1
|
Saad H, Nour El-Dien FA, El-Gamel NEA, Abo Dena AS. Removal of bromophenol blue from polluted water using a novel azo-functionalized magnetic nano-adsorbent. RSC Adv 2024; 14:1316-1329. [PMID: 38174277 PMCID: PMC10763660 DOI: 10.1039/d3ra04222g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Water pollution from organic dyes poses a serious danger to the environment. In the present work, we report a novel adsorbent (ADFS) based on azo-dye-functionalized superparamagnetic iron oxide nanoparticles (SPIONs) for the removal of the anionic dye bromophenol blue (BPB) from contaminated water. The fabricated SPIONs, azo dye, and ADFS adsorbent were characterized with FTIR and UV-vis absorption spectroscopy, 1HNMR spectroscopy, mass spectrometry, SEM imaging, dynamic light scattering (DLS), zeta potential measurements, vibrating sample magnetometry, thermogravimetric analysis, differential thermal analysis, and X-ray diffraction analysis. DLS measurements showed a particle size of 46.1 and 176.5 nm for the SPIONs and the ADFS, respectively. The adsorbent exhibited an adsorption capacity of 7.43 mg g-1 and followed the pseudo-second-order kinetics model (r2 = 0.9981). The ADFS could efficiently remove BPB from water after stirring for 120 minutes at room temperature and pH 2. The adsorption process was proved to occur via physisorption, as revealed by the Freundlich isotherm (n = 1.82 and KF = 11.5). Thermodynamic studies implied that the adsorption is spontaneous (-8.03 ≤ ΔG ≤ -0.58 kJ mol-1) and enthalpy-driven might take place via van der Waals interactions and/or hydrogen bonding (ΔH = -82.19 kJ mol-1 and ΔS = -0.24 kJ mol-1 K-1).
Collapse
Affiliation(s)
- Hadeel Saad
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
- General Organization for Export and Import Control Ramses Street Cairo Egypt
| | - F A Nour El-Dien
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Nadia E A El-Gamel
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed S Abo Dena
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR) Giza Egypt
- Faculty of Oral and Dental Medicine, Future University in Egypt (FUE) New Cairo Egypt
| |
Collapse
|
2
|
Abdel Maksoud MIA, Murad GA, Hassan HS. Utilization of carbon-coated ZrO 2/Mn-Mg-Zn ferrites nanostructures for the adsorption of Cs (I) and Sr (II) from the binary system: kinetic and equilibrium studies. BMC Chem 2023; 17:149. [PMID: 37925482 PMCID: PMC10625698 DOI: 10.1186/s13065-023-01069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
Carbon-coated ZrO2/Mn-Mg-Zn ferrites nanostructures (CZ-FN) have been prepared as a new inorganic sorbent to remove Cs (I) and Sr (II) from a waste stream. Adsorption of Cs (I) and Sr (II) has been implemented considering different noteworthy parameters, for example, shaking time and the optimum time achieved high adsorption capacity of both ions [103 and 41 mg/g for Sr (II) and Cs (I)] was found 30 min. Also, the impact of pH values was studied; the best pH value for the adsorption process is pH 6. The adsorption saturation capacity of CZ-FN is 420.22 and 250.45 mg/g for strontium and cesium, respectively. The solubility percentage of CZ-FN was calculated utilizing diverse molarities from HNO3, HCl, and NaOH as eluents, the obtained data reveals an increase in the solubility percentage with more increase in the molarity of the eluents. The elevation in the solubility percentage follows the following order; HNO3 < HCl < NaOH. The kinetic studies were applied using the nanolinear form of different kinetic models; it was found that the adsorption process obeys the nonlinear pseudo-second-order. According to equilibrium studies, the Langmuir model has been more accurate than the Freundlich model for adsorption in the case of binary systems. The values of Di for the strontium and cesium are 10-10 m2/s, which displays the chemisorption nature of this process. The greatest values of the desorption process for the strontium and cesium are 96.87% and 94.43 by 0.3 M of HNO3. This indicated that the carbon-coated ZrO2/Mn-Mg-Zn ferrites could be regenerated and recycled to remove strontium and cesium ions from waste streams.
Collapse
Affiliation(s)
- M I A Abdel Maksoud
- Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - G A Murad
- Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority (EAEA), Inshas, 13759, Egypt.
| | - H S Hassan
- Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority (EAEA), Inshas, 13759, Egypt
| |
Collapse
|
3
|
Ghaly M, Masry BA, Abu Elgoud EM. Fabrication of magnesium oxide-calcium alginate hydrogel for scaffolding yttrium and neodymium from aqueous solutions. Sci Rep 2023; 13:15891. [PMID: 37741840 PMCID: PMC10517964 DOI: 10.1038/s41598-023-42342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
In this research, the possibility of using sustainable nano-MgO/Ca-alginate beads for efficient sorption of some rare earth metal ions such as neodymium(III) and yttrium(III) from an aqueous acidic solution was explored. The nano-MgO/Ca-alginate beads adsorbent was characterized before and after sorption of Nd(III) and Y(III) using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), energy dispersive X-ray analysis (EDX), and X-ray diffraction (XRD) techniques. Batch sorption parameters were investigated, such as contact time, initial metal ion concentration, and adsorbent dose (V/m). The calculated experimental results showed that the suitable selected sorption conditions were carried out using 100 mg/L of Nd(III) and Y(III) with nano MgO/Ca-alginate beads (contact time = 90 min, pH = 2, V/m = 0.05 L/g). The maximum sorption capacity of 0.1 g of nano MgO/Ca-alginate was found to be 7.85 mg/g and 5.60 mg/g for Nd(III) and Y(III), respectively. The desorption of Nd(III) and Y(III) from the loaded nano MgO/Ca-alginate was achieved with 1.0 M sulfamic acid and found to be 51.0% and 44.2%, respectively. The calculated thermodynamic parameters for the nano MgO/Ca-alginate/Nd/Y system show that the positive charge of ΔHo confirmed the endothermic nature of the sorption process, ΔSo (positive) indicates an increase in reaction system disordering, and ΔGo (negative) indicates a spontaneous process. These kinetic results indicate that the sorption process of Nd(III) and Y(III) on nano MgO/Ca-alginate beads is performed by the chemisorption process.
Collapse
Affiliation(s)
- M Ghaly
- Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority, 13759, Inshas, Egypt
| | - B A Masry
- Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority, 13759, Inshas, Egypt.
| | - E M Abu Elgoud
- Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority, 13759, Inshas, Egypt
| |
Collapse
|
4
|
Mubark AE, Abd-El Razek SE, Eliwa AA, El-Gamasy SM. Investigation on the Sulfadiazine Schiff Base Adsorption Ability of Y(III) Ions from Nitrate Solutions, Kinetics, and Thermodynamic Studies. SOLVENT EXTRACTION AND ION EXCHANGE 2023. [DOI: 10.1080/07366299.2023.2186180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Amal E. Mubark
- Production Sector, Semi-Pilot Plant Department, Nuclear Materials Authority, Cairo, Egypt
| | - Samar E. Abd-El Razek
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Ahmed A. Eliwa
- Production Sector, Semi-Pilot Plant Department, Nuclear Materials Authority, Cairo, Egypt
| | - Sabreen M. El-Gamasy
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
5
|
Bąk J, Sofińska-Chmiel W, Gajewska M, Malinowska P, Kołodyńska D. Determination of the Ni(II) Ions Sorption Mechanism on Dowex PSR2 and Dowex PSR3 Ion Exchangers Based on Spectroscopic Studies. MATERIALS (BASEL, SWITZERLAND) 2023; 16:644. [PMID: 36676380 PMCID: PMC9866840 DOI: 10.3390/ma16020644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
This paper estimates the suitability of the strongly basic anion exchangers, Dowex PSR2 and Dowex PSR3, as sorbents of nickel ions in aqueous solutions. These actions are aimed at searching for new solutions due to the growing discharge of nickel into wastewaters, primarily due to its addition to steel. The nickel sorption experiments were conducted under static conditions and resulted in the optimization of pH, phase contact time, initial solution concentration, and temperature. The next step was to calculate the kinetic, isothermal, and thermodynamic parameters. Moreover, the ion exchangers were characterized by means of Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and CHN elemental analysis. It was found that the sorption process was most effective at pH 6 after 240 min and at the temperature of 293 K. The values of the thermodynamic parameters revealed that the adsorption was exothermic and spontaneous. The physicochemical analyses combined with the experimental research enabled determination of the sorption mechanism of Ni(II) ions.
Collapse
Affiliation(s)
- Justyna Bąk
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031 Lublin, Poland
| | - Weronika Sofińska-Chmiel
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Skłodowska University, Maria Curie Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Maria Gajewska
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Skłodowska University, Maria Curie Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Paulina Malinowska
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Skłodowska University, Maria Curie Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031 Lublin, Poland
| |
Collapse
|
6
|
Duel P, Piña MDLN, Morey J. One-Pot Environmentally Friendly Synthesis of Nanomaterials Based on Phytate-Coated Fe 3O 4 Nanoparticles for Efficient Removal of the Radioactive Metal Ions 90Sr, 90Y and (UO 2) 2+ from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4383. [PMID: 36558236 PMCID: PMC9781934 DOI: 10.3390/nano12244383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
We report the fast (three minutes) synthesis of green nanoparticles based on nanoparticles coated with the natural organic receptor phytate for the recognition and capture of 90Sr, 90Y, and (UO2)2+. The new material shows excellent retention for (UO2)2+, 97%; these values were 73% and 100% for 90Sr and 90Y, respectively. Recovery of the three radioactive metal ions occurs through a non-competitive process. The new hybrid material is harmless, easy to prepare, and immobilizes these radioactive contaminants in water with great efficiency.
Collapse
|
7
|
Analysis of the Adsorption-Release Isotherms of Pentaethylenehexamine-Modified Sorbents for Rare Earth Elements (Y, Nd, La). Polymers (Basel) 2022; 14:polym14235063. [PMID: 36501458 PMCID: PMC9740061 DOI: 10.3390/polym14235063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Waste from electrical and electronic equipment (WEEE) is constantly increasing in quantity and becoming more and more heterogeneous as technology is rapidly advancing. The negative impacts it has on human and environment safety, and its richness in valuable rare earth elements (REEs), are accelerating the necessity of innovative methods for recycling and recovery processes. The aim of this work is to comprehend the adsorption and release mechanisms of two different solid sorbents, activated carbon (AC) and its pentaethylenehexamine (PEHA)-modified derivative (MAC), which were deemed adequate for the treatment of REEs deriving from WEEE. Experimental data from adsorption and release tests, performed on synthetic mono-ionic solutions of yttrium, neodymium, and lanthanum, were modelled via linear regression to understand the better prediction between the Langmuir and the Freundlich isotherms for each REE-sorbent couple. The parameters extrapolated from the mathematical modelling were useful to gain an a priori knowledge of the REEs-sorbents interactions. Intraparticle diffusion was the main adsorption mechanism for AC. PEHA contributed to adsorption by means of coordination on amino groups. Release was based on protons fostering both a cation exchange mechanism and protonation. The investigated materials confirmed their potential suitability to be employed in real processes on WEEE at the industrial level.
Collapse
|
8
|
Sakr AK, Abdel Aal MM, Abd El-Rahem KA, Allam EM, Abdel Dayem SM, Elshehy EA, Hanfi MY, Alqahtani MS, Cheira MF. Characteristic Aspects of Uranium(VI) Adsorption Utilizing Nano-Silica/Chitosan from Wastewater Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213866. [PMID: 36364642 PMCID: PMC9658519 DOI: 10.3390/nano12213866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 05/13/2023]
Abstract
A new nano-silica/chitosan (SiO2/CS) sorbent was created using a wet process to eliminate uranium(VI) from its solution. Measurements using BET, XRD, EDX, SEM, and FTIR were utilized to analyze the production of SiO2/CS. The adsorption progressions were carried out by pH, SiO2/CS dose, temperature, sorbing time, and U(VI) concentration measurements. The optimal condition for U(VI) sorption (165 mg/g) was found to be pH 3.5, 60 mg SiO2/CS, for 50 min of sorbing time, and 200 mg/L U(VI). Both the second-order sorption kinetics and Langmuir adsorption model were observed to be obeyed by the ability of SiO2/CS to eradicate U(VI). Thermodynamically, the sorption strategy was a spontaneous reaction and exothermic. According to the findings, SiO2/CS had the potential to serve as an effectual sorbent for U(VI) displacement.
Collapse
Affiliation(s)
- Ahmed K. Sakr
- Department of Civil and Environmental Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202, USA
- Correspondence: (A.K.S.); (M.F.C.)
| | | | | | - Eman M. Allam
- Nuclear Materials Authority, El Maadi, Cairo 11381, Egypt
| | | | | | - Mohamed Y. Hanfi
- Nuclear Materials Authority, El Maadi, Cairo 11381, Egypt
- Institute of Physics and Technology, Ural Federal University, St. Mira, 19, 620002 Yekaterinburg, Russia
| | - Mohammed S. Alqahtani
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester LE1 7RH, UK
| | - Mohamed F. Cheira
- Department of Civil and Environmental Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202, USA
- Correspondence: (A.K.S.); (M.F.C.)
| |
Collapse
|
9
|
Attia LA, Gamal R. Fabrication of cobalt iron oxide alginate nanocomposite as an eco-friendly sorbent for Y(III) and Sr(II) removal from aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Negm SH, Abd El-Magied MO, El Maadawy WM, Abdel Aal MM, Abd El Dayem SM, Taher MA, Abd El-Rahem KA, Rashed MN, Cheira MF. Appreciatively Efficient Sorption Achievement to U(VI) from the El Sela Area by ZrO2/Chitosan. SEPARATIONS 2022; 9:311. [DOI: 10.3390/separations9100311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The need to get uranium out of leaching liquid is pushing scientists to come up with new sorbents. This study uses the wet technique to improve the U(VI) sorption properties of ZrO2/chitosan composite sorbent. To validate the synthesis of ZrO2/CS composite with Zirconyl-OH, -NH, and -NH2 for U(VI) binding, XRD, FTIR, SEM, EDX, and BET are used to describe the ZrO2/chitosan wholly formed. To get El Sela leaching liquid, it used 150 g/L H2SO4, 1:4 S:L ratio, 200 rpm agitation speed, four hours of leaching period, and particle size 149–100 µm. In a batch study, the sorption parameters are evaluated at pH 3.5, 50 min of sorbing time, 50 mL of leaching liquid (200 mg/L U(VI)), and 25 °C. The sorption capability is 175 mg/g. Reusing ZrO2/CS for seven cycles with a slight drop in performance is highly efficient, with U(VI) desorption using 0.8 M acid and 75 min of desorption time. The selective U(VI) recovery from El Sela leachate was made possible using ZrO2/CS. Sodium diuranate was precipitated and yielded a yellow cake with a purity level of 94.88%.
Collapse
|
11
|
Selective Recovery of Cadmium, Cobalt, and Nickel from Spent Ni–Cd Batteries Using Adogen® 464 and Mesoporous Silica Derivatives. Int J Mol Sci 2022; 23:ijms23158677. [PMID: 35955812 PMCID: PMC9368978 DOI: 10.3390/ijms23158677] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 12/12/2022] Open
Abstract
Spent Ni–Cd batteries are now considered an important source for many valuable metals. The recovery of cadmium, cobalt, and nickel from spent Ni–Cd Batteries has been performed in this study. The optimum leaching process was achieved using 20% H2SO4, solid/liquid (S/L) 1/5 at 80 °C for 6 h. The leaching efficiency of Fe, Cd, and Co was nearly 100%, whereas the leaching efficiency of Ni was 95%. The recovery of the concerned elements was attained using successive different separation techniques. Cd(II) ions were extracted by a solvent, namely, Adogen® 464, and precipitated as CdS with 0.5% Na2S solution at pH of 1.25 and room temperature. The extraction process corresponded to pseudo-2nd-order. The prepared PTU-MS silica was applied for adsorption of Co(II) ions from aqueous solution, while the desorption process was performed using 0.3 M H2SO4. Cobalt was precipitated at pH 9.0 as Co(OH)2 using NH4OH. The kinetic and thermodynamic parameters were also investigated. Nickel was directly precipitated at pH 8.25 using a 10% NaOH solution at ambient temperature. FTIR, SEM, and EDX confirm the structure of the products.
Collapse
|
12
|
Efficient Recovery of Rare Earth Elements and Zinc from Spent Ni–Metal Hydride Batteries: Statistical Studies. NANOMATERIALS 2022; 12:nano12132305. [PMID: 35808142 PMCID: PMC9268567 DOI: 10.3390/nano12132305] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/29/2022]
Abstract
Considering how important rare earth elements (REEs) are for many different industries, it is important to separate them from other elements. An extractant that binds to REEs inexpensively and selectively even in the presence of interfering ions can be used to develop a useful separation method. This work was designed to recover REEs from spent nickel–metal hydride batteries using ammonium sulfate. The chemical composition of the Ni–MH batteries was examined. The operating leaching conditions of REE extraction from black powder were experimentally optimized. The optimal conditions for the dissolution of approximately 99.98% of REEs and almost all zinc were attained through use of a 300 g/L (NH4)2SO4 concentration after 180 min of leaching time and a 1:3 solid/liquid phase ratio at 120 °C. The kinetic data fit the chemical control model. The separation of total REEs and zinc was conducted under traditional conditions to produce both metal values in marketable forms. The work then shifted to separate cerium as an individual REE through acid baking with HCl, thus leaving pure cerium behind.
Collapse
|
13
|
Sakr AK, Al-Hamarneh IF, Gomaa H, Abdel Aal MM, Hanfi MY, Sayyed M, Khandaler MU, Cheira MF. Removal of uranium from nuclear effluent using regenerated bleaching earth steeped in β‒naphthol. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110204] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Synthesis of a New Chelating Iminophosphorane Derivative (Phosphazene) for U(VI) Recovery. Polymers (Basel) 2022; 14:polym14091687. [PMID: 35566857 PMCID: PMC9099652 DOI: 10.3390/polym14091687] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 12/21/2022] Open
Abstract
A new synthetic chelating N–hydroxy–N–trioctyl iminophosphorane (HTIP) was prepared through the reaction of trioctylphosphine oxide (TOPO) with N–hydroxylamine hydrochloride in the presence of a Lewis acid (AlCl3). Specifications for the HTIP chelating ligand were successfully determined using many analytical techniques, 13C–NMR, 1H–NMR, FTIR, EDX, and GC–MS analyses, which assured a reasonable synthesis of the HTIP ligand. The ability of HTIP to retain U(VI) ions was investigated. The optimum experimental factors, pH value, experimental time, initial U(VI) ion concentration, HTIP dosage, ambient temperature, and eluents, were attained with solvent extraction techniques. The utmost retention capacity of HTIP/CHCl3 was 247.5 mg/g; it was achieved at pH = 3.0, 25 °C, with 30 min of shaking and 0.99 × 10−3 mol/L. From the stoichiometric calculations, approximately 1.5 hydrogen atoms are released during the extraction at pH 3.0, and 4.0 moles of HTIP ligand were responsible for chelation of one mole of uranyl ions. According to kinetic studies, the pseudo–first order model accurately predicted the kinetics of U(VI) extraction by HTIP ligand with a retention power of 245.47 mg/g. The thermodynamic parameters ΔS°, ΔH°, and ΔG° were also calculated; the extraction process was predicted as an exothermic, spontaneous, and advantageous extraction at low temperatures. As the temperature increased, the value of ∆G° increased. The elution of uranium ions from the loaded HTIP/CHCl3 was achieved using 2.0 mol of H2SO4 with a 99.0% efficiency rate. Finally, the extended variables were used to obtain a uranium concentrate (Na2U2O7, Y.C) with a uranium grade of 69.93% and purity of 93.24%.
Collapse
|
15
|
Allam EM, Lashen TA, Abou El-Enein SA, Hassanin MA, Sakr AK, Hanfi MY, Sayyed MI, Al-Otaibi JS, Cheira MF. Cetylpyridinium Bromide/Polyvinyl Chloride for Substantially Efficient Capture of Rare Earth Elements from Chloride Solution. Polymers (Basel) 2022; 14:polym14050954. [PMID: 35267777 PMCID: PMC8912479 DOI: 10.3390/polym14050954] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
A new sorbent cetylpyridinium bromide/polyvinylchloride (CPB/PVC) was prepared and tested to extract rare earth elements (REEs) from their chloride solutions. It was identified by FTIR, TGA, SEM, EDX, and XRD. The impact of various factors such as pH, RE ion initial concentration, contacting time, and dose amount via sorption process was inspected. The optimum pH was 6.0, and the equilibrium contact time was reached at 60 min at 25 °C. The prepared adsorbent (CPB/PVC) uptake capacity was 182.6 mg/g. The adsorption of RE ions onto the CPB/PVC sorbent was found to fit the Langmuir isotherm as well as pseudo-second-order models well. In addition, the thermodynamic parameters of RE ion sorption were found to be exothermic and spontaneous. The desorption of RE ions from the loaded CPB/PVC sorbent was investigated. It was observed that the optimum desorption was achieved at 1.0 M HCl for 60 min contact time at ambient room temperature and a 1:60 solid: liquid phase ratio (S:L). As a result, the prepared CPB/PVC sorbent was recognized as a competitor sorbent for REEs.
Collapse
Affiliation(s)
- Eman M. Allam
- Nuclear Materials Authority, El Maadi, Cairo P.O. Box 530, Egypt; (T.A.L.); (M.A.H.); (A.K.S.); (M.Y.H.)
- Correspondence: (E.M.A.); (M.F.C.)
| | - Taysser A. Lashen
- Nuclear Materials Authority, El Maadi, Cairo P.O. Box 530, Egypt; (T.A.L.); (M.A.H.); (A.K.S.); (M.Y.H.)
| | - Saeyda A. Abou El-Enein
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Mohamed A. Hassanin
- Nuclear Materials Authority, El Maadi, Cairo P.O. Box 530, Egypt; (T.A.L.); (M.A.H.); (A.K.S.); (M.Y.H.)
| | - Ahmed K. Sakr
- Nuclear Materials Authority, El Maadi, Cairo P.O. Box 530, Egypt; (T.A.L.); (M.A.H.); (A.K.S.); (M.Y.H.)
| | - Mohamed Y. Hanfi
- Nuclear Materials Authority, El Maadi, Cairo P.O. Box 530, Egypt; (T.A.L.); (M.A.H.); (A.K.S.); (M.Y.H.)
- Institute of Physics and Technology, Ural Federal University, St. Mira, 19, 620002 Yekaterinburg, Russia
| | - M. I. Sayyed
- Department of Nuclear Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
- Department of Physics, Faculty of Science, Isra University, Amman 11622, Jordan
| | - Jamelah S. Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed F. Cheira
- Nuclear Materials Authority, El Maadi, Cairo P.O. Box 530, Egypt; (T.A.L.); (M.A.H.); (A.K.S.); (M.Y.H.)
- Correspondence: (E.M.A.); (M.F.C.)
| |
Collapse
|
16
|
Sustainable Remedy Waste to Generate SiO2 Functionalized on Graphene Oxide for Removal of U(VI) Ions. SUSTAINABILITY 2022. [DOI: 10.3390/su14052699] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Hummer process is applied to generate graphene oxide from carbon stocks’ discharged Zn-C batteries waste. SiO2 is produced from rice husks through the wet process. Subsequently, SiO2 reacted with graphene oxide to form silica/graphene oxide (SiO2/GO) as a sorbent material. XRD, BET, SEM, EDX, and FTIR were employed to characterize SiO2/GO. Factors affecting U(VI) sorption on SiO2/GO, including pH, sorption time, a dosage of SiO2/GO, U(VI) ions’ concentration, and temperature, were considered. The experimental data consequences indicated that the uptake capacity of SiO2/GO towards U(VI) is 145.0 mg/g at a pH value of 4.0. The kinetic calculations match the pseudo second-order model quite well. Moreover, the sorption isotherm is consistent with the Langmuir model. The sorption procedures occur spontaneously and randomly, as well as exothermically. Moreover, SiO2/GO has essentially regenerated with a 0.8 M H2SO4 and 1:50 S:L phase ratio after 60 min of agitation time. Lastly, the sorption and elution were employed in seven cycles to check the persistent usage of SiO2/GO.
Collapse
|
17
|
Rare Earth Group Separation after Extraction Using Sodium Diethyldithiocarbsamate/Polyvinyl Chloride from Lamprophyre Dykes Leachate. MATERIALS 2022; 15:ma15031211. [PMID: 35161155 PMCID: PMC8839727 DOI: 10.3390/ma15031211] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
Abstract
This study presents the first application of sodium diethyldithiocarbamate/polyvinyl chloride (DdTC/PVC) as a novel adsorbent for rare earth element (REE) sorption from leach liquors. DdTC/PVC has higher adsorption properties than other sorbents, the synthesis of DdTC/PVC is more accessible than other resins, and it is considered a more affordable sorbent. The three-liquid-phase extraction technique (TLPE) was applied to separate REEs into light, middle, and heavy rare earth elements as groups. The TLPE is an excellent achievable technique in the separation of REEs. DdTC/PVC was prepared as a sorbent to sorb rare-earth ions in chloride solution. It was described by XRD, SEM, TGA, and FTIR. The factors pH, initial rare-earth ion concentration, contact time, and DdTC/PVC dose were also analyzed. The ideal pH was 5.5, and the ideal equilibration time was found to be 45 min. The rare-earth ion uptake on DdTC/PVC was 156.2 mg/g. The rare-earth ion sorption on DdTC/PVC was fitted to Langmuir and pseudo-2nd-order models. The rare-earth ions’ thermodynamic adsorption was spontaneous and exothermic. In addition, rare-earth ion desorption from the loaded DdTC/PVC was scrutinized using 1 M HCl, 45 min time of contact, and a 1:60 S:L phase ratio. The obtained rare earth oxalate concentrate was utilized after dissolving it in HCl to extract and separate the RE ions into three groups—light (La, Ce, Nd, and Sm), middle (Gd, Ho, and Er), and heavy (Yb, Lu, and Y)—via three-liquid-phase extraction (TLPE). This technique is simple and suitable for extracting REEs.
Collapse
|