1
|
Michel P, Olszewska MA. Phytochemistry and Biological Profile of Gaultheria procumbens L. and Wintergreen Essential Oil: From Traditional Application to Molecular Mechanisms and Therapeutic Targets. Int J Mol Sci 2024; 25:565. [PMID: 38203735 PMCID: PMC10778675 DOI: 10.3390/ijms25010565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Gaultheria procumbens L. is a medicinal plant whose aerial parts (leaves, stems, and fruits) and methyl salicylate-rich essential oil (wintergreen oil) are used in phytotherapy to treat inflammation, muscular pain, and infection-related disorders. This overview summarises the current knowledge about ethnobotany, phytochemistry, pharmacology, molecular mechanisms, biocompatibility, and traditional use of G. procumbens and the wintergreen oil distilled from different plant organs. Over 70 hydrophilic compounds, including methyl salicylate glycosides, flavonoids, procyanidins, free catechins, caffeoylquinic acids, and simple phenolic acids, have been identified in G. procumbens plant parts. Moreover, aliphatic compounds, triterpene acids, and sterols have been revealed in lipophilic fractions. Furthermore, over 130 volatile compounds have been detected in wintergreen oil with dominating methyl salicylate (96.9-100%). The accumulated research indicates that mainly hydrophilic non-volatiles are responsible for the pharmacological effects of G. procumbens, primarily its potent anti-inflammatory, antioxidant, and photoprotective activity, with mechanisms verified in vitro and ex vivo in cellular and cell-free assays. The biological effectiveness of the dominant methyl salicylate glycoside-gaultherin-has also been confirmed in animals. Wintergreen oil is reported as a potent anti-inflammatory agent exhibiting moderate antioxidant and antimicrobial activity in vitro and significant insecticidal and larvicidal capacity. Together, G. procumbens accumulate a diverse fraction of polyphenols, triterpenes, and volatiles with validated in vitro and ex vivo biological activity but with the absence of in vivo studies, especially clinical trials concerning effective dose determination and toxicological verification and technological research, including drug formulation.
Collapse
Affiliation(s)
| | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
2
|
Boateng ID, Kuehnel L, Daubert CR, Agliata J, Zhang W, Kumar R, Flint-Garcia S, Azlin M, Somavat P, Wan C. Updating the status quo on the extraction of bioactive compounds in agro-products using a two-pot multivariate design. A comprehensive review. Food Funct 2023; 14:569-601. [PMID: 36537225 DOI: 10.1039/d2fo02520e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extraction is regarded as the most crucial stage in analyzing bioactive compounds. Nonetheless, due to the intricacy of the matrix, numerous aspects must be optimized during the extraction of bioactive components. Although one variable at a time (OVAT) is mainly used, this is time-consuming and laborious. As a result, using an experimental design in the optimization process is beneficial with few experiments and low costs. This article critically reviewed two-pot multivariate techniques employed in extracting bioactive compounds in food in the last decade. First, a comparison of the parametric screening methods (factorial design, Taguchi, and Plackett-Burman design) was delved into, and its advantages and limitations in helping to select the critical extraction parameters were discussed. This was followed by a discussion of the response surface methodologies (central composite (CCD), Doehlert (DD), orthogonal array (OAD), mixture, D-optimal, and Box-Behnken designs (BBD), etc.), which are used to optimize the most critical variables in the extraction of bioactive compounds in food, providing a sequential comprehension of the linear and complex interactions and multiple responses and robustness tests. Next, the benefits, drawbacks, and possibilities of various response surface methodologies (RSM) and some of their usages were discussed, with food chemistry, analysis, and processing from the literature. Finally, extraction of food bioactive compounds using RSM was compared to artificial neural network modeling with their drawbacks discussed. We recommended that future experiments could compare these designs (BBD vs. CCD vs. DD, etc.) in the extraction of food-bioactive compounds. Besides, more research should be done comparing response surface methodologies and artificial neural networks regarding their practicality and limitations in extracting food-bioactive compounds.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Lucas Kuehnel
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Christopher R Daubert
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Joseph Agliata
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Wenxue Zhang
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Ravinder Kumar
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Sherry Flint-Garcia
- US Department of Agriculture, Plant Genetics Research Unit, Columbia, MO, 65211, USA
| | - Mustapha Azlin
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Pavel Somavat
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA. .,Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Caixia Wan
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
3
|
Vilkickyte G, Raudone L. Optimization, Validation and Application of HPLC-PDA Methods for Quantification of Triterpenoids in Vaccinium vitis-idaea L. Molecules 2021; 26:1645. [PMID: 33809511 PMCID: PMC8001753 DOI: 10.3390/molecules26061645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/01/2022] Open
Abstract
Triterpenoids have regained much attention as promising multi-targeting bioactive agents of natural origin in the treatment of numerous disorders. Due to the high potential for phytopharmaceutical development, accurate qualitative and quantitative analysis of triterpenoids for screening and quality control is required. Vaccinium vitis-idaea L. (lingonberry) raw materials have aroused interest as a rich source of triterpenoids. However, currently, no validated, rapid, and easy-to-perform quantification method is available for the routine control of these compounds in lingonberries. This research aimed at developing and validating HPLC-PDA methods for the determination and screening of triterpenoids in extracts of lingonberry leaves, fruits, and flowers. The developed methods were deemed satisfactory by validation, which revealed acceptable analytical specificity, linearity (r2 > 0.9999), precision (RSD < 2%), trueness (94.70-105.81%), and sensitivity (LOD: 0.08-0.65 µg/mL). The real sample analysis demonstrated established methods applicability for quantification of 13 triterpenoids in lingonberries and emphasized differences between raw materials. Lingonberry fruits were distinguished by the richness of ursolic acid; lingonberry flowers by similar profile to fruits, but low content of neutral triterpenoids; whereas lingonberry leaves by the particularly high level of α-amyrin. Thus, the proposed methods proved to be reliable and applicable for quantification and routine analysis of triterpenoids in lingonberry samples.
Collapse
Affiliation(s)
- Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania;
| | - Lina Raudone
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania;
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
4
|
Marchelak A, Olszewska MA, Owczarek A. Simultaneous quantification of thirty polyphenols in blackthorn flowers and dry extracts prepared thereof: HPLC-PDA method development and validation for quality control. J Pharm Biomed Anal 2020; 184:113121. [PMID: 32113115 DOI: 10.1016/j.jpba.2020.113121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 11/28/2022]
Abstract
The paper presents development and validation of a RP-HPLC-PDA method for quantification of 30 phenolic constituents of the blackthorn (Prunus spinosa L.) flower, a traditional European herbal medicine with a unique and complex composition. The target analytes were selected from over 50 active compounds present in the investigated plant material, and their separation was optimized on a C18 Ascentis Express fused-core column (2.7 μm, 150 mm × 4.6 mm), in a step-by-step process, in terms of elution solvents, gradient profile, temperature, and flow rate. The final procedure was carried out with an acetonitrile-tetrahydrofuran gradient at a flow rate of 1.09 mL/min and column temperature of 28°C. Under those conditions, the matrix peaks were satisfactorily separated within 35 min. The validation showed good precision (RSD < 5 %), accuracy (93.5-102.1 %), linearity (r > 0.9998), and sensitivity (LODs 0.51-2.05 ng) of the method. The real sample analysis demonstrated its applicability for quantification of the phenolics both in commercial samples of P. spinosa flowers (different manufacturers and years of collection), as well as in the extracts (of different polarity) prepared thereof. Thus, the developed procedure proved to be a useful tool in quality control, and the optimization approach might serve as a practical guideline for LC-method development in complex matrices.
Collapse
Affiliation(s)
- Anna Marchelak
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland.
| | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland
| | - Aleksandra Owczarek
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland
| |
Collapse
|
5
|
Michel P, Owczarek A, Matczak M, Kosno M, Szymański P, Mikiciuk-Olasik E, Kilanowicz A, Wesołowski W, Olszewska MA. Metabolite Profiling of Eastern Teaberry (Gaultheria procumbens L.) Lipophilic Leaf Extracts with Hyaluronidase and Lipoxygenase Inhibitory Activity. Molecules 2017; 22:molecules22030412. [PMID: 28272321 PMCID: PMC6155426 DOI: 10.3390/molecules22030412] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
The phytochemical profile and anti-inflammatory activity of Gaultheria procumbens dry lipophilic leaf extracts were evaluated. Forty compounds were identified by GC-MS, representing 86.36% and 81.97% of the petroleum ether (PE) and chloroform (CHE) extracts, respectively, with ursolic acid (28.82%), oleanolic acid (10.11%), methyl benzoate (10.03%), and methyl salicylate (6.88%) dominating in CHE, and methyl benzoate (21.59%), docosane (18.86%), and octacosane (11.72%) prevailing in PE. Three components of CHE were fully identified after flash chromatography isolation and spectroscopic studies as (6S,9R)-vomifoliol (4.35%), 8-demethyl-latifolin (1.13%), and 8-demethylsideroxylin (2.25%). Hyaluronidase and lipoxygenase inhibitory activity was tested for CHE (IC50 = 282.15 ± 10.38 μg/mL and 899.97 ± 31.17 μg/mL, respectively), PE (IC50 = 401.82 ± 16.12 μg/mL and 738.49 ± 15.92 μg/mL), and nine of the main constituents versus heparin (IC50 = 366.24 ± 14.72 μg/mL) and indomethacin (IC50 = 92.60 ± 3.71 μg/mL) as positive controls. With the best activity/concentration relationships, ursolic and oleanolic acids were recommended as analytical markers for the extracts and plant material. Seasonal variation of both markers following foliar development was investigated by UHPLC-PDA. The highest levels of ursolic (5.36-5.87 mg/g DW of the leaves) and oleanolic (1.14-1.26 mg/g DW) acids were observed between August and October, indicating the optimal season for harvesting.
Collapse
Affiliation(s)
- Piotr Michel
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland; (A.O.); (M.M.); (M.K.); (M.A.O.)
- Correspondence: ; Tel.: +48-42-677-91-69
| | - Aleksandra Owczarek
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland; (A.O.); (M.M.); (M.K.); (M.A.O.)
| | - Magdalena Matczak
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland; (A.O.); (M.M.); (M.K.); (M.A.O.)
| | - Martyna Kosno
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland; (A.O.); (M.M.); (M.K.); (M.A.O.)
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland; (P.S.); (E.M.-O.)
| | - Elżbieta Mikiciuk-Olasik
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland; (P.S.); (E.M.-O.)
| | - Anna Kilanowicz
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland; (A.K.); (W.W.)
| | - Wiktor Wesołowski
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland; (A.K.); (W.W.)
| | - Monika A. Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland; (A.O.); (M.M.); (M.K.); (M.A.O.)
| |
Collapse
|