1
|
Alathari MJA, Mashhadany YA, Bakar AAA, Mokhtar MHH, Bin Zan MSD, Arsad N. COVID-19 IgG antibodies detection based on CNN-BiLSTM algorithm combined with fiber-optic dataset. J Virol Methods 2024; 330:115011. [PMID: 39154936 DOI: 10.1016/j.jviromet.2024.115011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
The urgent need for efficient and accurate automated screening tools for COVID-19 detection has led to research efforts exploring various approaches. In this study, we present pioneering research on COVID-19 detection using a hybrid model that combines convolutional neural networks (CNN) with a bi-directional long short-term memory (Bi-LSTM) network, in conjunction with fiber optic data for SARS-CoV-2 Immunoglobulin G (IgG) antibodies. Our research introduces a comprehensive data preprocessing pipeline and evaluates the performance of four different deep learning (DL) algorithms: CNN, CNN-RNN, BiLSTM, and CNN-BiLSTM, in classifying samples as positive or negative for the COVID-19 virus. Among these, the CNN-BiLSTM classifier demonstrated superior performance on the training datasets, achieving an accuracy of 89 %, a recall of 88 %, a precision of 90 %, an F1-score of 89 %, a specificity of 90 %, a geometric mean (G-mean) of 89 %, and a receiver operating characteristic (ROC) of 96 %. In addition, the achieved classification results were compared with those reported in the literature. The findings indicate that the proposed model has promising potential for classifying COVID-19 and could serve as a valuable tool for healthcare professionals. The use of IgG antibodies to detect the virus enhances the specificity and accuracy of the diagnostic tool.
Collapse
Affiliation(s)
- Mohammed Jawad Ahmed Alathari
- UKM - Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia.
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, Anbar University, Anbar 00964, Iraq.
| | - Ahmad Ashrif A Bakar
- UKM - Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia.
| | - Mohd Hadri Hafiz Mokhtar
- UKM - Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia.
| | - Mohd Saiful Dzulkefly Bin Zan
- UKM - Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia.
| | - Norhana Arsad
- UKM - Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia.
| |
Collapse
|
2
|
Heredia-Negrón F, Tosado-Rodríguez EL, Meléndez-Berrios J, Nieves B, Amaya-Ardila CP, Roche-Lima A. Assessing the Impact of AI Education on Hispanic Healthcare Professionals' Perceptions and Knowledge. EDUCATION SCIENCES 2024; 14:339. [PMID: 38818527 PMCID: PMC11138866 DOI: 10.3390/educsci14040339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
This study investigates the awareness and perceptions of artificial intelligence (AI) among Hispanic healthcare-related professionals, focusing on integrating AI in healthcare. The study participants were recruited from an asynchronous course offered twice within a year at the University of Puerto Rico Medical Science Campus, titled "Artificial Intelligence and Machine Learning Applied to Health Disparities Research", which aimed to bridge the gaps in AI knowledge among participants. The participants were divided into Experimental (n = 32; data-illiterate) and Control (n = 18; data-literate) groups, and pre-test and post-test surveys were administered to assess knowledge and attitudes toward AI. Descriptive statistics, power analysis, and the Mann-Whitney U test were employed to determine the influence of the course on participants' comprehension and perspectives regarding AI. Results indicate significant improvements in knowledge and attitudes among participants, emphasizing the effectiveness of the course in enhancing understanding and fostering positive attitudes toward AI. Findings also reveal limited practical exposure to AI applications, highlighting the need for improved integration into education. This research highlights the significance of educating healthcare professionals about AI to enable its advantageous incorporation into healthcare procedures. The study provides valuable perspectives from a broad spectrum of healthcare workers, serving as a basis for future investigations and educational endeavors aimed at AI implementation in healthcare.
Collapse
Affiliation(s)
- Frances Heredia-Negrón
- CCRHD RCMI-Program, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00934, USA
| | | | - Joshua Meléndez-Berrios
- CCRHD RCMI-Program, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00934, USA
| | - Brenda Nieves
- CCRHD RCMI-Program, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00934, USA
| | - Claudia P. Amaya-Ardila
- Department of Biostatistics and Epidemiology, Medical Science Campus, University of Puerto Rico, San Juan, PR 00934, USA
| | - Abiel Roche-Lima
- CCRHD RCMI-Program, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00934, USA
| |
Collapse
|
3
|
Kim HW, Cho M, Lee MC. A Novel Image Processing Method for Obtaining an Accurate Three-Dimensional Profile of Red Blood Cells in Digital Holographic Microscopy. Biomimetics (Basel) 2023; 8:563. [PMID: 38132502 PMCID: PMC10741912 DOI: 10.3390/biomimetics8080563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Recently, research on disease diagnosis using red blood cells (RBCs) has been active due to the advantage that it is possible to diagnose many diseases with a drop of blood in a short time. Representatively, there are disease diagnosis technologies that utilize deep learning techniques and digital holographic microscope (DHM) techniques. However, three-dimensional (3D) profile obtained by DHM has a problem of random noise caused by the overlapping DC spectrum and sideband in the Fourier domain, which has the probability of misjudging diseases in deep learning technology. To reduce random noise and obtain a more accurate 3D profile, in this paper, we propose a novel image processing method which randomly selects the center of the high-frequency sideband (RaCoHS) in the Fourier domain. This proposed algorithm has the advantage of filtering while using only recorded hologram information to maintain high-frequency information. We compared and analyzed the conventional filtering method and the general image processing method to verify the effectiveness of the proposed method. In addition, the proposed image processing algorithm can be applied to all digital holography technologies including DHM, and in particular, it is expected to have a great effect on the accuracy of disease diagnosis technologies using DHM.
Collapse
Affiliation(s)
- Hyun-Woo Kim
- Department of Computer Science and Networks, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka 820-8502, Japan;
| | - Myungjin Cho
- School of ICT, Robotics, and Mechanical Engineering, Hankyong National University, Institute of Information and Telecommunication Convergence, 327 Chungang-ro, Anseong 17579, Kyonggi-do, Republic of Korea
| | - Min-Chul Lee
- Department of Computer Science and Networks, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka 820-8502, Japan;
| |
Collapse
|
4
|
Rehman A, Xing H, Adnan Khan M, Hussain M, Hussain A, Gulzar N. Emerging technologies for COVID (ET-CoV) detection and diagnosis: Recent advancements, applications, challenges, and future perspectives. Biomed Signal Process Control 2023; 83:104642. [PMID: 36818992 PMCID: PMC9917176 DOI: 10.1016/j.bspc.2023.104642] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/29/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023]
Abstract
In light of the constantly changing terrain of the COVID outbreak, medical specialists have implemented proactive schemes for vaccine production. Despite the remarkable COVID-19 vaccine development, the virus has mutated into new variants, including delta and omicron. Currently, the situation is critical in many parts of the world, and precautions are being taken to stop the virus from spreading and mutating. Early identification and diagnosis of COVID-19 are the main challenges faced by emerging technologies during the outbreak. In these circumstances, emerging technologies to tackle Coronavirus have proven magnificent. Artificial intelligence (AI), big data, the internet of medical things (IoMT), robotics, blockchain technology, telemedicine, smart applications, and additive manufacturing are suspicious for detecting, classifying, monitoring, and locating COVID-19. Henceforth, this research aims to glance at these COVID-19 defeating technologies by focusing on their strengths and limitations. A CiteSpace-based bibliometric analysis of the emerging technology was established. The most impactful keywords and the ongoing research frontiers were compiled. Emerging technologies were unstable due to data inconsistency, redundant and noisy datasets, and the inability to aggregate the data due to disparate data formats. Moreover, the privacy and confidentiality of patient medical records are not guaranteed. Hence, Significant data analysis is required to develop an intelligent computational model for effective and quick clinical diagnosis of COVID-19. Remarkably, this article outlines how emerging technology has been used to counteract the virus disaster and offers ongoing research frontiers, directing readers to concentrate on the real challenges and thus facilitating additional explorations to amplify emerging technologies.
Collapse
Affiliation(s)
- Amir Rehman
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756, China
| | - Huanlai Xing
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756, China
| | - Muhammad Adnan Khan
- Pattern Recognition and Machine Learning, Department of Software, Gachon University, Seongnam 13557, Republic of Korea
- Riphah School of Computing & Innovation, Faculty of Computing, Riphah International University, Lahore Campus, Lahore 54000, Pakistan
| | - Mehboob Hussain
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756, China
| | - Abid Hussain
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756, China
| | - Nighat Gulzar
- School of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| |
Collapse
|
5
|
Hayat A, Baglat P, Mendonça F, Mostafa SS, Morgado-Dias F. Novel Comparative Study for the Detection of COVID-19 Using CT Scan and Chest X-ray Images. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1268. [PMID: 36674023 PMCID: PMC9858730 DOI: 10.3390/ijerph20021268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The number of coronavirus disease (COVID-19) cases is constantly rising as the pandemic continues, with new variants constantly emerging. Therefore, to prevent the virus from spreading, coronavirus cases must be diagnosed as soon as possible. The COVID-19 pandemic has had a devastating impact on people's health and the economy worldwide. For COVID-19 detection, reverse transcription-polymerase chain reaction testing is the benchmark. However, this test takes a long time and necessitates a lot of laboratory resources. A new trend is emerging to address these limitations regarding the use of machine learning and deep learning techniques for automatic analysis, as these can attain high diagnosis results, especially by using medical imaging techniques. However, a key question arises whether a chest computed tomography scan or chest X-ray can be used for COVID-19 detection. A total of 17,599 images were examined in this work to develop the models used to classify the occurrence of COVID-19 infection, while four different classifiers were studied. These are the convolutional neural network (proposed architecture (named, SCovNet) and Resnet18), support vector machine, and logistic regression. Out of all four models, the proposed SCoVNet architecture reached the best performance with an accuracy of almost 99% and 98% on chest computed tomography scan images and chest X-ray images, respectively.
Collapse
Affiliation(s)
- Ahatsham Hayat
- University of Madeira, 9000-082 Funchal, Portugal
- Interactive Technologies Institute (ITI/LARSyS and ARDITI), 9020-105 Funchal, Portugal
| | - Preety Baglat
- University of Madeira, 9000-082 Funchal, Portugal
- Interactive Technologies Institute (ITI/LARSyS and ARDITI), 9020-105 Funchal, Portugal
| | - Fábio Mendonça
- University of Madeira, 9000-082 Funchal, Portugal
- Interactive Technologies Institute (ITI/LARSyS and ARDITI), 9020-105 Funchal, Portugal
| | | | - Fernando Morgado-Dias
- University of Madeira, 9000-082 Funchal, Portugal
- Interactive Technologies Institute (ITI/LARSyS and ARDITI), 9020-105 Funchal, Portugal
| |
Collapse
|
6
|
Lasker A, Obaidullah SM, Chakraborty C, Roy K. Application of Machine Learning and Deep Learning Techniques for COVID-19 Screening Using Radiological Imaging: A Comprehensive Review. SN COMPUTER SCIENCE 2022; 4:65. [PMID: 36467853 PMCID: PMC9702883 DOI: 10.1007/s42979-022-01464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022]
Abstract
Lung, being one of the most important organs in human body, is often affected by various SARS diseases, among which COVID-19 has been found to be the most fatal disease in recent times. In fact, SARS-COVID 19 led to pandemic that spreads fast among the community causing respiratory problems. Under such situation, radiological imaging-based screening [mostly chest X-ray and computer tomography (CT) modalities] has been performed for rapid screening of the disease as it is a non-invasive approach. Due to scarcity of physician/chest specialist/expert doctors, technology-enabled disease screening techniques have been developed by several researchers with the help of artificial intelligence and machine learning (AI/ML). It can be remarkably observed that the researchers have introduced several AI/ML/DL (deep learning) algorithms for computer-assisted detection of COVID-19 using chest X-ray and CT images. In this paper, a comprehensive review has been conducted to summarize the works related to applications of AI/ML/DL for diagnostic prediction of COVID-19, mainly using X-ray and CT images. Following the PRISMA guidelines, total 265 articles have been selected out of 1715 published articles till the third quarter of 2021. Furthermore, this review summarizes and compares varieties of ML/DL techniques, various datasets, and their results using X-ray and CT imaging. A detailed discussion has been made on the novelty of the published works, along with advantages and limitations.
Collapse
Affiliation(s)
- Asifuzzaman Lasker
- Department of Computer Science & Engineering, Aliah University, Kolkata, India
| | - Sk Md Obaidullah
- Department of Computer Science & Engineering, Aliah University, Kolkata, India
| | - Chandan Chakraborty
- Department of Computer Science & Engineering, National Institute of Technical Teachers’ Training & Research Kolkata, Kolkata, India
| | - Kaushik Roy
- Department of Computer Science, West Bengal State University, Barasat, India
| |
Collapse
|
7
|
Nallakaruppan MK, Ramalingam S, Somayaji SRK, Prathiba SB. Comparative Analysis of Deep Learning Models Used in Impact Analysis of Coronavirus Chest X-ray Imaging. Biomedicines 2022; 10:2791. [PMID: 36359310 PMCID: PMC9687278 DOI: 10.3390/biomedicines10112791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The impact analysis of deep learning models for COVID-19-infected X-ray images is an extremely challenging task. Every model has unique capabilities that can provide suitable solutions for some given problem. The prescribed work analyzes various deep learning models that are used for capturing the chest X-ray images. Their performance-defining factors, such as accuracy, f1-score, training and the validation loss, are tested with the support of the training dataset. These deep learning models are multi-layered architectures. These parameters fluctuate based on the behavior of these layers, learning rate, training efficiency, or over-fitting of models. This may in turn introduce sudden changes in the values of training accuracy, testing accuracy, loss or validation loss, f1-score, etc. Some models produce linear responses with respect to the training and testing data, such as Xception, but most of the models provide a variation of these parameters either in the accuracy or the loss functions. The prescribed work performs detailed experimental analysis of deep learning image neural network models and compares them with the above said parameters with detailed analysis of these parameters with their responses regarding accuracy and loss functions. This work also analyses the suitability of these model based on the various parameters, such as the accuracy and loss functions to various applications. This prescribed work also lists out various challenges on the implementation and experimentation of these models. Solutions are provided for enhancing the performance of these deep learning models. The deep learning models that are used in the prescribed work are Resnet, VGG16, Resnet with VGG, Inception V3, Xception with transfer learning, and CNN. The model is trained with more than 1500 images of the chest-X-ray data and tested with around 132 samples of the X-ray image dataset. The prescribed work analyzes the accuracy, f1-score, recall, and precision of these models and analyzes these parameters. It also measures parameters such as training accuracy, testing accuracy, loss, and validation loss. Each epoch of every model is recorded to measure the changes in these parameters during the experimental analysis. The prescribed work provides insight for future research through various challenges and research findings with future directions.
Collapse
Affiliation(s)
| | - Subhashini Ramalingam
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | | | - Sahaya Beni Prathiba
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India
| |
Collapse
|
8
|
Pasic M, Begic E, Kadic F, Gavrankapetanovic A, Pasic M. Development of neural network models for prediction of the outcome of COVID-19 hospitalized patients based on initial laboratory findings, demographics, and comorbidities. J Family Med Prim Care 2022; 11:4488-4495. [PMID: 36352962 PMCID: PMC9638557 DOI: 10.4103/jfmpc.jfmpc_113_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/25/2022] Open
Abstract
Background During the process of the treatment of COVID-19 hospitalized patients, physicians still face a lot of unknowns and problems. Despite the application of the treatment protocol, it is still unknown why the medical status of a certain number of patients worsens and ends with death. Many factors were analyzed for the prediction of the clinical outcome of the patients using different methods. The aim of this paper was to develop a prediction model based on initial laboratory blood test results, accompanying comorbidities, and demographics to help physicians to better understand the medical state of patients with respect to possible clinical outcomes using neural networks, hypothesis testing, and confidence intervals. Methods The research had retrospective-prospective, descriptive, and analytical character. As inputs for this research, 12 components of laboratory blood test results, six accompanying comorbidities, and demographics (age and gender) data were collected from hospital information system in Sarajevo for each patient from a sample of 634 hospitalized patients. Clinical outcome of the hospitalized patients, survival or death, was recorded 30 days after admission to the hospital. The prediction model was designed using a neural network. In addition, formal hypothesis tests were performed to investigate whether there were significant differences in laboratory blood test results and age between patients who died and those who survived, including the construction of 95% confidence intervals. Results In this paper, 11 neural networks were developed with different threshold values to determine the optimal neural network with the highest prediction performance. The performances of the neural networks were evaluated by accuracy, precision, sensitivity, and specificity. Optimal neural network model evaluation metrics are: accuracy = 87.78%, precision = 96.37%, sensitivity = 90.07%, and specificity = 62.16%. Significantly higher values (P < 0.05) of blood laboratory result components and age were detected in patients who died. Conclusion Optimal neural network model, results of hypothesis tests, and confidence intervals could help to predict, analyze, and better understand the medical state of COVID-19 hospitalized patients and thus reduce the mortality rate.
Collapse
Affiliation(s)
- Mirza Pasic
- Department of Industrial Engineering and Management, Mechanical Engineering Faculty, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Edin Begic
- Department of Cardiology, General Hospital „Prim. dr. Abdulah Nakaš”, 71000 Sarajevo, Bosnia and Herzegovina Department of Pharmacology, Faculty of Medicine, University School of Science and Technology, 71000 Sarajevo, Bosnia and Herzegovina
- Department of Cardiology, General Hospital „Prim. dr. Abdulah Nakaš”, 71000 Sarajevo, Bosnia and Herzegovina Gavrankapetanovic - Department of Surgery, General Hospital „Prim. dr. Abdulah Nakaš”, 71000 Sarajevo, Bosnia and Herzegovina
| | - Faris Kadic
- Department of Internal Medicine, General Hospital “Prim.Dr. Abdulah Nakaš”, Sarajevo, Bosnia and Herzegovina
| | - Ali Gavrankapetanovic
- Department of Surgery, General Hospital “Prim.Dr. Abdulah Nakaš”, Sarajevo, Bosnia and Herzegovina
| | - Mugdim Pasic
- Department of Industrial Engineering and Management, Mechanical Engineering Faculty, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
9
|
Waheed W, Saylan S, Hassan T, Kannout H, Alsafar H, Alazzam A. A deep learning-driven low-power, accurate, and portable platform for rapid detection of COVID-19 using reverse-transcription loop-mediated isothermal amplification. Sci Rep 2022; 12:4132. [PMID: 35260715 PMCID: PMC8903312 DOI: 10.1038/s41598-022-07954-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
This paper presents a deep learning-driven portable, accurate, low-cost, and easy-to-use device to perform Reverse-Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) to facilitate rapid detection of COVID-19. The 3D-printed device-powered using only a 5 Volt AC-DC adapter-can perform 16 simultaneous RT-LAMP reactions and can be used multiple times. Moreover, the experimental protocol is devised to obviate the need for separate, expensive equipment for RNA extraction in addition to eliminating sample evaporation. The entire process from sample preparation to the qualitative assessment of the LAMP amplification takes only 45 min (10 min for pre-heating and 35 min for RT-LAMP reactions). The completion of the amplification reaction yields a fuchsia color for the negative samples and either a yellow or orange color for the positive samples, based on a pH indicator dye. The device is coupled with a novel deep learning system that automatically analyzes the amplification results and pays attention to the pH indicator dye to screen the COVID-19 subjects. The proposed device has been rigorously tested on 250 RT-LAMP clinical samples, where it achieved an overall specificity and sensitivity of 0.9666 and 0.9722, respectively with a recall of 0.9892 for Ct < 30. Also, the proposed system can be widely used as an accurate, sensitive, rapid, and portable tool to detect COVID-19 in settings where access to a lab is difficult, or the results are urgently required.
Collapse
Affiliation(s)
- Waqas Waheed
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
| | - Sueda Saylan
- System on Chip Center (SOCC), Khalifa University, Abu Dhabi, UAE
- Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, UAE
| | - Taimur Hassan
- Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, UAE
- Center for Cyber-Physical Systems (C2PS), EECS Department, Khalifa University, Abu Dhabi, UAE
| | - Hussain Kannout
- Center for Biotechnology (BTC), Khalifa University, Abu Dhabi, UAE
| | - Habiba Alsafar
- Center for Biotechnology (BTC), Khalifa University, Abu Dhabi, UAE
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
| | - Anas Alazzam
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE.
- System on Chip Center (SOCC), Khalifa University, Abu Dhabi, UAE.
| |
Collapse
|
10
|
A Review of Deep Learning Algorithms and Their Applications in Healthcare. ALGORITHMS 2022. [DOI: 10.3390/a15020071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Deep learning uses artificial neural networks to recognize patterns and learn from them to make decisions. Deep learning is a type of machine learning that uses artificial neural networks to mimic the human brain. It uses machine learning methods such as supervised, semi-supervised, or unsupervised learning strategies to learn automatically in deep architectures and has gained much popularity due to its superior ability to learn from huge amounts of data. It was found that deep learning approaches can be used for big data analysis successfully. Applications include virtual assistants such as Alexa and Siri, facial recognition, personalization, natural language processing, autonomous cars, automatic handwriting generation, news aggregation, the colorization of black and white images, the addition of sound to silent films, pixel restoration, and deep dreaming. As a review, this paper aims to categorically cover several widely used deep learning algorithms along with their architectures and their practical applications: backpropagation, autoencoders, variational autoencoders, restricted Boltzmann machines, deep belief networks, convolutional neural networks, recurrent neural networks, generative adversarial networks, capsnets, transformer, embeddings from language models, bidirectional encoder representations from transformers, and attention in natural language processing. In addition, challenges of deep learning are also presented in this paper, such as AutoML-Zero, neural architecture search, evolutionary deep learning, and others. The pros and cons of these algorithms and their applications in healthcare are explored, alongside the future direction of this domain. This paper presents a review and a checkpoint to systemize the popular algorithms and to encourage further innovation regarding their applications. For new researchers in the field of deep learning, this review can help them to obtain many details about the advantages, disadvantages, applications, and working mechanisms of a number of deep learning algorithms. In addition, we introduce detailed information on how to apply several deep learning algorithms in healthcare, such as in relation to the COVID-19 pandemic. By presenting many challenges of deep learning in one section, we hope to increase awareness of these challenges, and how they can be dealt with. This could also motivate researchers to find solutions for these challenges.
Collapse
|
11
|
Daily Living Activity Recognition In-The-Wild: Modeling and Inferring Activity-Aware Human Contexts. ELECTRONICS 2022. [DOI: 10.3390/electronics11020226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Advancement in smart sensing and computing technologies has provided a dynamic opportunity to develop intelligent systems for human activity monitoring and thus assisted living. Consequently, many researchers have put their efforts into implementing sensor-based activity recognition systems. However, recognizing people’s natural behavior and physical activities with diverse contexts is still a challenging problem because human physical activities are often distracted by changes in their surroundings/environments. Therefore, in addition to physical activity recognition, it is also vital to model and infer the user’s context information to realize human-environment interactions in a better way. Therefore, this research paper proposes a new idea for activity recognition in-the-wild, which entails modeling and identifying detailed human contexts (such as human activities, behavioral environments, and phone states) using portable accelerometer sensors. The proposed scheme offers a detailed/fine-grained representation of natural human activities with contexts, which is crucial for modeling human-environment interactions in context-aware applications/systems effectively. The proposed idea is validated using a series of experiments, and it achieved an average balanced accuracy of 89.43%, which proves its effectiveness.
Collapse
|
12
|
Empirical Study on Classifiers for Earlier Prediction of COVID-19 Infection Cure and Death Rate in the Indian States. Healthcare (Basel) 2022; 10:healthcare10010085. [PMID: 35052249 PMCID: PMC8775063 DOI: 10.3390/healthcare10010085] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/11/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
Machine Learning methods can play a key role in predicting the spread of respiratory infection with the help of predictive analytics. Machine Learning techniques help mine data to better estimate and predict the COVID-19 infection status. A Fine-tuned Ensemble Classification approach for predicting the death and cure rates of patients from infection using Machine Learning techniques has been proposed for different states of India. The proposed classification model is applied to the recent COVID-19 dataset for India, and a performance evaluation of various state-of-the-art classifiers to the proposed model is performed. The classifiers forecasted the patients’ infection status in different regions to better plan resources and response care systems. The appropriate classification of the output class based on the extracted input features is essential to achieve accurate results of classifiers. The experimental outcome exhibits that the proposed Hybrid Model reached a maximum F1-score of 94% compared to Ensembles and other classifiers like Support Vector Machine, Decision Trees, and Gaussian Naïve Bayes on a dataset of 5004 instances through 10-fold cross-validation for predicting the right class. The feasibility of automated prediction for COVID-19 infection cure and death rates in the Indian states was demonstrated.
Collapse
|
13
|
Gudigar A, Raghavendra U, Nayak S, Ooi CP, Chan WY, Gangavarapu MR, Dharmik C, Samanth J, Kadri NA, Hasikin K, Barua PD, Chakraborty S, Ciaccio EJ, Acharya UR. Role of Artificial Intelligence in COVID-19 Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:8045. [PMID: 34884045 PMCID: PMC8659534 DOI: 10.3390/s21238045] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022]
Abstract
The global pandemic of coronavirus disease (COVID-19) has caused millions of deaths and affected the livelihood of many more people. Early and rapid detection of COVID-19 is a challenging task for the medical community, but it is also crucial in stopping the spread of the SARS-CoV-2 virus. Prior substantiation of artificial intelligence (AI) in various fields of science has encouraged researchers to further address this problem. Various medical imaging modalities including X-ray, computed tomography (CT) and ultrasound (US) using AI techniques have greatly helped to curb the COVID-19 outbreak by assisting with early diagnosis. We carried out a systematic review on state-of-the-art AI techniques applied with X-ray, CT, and US images to detect COVID-19. In this paper, we discuss approaches used by various authors and the significance of these research efforts, the potential challenges, and future trends related to the implementation of an AI system for disease detection during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anjan Gudigar
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - U Raghavendra
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Sneha Nayak
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Chui Ping Ooi
- School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore;
| | - Wai Yee Chan
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Mokshagna Rohit Gangavarapu
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Chinmay Dharmik
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Jyothi Samanth
- Department of Cardiovascular Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.K.); (K.H.)
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.K.); (K.H.)
| | - Prabal Datta Barua
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW 2010, Australia;
- School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Subrata Chakraborty
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia;
- Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia
| | - Edward J. Ciaccio
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA;
| | - U. Rajendra Acharya
- School of Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore;
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
14
|
Ensemble Deep Learning for the Detection of COVID-19 in Unbalanced Chest X-ray Dataset. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ongoing COVID-19 pandemic has caused devastating effects on humanity worldwide. With practical advantages and wide accessibility, chest X-rays (CXRs) play vital roles in the diagnosis of COVID-19 and the evaluation of the extent of lung damages incurred by the virus. This study aimed to leverage deep-learning-based methods toward the automated classification of COVID-19 from normal and viral pneumonia on CXRs, and the identification of indicative regions of COVID-19 biomarkers. Initially, we preprocessed and segmented the lung regions usingDeepLabV3+ method, and subsequently cropped the lung regions. The cropped lung regions were used as inputs to several deep convolutional neural networks (CNNs) for the prediction of COVID-19. The dataset was highly unbalanced; the vast majority were normal images, with a small number of COVID-19 and pneumonia images. To remedy the unbalanced distribution and to avoid biased classification results, we applied five different approaches: (i) balancing the class using weighted loss; (ii) image augmentation to add more images to minority cases; (iii) the undersampling of majority classes; (iv) the oversampling of minority classes; and (v) a hybrid resampling approach of oversampling and undersampling. The best-performing methods from each approach were combined as the ensemble classifier using two voting strategies. Finally, we used the saliency map of CNNs to identify the indicative regions of COVID-19 biomarkers which are deemed useful for interpretability. The algorithms were evaluated using the largest publicly available COVID-19 dataset. An ensemble of the top five CNNs with image augmentation achieved the highest accuracy of 99.23% and area under curve (AUC) of 99.97%, surpassing the results of previous studies.
Collapse
|
15
|
Narin A. Accurate detection of COVID-19 using deep features based on X-Ray images and feature selection methods. Comput Biol Med 2021; 137:104771. [PMID: 34450381 PMCID: PMC8373589 DOI: 10.1016/j.compbiomed.2021.104771] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 01/19/2023]
Abstract
COVID-19 is a severe epidemic affecting the whole world. This epidemic, which has a high mortality rate, affects the health systems and the economies of countries significantly. Therefore, ending the epidemic is one of the most important priorities of all states. For this, automatic diagnosis and detection systems are very important to control the epidemic. In addition to the recommendation of the “reverse transcription-polymerase chain reaction (RT-PCR)” test, additional diagnosis and detection systems are required. Hence, based on the fact that the COVID-19 virus attacks the lungs, automatic diagnosis and detection systems developed using X-ray and CT images come to the fore. In this study, a high-performance detection system was implemented with three different CNN (ResNet50, ResNet101, InceptionResNetV2) models and X-ray images of three different classes (COVID-19, Normal, Pneumonia). The particle swarm optimization (PSO) algorithm and ant colony algorithm (ACO) was applied among the feature selection methods, and their performances were compared. The results were obtained using support vector machines (SVM) and a k-nearest neighbor (k-NN) classifier using the 10-fold cross-validation method. The highest overall accuracy performance was 99.83% with the SVM algorithm without feature selection. The highest performance was achieved after the feature selection process with the SVM + PSO method as 99.86%. As a result, higher performance with less computational load has been achieved by realizing the feature selection. Based on the high results obtained, it is thought that this study will benefit radiologists as a decision support system.
Collapse
Affiliation(s)
- Ali Narin
- Zonguldak Bulent Ecevit University, Faculty of Engineering, Department of Electrical and Electronics Engineering, Zonguldak, Turkey.
| |
Collapse
|
16
|
Mahmood AF, Mahmood SW. Auto informing COVID-19 detection result from x-ray/CT images based on deep learning. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:084102. [PMID: 34470404 DOI: 10.1063/5.0059829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
It is no secret to all that the corona pandemic has caused a decline in all aspects of the world. Therefore, offering an accurate automatic diagnostic system is very important. This paper proposed an accurate COVID-19 system by testing various deep learning models for x-ray/computed tomography (CT) medical images. A deep preprocessing procedure was done with two filters and segmentation to increase classification results. According to the results obtained, 99.94% of accuracy, 98.70% of sensitivity, and 100% of specificity scores were obtained by the Xception model in the x-ray dataset and the InceptionV3 model for CT scan images. The compared results have demonstrated that the proposed model is proven to be more successful than the deep learning algorithms in previous studies. Moreover, it has the ability to automatically notify the examination results to the patients, the health authority, and the community after taking any x-ray or CT images.
Collapse
Affiliation(s)
| | - Saja Waleed Mahmood
- University of Mosul, College of Engineering, Computer Engineering, Mosul, Iraq
| |
Collapse
|