum offers a valuable alternative to macroalgae for fucoxanthin production as it has a specific productivity that is 10-fold higher as compared with macroalgae. However, production processes still need to be optimised to become a cost-effective alternative. In this work, we investigated the optimal supplementation of nitrate in a cultivation medium that is currently used for P. tricornutum and how this nitrate concentration affects cell growth and fucoxanthin production. It has previously been shown that the addition of sodium nitrate increases productivity, but optimal conditions were not accurately determined. In this report, we observed that the continuous increase in nitrate concentration did not lead to an increase in biomass and fucoxanthin content, but there was rather a window of optimal values of nitrate that led to maximum growth and pigment production. These results are discussed considering both the scale up for industrial production and the profitability of the process, as well as the implications in the cell’s metabolism and effects in fucoxanthin production.
Collapse
|