1
|
Radwanski M, Zmyslowska-Polakowska E, Osica K, Krasowski M, Sauro S, Hardan L, Lukomska-Szymanska M. Mechanical properties of modern restorative "bioactive" dental materials - an in vitro study. Sci Rep 2025; 15:3552. [PMID: 39875486 PMCID: PMC11775110 DOI: 10.1038/s41598-025-86595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
This study aimed at assessing the mechanical properties and degradation of commercial bioactive materials. The bioactive materials (Activa Bioactive Restorative, Beautifil Flow Plus F00, F03, Predicta Bulk Bioactive) and composite resin Filtek Supreme Flow were submitted to flexural and diametral tensile strength tests (FS, DTS), modulus of elasticity (ME) evaluation, and analysis of aging in 70% ethanol and saliva on their hardness and sorption. The results for DTS ranged from 33.16 MPa (Beautifil Flow Plus F03) to 47.74 MPa (Filtek Supreme Flow). The highest FS was 120.40 MPa (Predicta Bulk Bioactive), while the lowest values were 86.55 MPa (Activa Bioactive Restorative). Activa Bioactive Restorative showed the lowest ME, as well as the highest water sorption both in alcohol and artificial saliva. Moreover, aging in saliva induced a significant decrease in hardness for Activa Restorative (p < .01). Alcohol storage caused a significant decrease in hardness for all materials (p < .0001). All tested materials met the basic requirements for light-curing materials in terms of DTS and FS. However, all materials showed higher sorption in alcohol than in saliva, while hardness decreased significantly after 30 days. Predicta Bulk Bioactive presented the highest mechanical parameters, initial hardness, and the lowest sorption of alcohol and saliva.
Collapse
Affiliation(s)
| | | | - Karolina Osica
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska Str, Lodz, 92-213, Poland
| | - Michal Krasowski
- Material Science Laboratory, Medical University of Lodz, 251 Pomorska Str, Lodz, 92-213, Poland
| | - Salvatore Sauro
- Dental Biomaterials and Minimally Invasive Dentistry, Departamento de Odontología, Facultad de Ciencias de la Salud, Universidad CEU-Cardenal Herrera, C/Del Pozo s/n, Alfara del Patriarca, Valencia, 46115, Spain
- Department of Therapeutic Dentistry, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut, 1107 2180, Lebanon
| | - Monika Lukomska-Szymanska
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska Str, Lodz, 92-213, Poland.
| |
Collapse
|
2
|
Thadathil Varghese J, Raju R, Farrar P, Prentice L, Prusty BG. Comparative analysis of self-cure and dual cure-dental composites on their physico-mechanical behaviour. Aust Dent J 2024; 69:124-138. [PMID: 38131257 DOI: 10.1111/adj.13004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Clinical practitioners may have become familiar with the rapid transformation of dental composites. However, they may not scientifically understand the factors influencing the mechanical and physical properties. Scientific knowledge of filler-resin interaction can significantly improve clinical understanding of resin composites. Several independent studies have examined the mechanical and physico-mechanical properties of dental resin composites; however, no comprehensive study has examined the influence of fillers and resin materials on the physico-mechanical properties of both self-cure and dual-cure composites. METHODS This study performed investigations on the physico-mechanical behaviour of four commercially available dual-cure dental composites (Bioactive, Fill Up!, Surefil One, Cention N) and two commercially available self-cure dental composites (Stela Capsule and Stela Automix). Test specimens for flexural and compressive strength, microhardness, fracture toughness, and hydrolytic behaviour were prepared and tested as per respective standards. The data sets were statistically analysed using one-way ANOVA and Tukey's post-hoc comparison. RESULTS There was a substantial variation in flexural strength and modulus values in this study, ranging from 32.0 to 113.4 MPa and 2.36 to 12.07 GPa, respectively. Similarly, there were significant differences in compressive strength between the materials in this study, ranging from 119.3 to 223.5 MPa. The highest fracture toughness value was found to be 1.41 MPa.m0.5, while the lowest value was 0.43 MPa.m0.5. Variations in surface microhardness were significant (24.11-68.0 N/mm2), which correlated with the filler content. Water sorption and solubility demonstrated high variations among materials, with Surefil One exceeding ISO 4049 thresholds significantly. CONCLUSIONS A linear correlation can be established between surface microhardness (HV) and flexural and compressive moduli, as well as filler content (wt.%). However, both flexural and compressive strengths are impacted by the resin's constituent monomers and the resin-filler matrix's cross-linking capability. Additionally, factors such as filler size, shape, and the cross-linking ability of the resin-filler matrix play a crucial role in fracture toughness and the propagation of cracks within the restoration. Also, resin monomers and filler particle size affect the hydrolytic degradation characteristics of composites, which can also affect their mechanical properties. © 2023 Australian Dental Association.
Collapse
Affiliation(s)
- J Thadathil Varghese
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - R Raju
- ARC Centre for Automated Manufacture of Advanced Composites, School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - P Farrar
- SDI Limited, Bayswater, Victoria, Australia
| | - L Prentice
- SDI Limited, Bayswater, Victoria, Australia
| | - B G Prusty
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales, Australia
- ARC Centre for Automated Manufacture of Advanced Composites, School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Composites Manufacturing CRC Ltd. (ACM CRC), University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Juszkiewicz A, Maciejewska M. Tea Grounds as a Waste Biofiller for Natural Rubber. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1516. [PMID: 38612031 PMCID: PMC11012830 DOI: 10.3390/ma17071516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
The aim of this study was the utilization of ground tea waste (GT) left after brewing black tea as a biofiller in natural rubber (NR) composites. Ionic liquids (ILs), i.e., 1-ethyl-3-methylimidazolium lactate and 1-benzyl-3-methylimidazolium chloride, often used to extract phytochemicals from tea, were applied to improve the dispersibility of GT particles in the elastomeric matrix. The influence of GT loading and ILs on curing characteristics, crosslink density, mechanical properties, thermal stability and resistance of NR composites to thermo-oxidative aging was investigated. The amount of GT did not significantly affect curing characteristics and crosslink density of NR composites, but had serious impact on tensile properties. Applying 10 phr of GT improved the tensile strength by 40% compared to unfilled NR. Further increasing GT content worsened the tensile strength due to the agglomeration of biofiller in the elastomer matrix. ILs significantly improved the dispersion of GT particles in the elastomer and increased the crosslink density by 20% compared to the benchmark. Owing to the poor thermal stability of pure GT, it reduced the thermal stability of vulcanizates compared to unfilled NR. Above all, GT-filled NR exhibited enhanced resistance to thermo-oxidation since the aging factor increased by 25% compared to the unfilled vulcanizate.
Collapse
Affiliation(s)
| | - Magdalena Maciejewska
- Department of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego Street 16, 90-537 Lodz, Poland;
| |
Collapse
|
4
|
Albelasy EH, Chen R, Fok A, Montasser M, Hamama HH, Mahmoud SH, Abdelrehim T, Chew HP. Inhibition of Caries around Restoration by Ion-Releasing Restorative Materials: An In Vitro Optical Coherence Tomography and Micro-Computed Tomography Evaluation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5558. [PMID: 37629848 PMCID: PMC10456765 DOI: 10.3390/ma16165558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
The objective of this study was firstly to assess the demineralization inhibitory effect of ion-releasing restorations in enamel adjacent to restoration using a biofilm caries model and secondly to compare the effect to that in a chemical caries model. Fifty-six bovine incisors were filled with either Surefil one (SuO), Cention N (CN) (both ion-releasing materials), Ketac-Molar (GIC) or Powerfill resin composite (RC). The restored teeth were then randomly divided into 2 groups according to the used caries model (biofilm or chemical caries model). The micro-computed tomography (MicroCt) and optical coherence tomography (OCT) outcome measures used to evaluate demineralization inhibition effects were lesion depth, LD and increase in OCT integrated reflectivity, ΔIR, at five different depths. It was observed that all outcome measures of CN were statistically the same as those of GIC and conversely with those of RC. This was also the case for SuO except for LD, which was statistically the same as RC. When comparing the two caries models, LD of the biofilm model was statistically deeper (p < 0.05) than the chemical model for all four materials. In conclusion, CN and SuO have similar demineralization inhibitory effects as GIC, and the biofilm caries model is more discriminatory in differentiating demineralization inhibitory effects of ion-releasing restorative material.
Collapse
Affiliation(s)
- Eman H. Albelasy
- Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Algomhoria Street, Mansoura 35516, Egypt; (E.H.A.); (M.M.); (H.H.H.); (S.H.M.)
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (A.F.)
| | - Ruoqiong Chen
- Department of Diagnostics and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex Fok
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (A.F.)
| | - Marmar Montasser
- Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Algomhoria Street, Mansoura 35516, Egypt; (E.H.A.); (M.M.); (H.H.H.); (S.H.M.)
| | - Hamdi H. Hamama
- Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Algomhoria Street, Mansoura 35516, Egypt; (E.H.A.); (M.M.); (H.H.H.); (S.H.M.)
- Faculty of Dentistry, New-Mansoura University, New-Mansoura 35712, Egypt
| | - Salah H. Mahmoud
- Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Algomhoria Street, Mansoura 35516, Egypt; (E.H.A.); (M.M.); (H.H.H.); (S.H.M.)
- Conservative Dentistry Department, Faculty of Dentistry, Horus University, New-Dumyat 34517, Egypt
| | - Tamer Abdelrehim
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (A.F.)
| | - Hooi Pin Chew
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (A.F.)
| |
Collapse
|
5
|
Daabash R, Alshabib A, Alqahtani MQ, Price RB, Silikas N, Alshaafi MM. Ion releasing direct restorative materials: Key mechanical properties and wear. Dent Mater 2022; 38:1866-1877. [DOI: 10.1016/j.dental.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/15/2022]
|
6
|
Abstract
The present research paper aims to evaluate the tribological behavior of coatings in applications where high wear resistance and low friction are required, commonly used in refurbishment of various items of industrial equipment. Twelve tribological pairs made of six different coatings, corresponding to three different coating families, have been studied: TiSiN, Cr, and DLC (diamond-like carbon). The coatings were produced using a technique called high power impulse magnetron sputtering (HiPIMS). To perform the tribological tests, two methods were used to measure friction, namely energy dissipation in vibratory systems and sliding indentation. The first technique is based on the evaluation of free vibration movement with damping of a mass–spring system induced by a mechanical impulse where the contact between the vibrating device and the sample to be analyzed acts as an additional energy dissipation. At the same time, friction is determined through the inverse analysis by comparing the experimental vibratory movement with the analytical equation of the movement. The determination of the load-bearing capacity of the various coatings has been evaluated using sliding indentation tests against spherical bodies using a constant sliding speed and increasing normal loads. The results obtained in both tests allow to verify a relationship between the friction coefficients of the studied tribological pairs: µDLC < µTiSiN < µCr. This relationship does not occur in the case of the vibration test with the 100Cr6 counter-body.
Collapse
|